research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logo STRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Good data with `bad' reflections: the employment of non-spherical scattering factors in the redetermination of the structure of O-ethyl N-phenyl­carbamate

crossmark logo

aInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: [email protected]

Edited by S. Moggach, The University of Western Australia, Australia (Received 11 March 2025; accepted 30 June 2025; online 10 July 2025)

Dedicated to the memory of Professor George M. Sheldrick

The structure of O-ethyl N-phenyl­thio­carbamate, C9H11NOS (2), has been redetermined, confirming the results obtained in three earlier structure determinations. The higher data quality provided by modern diffractomers has enabled a reliable analysis (absent from the earlier reports) of the hy­dro­gen bonding. However, conventional refinement of the structure of 2 was unsatisfactory because of the large number of extremely badly-fitting reflections, leading to many checkCIF `ALERT A' messages that might be detrimental to ease of publication. A refinement using nonspherical scattering factors effectively eliminated this problem. There are three independent mol­ecules of 2 in the asymmetric unit; two are directly connected by two N—H⋯S hy­dro­gen bonds, forming a dimer with the well-known R22(8) motif. The other mol­ecule forms a topologically identical but inversion-symmetric dimer. Each type of dimer occupies a different region parallel to the ac plane (mol­ecule 1, y ≃ 0; mol­ecules 2 and 3, y[1 \over 3] and [2 \over 3]). All three molecules lie in planes parallel to (031). The title com­pound is effectively isotypic to 1-ethyl-3-phenyl­thio­urea (another known structure for which the hy­dro­gen bonding was not analysed) because its EtNH group, like the EtO group of 2, is not involved in hy­dro­gen bonding.

1. Introduction

In a recent investigation of well-formed crystals that were believed to be an organic thiol, containing the elements C, H, N and S, preliminary diffractometer investigations (using the routine `What is this?'; Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) suggested that the com­pound was in fact 1-ethyl-3-phenyl­thio­urea (1), the structure of which is known [Singh et al., 2015[Singh, A., Bharty, M. K., Bharati, P., Bharti, A., Singh, S. & Singh, N. K. (2015). Polyhedron 85, 918-925.]; room-tem­per­a­ture data; Cambridge Structural Database (CSD, Version 5.46 of November 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcode NOQTUK]. Because this publication did not give a detailed account of the hy­dro­gen bonding, and in view of my inter­est in structures of ureas and thio­ureas and their adducts (Strey & Jones, 2018[Strey, M. & Jones, P. G. (2018). Acta Cryst. C74, 406-410.], and references therein), it was decided to measure a new dataset for this structure. Accordingly, high-quality data were col­lec­ted to a resolution limit of 0.45 Å at 100 K.

During the data collection, it became clear (using the routine `Autochem') that one of the two supposed HN–ethyl groups was in fact O–ethyl, so that the com­pound was O-ethyl N-phenyl­thio­carbamate (2); the `What is this?' routine had only been given the elements C, H, N and S and so could not assign the O atom. This structure too is known, with three database entries of the refcode family PINPIL: Taylor & Tiekink (1994[Taylor, R. & Tiekink, E. R. T. (1994). Z. Kristallogr. Cryst. Mater. 209, 64-67.]), room-tem­per­a­ture data; Nieger et al. (2019[Nieger, M., Aly, A. A. & Brase, S. (2019). CSD Communication, CCDC deposition No. 1969433, doi: 10.5517/ccdc.csd.cc234c3r.]), deposited data measured at 123 K; and Alsayari et al. (2021[Alsayari, A., Muhsinah, A. B., Asiri, Y. I., Al-aizari, F. A., Kheder, N. A., Almarhoon, Z. M., Ghabbour, H. A. & Mabkhot, Y. N. (2021). Molecules 26, 26175383.]), room-tem­per­a­ture data with no reference to the earlier structures. It is notable that the unit-cell constants of both com­pounds are very similar (Table 1[link]), and both have Z′ = 3, but this does not seem to have been commented on. The CIF of Nieger et al. (2019[Nieger, M., Aly, A. A. & Brase, S. (2019). CSD Communication, CCDC deposition No. 1969433, doi: 10.5517/ccdc.csd.cc234c3r.]) included three N—H⋯S hy­dro­gen bonds; the other two publications did not discuss these.

Table 1
Structure determinations of 1 and 2 and their unit-cell constants

For both determinations, the space group is P[\overline{1}] and Z = 6.

Compound/refcode Reference T (K) a (Å) b (Å) c (Å) α (°) β (°) γ (°) V3)
1/NOQTUK Singh et al. (2015[Singh, A., Bharty, M. K., Bharati, P., Bharti, A., Singh, S. & Singh, N. K. (2015). Polyhedron 85, 918-925.]) 293 9.7037 (8) 12.0974 (10) 12.2300 (10) 89.337 (7) 84.504 (7) 85.224 (7) 1424.1 (2)
2/PINPIL Taylor & Tiekink (1994[Taylor, R. & Tiekink, E. R. T. (1994). Z. Kristallogr. Cryst. Mater. 209, 64-67.]) 295 11.972 (4) 12.114 (1) 9.607 (2) 95.52 (1) 94.80 (3) 89.34 (2) 1382.0
2/PINPIL01 Nieger et al. (2019[Nieger, M., Aly, A. A. & Brase, S. (2019). CSD Communication, CCDC deposition No. 1969433, doi: 10.5517/ccdc.csd.cc234c3r.]) 123 9.6664 (3) 11.7827 (3) 12.1319 (3) 88.829 (1) 84.823 (1) 84.368 (1) 1369.41 (6)
2/PINPIL02a Alsayari et al. (2021[Alsayari, A., Muhsinah, A. B., Asiri, Y. I., Al-aizari, F. A., Kheder, N. A., Almarhoon, Z. M., Ghabbour, H. A. & Mabkhot, Y. N. (2021). Molecules 26, 26175383.]) 293 9.6587 (4) 11.7585 (5) 12.1212 (5) 88.807 (2) 84.858 (2) 84.314 (2) 1364.24 (10)
2 This work 100 9.6661 (2) 11.7465 (3) 12.1224 (2) 88.8230 (18) 84.8866 (16) 84.2903 (18) 1364.03 (5)
Note: (a) the unit-cell constants for PINPIL02 and title structure 2 are closely similar, despite the recorded tem­per­a­ture of PINPIL02 being given as 293 K in the CSD.

In the present article, I discuss the hy­dro­gen bonding of 2 and com­pare it to that of 1. I also describe problems with the conventional refinement of this and other high-resolution datasets (namely that residual electron density can be high, and there can be many `bad' reflections with large differences between calculated and observed structure factors) and the methods used to overcome these problems.

[Scheme 1]

2. Experimental

2.1. Synthesis and crystallization

Crystals arose by chance from an experiment designed to deliver an organic thiol. Clearly, the reaction did not proceed as expected; there may have been decom­position by accidental access of atmospheric moisture.

2.2. Refinement

Details of the measurements (necessarily identical for both refinements of the same data!) and refinements are given in Table 2[link]. The standard refinement (column `2_IAM') employed SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). H atoms of NH groups were refined freely. Methyl groups were refined as idealized rigid groups, with C—H = 0.98 Å and H—C—H = 109.5°, and allowed to rotate but not tip (command `AFIX 137'). Other H atoms were included using a riding model, starting from calculated positions, with C—H = 0.95 Å for aromatic and 0.99 Å for methyl­ene H atoms. For the NoSpherA2 refinement (column `2_NoSpherA2' in Table 2[link]), the wavefunction was calculated using ORCA (Neese et al., 2020[Neese, F., Wennmohs, F., Becker, U. & Riplinger, C. (2020). J. Chem. Phys. 152, 224108.]; Neese, 2022[Neese, F. (2022). WIREs Comput. Mol. Sci. 12, e1606.]), using the B3LYP hybrid functional and the def2-SVP basis set (see also the following section).

Table 2
Experimental details

For both refinements: C9H11NOS, triclinic, P[\overline{1}], Z = 6. The experiment was carried out at 100 K with Mo Kα radiation using a Rigaku XtaLAB Synergy diffractometer. Absorption was corrected for by multi-scan methods (CrysAlis PRO; Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]).

  2_IAM 2_NoSpherA2
Crystal data
Mr 181.25
a, b, c (Å) 9.6661 (2), 11.7465 (3), 12.1224 (2)
α, β, γ (°) 88.8230 (18), 84.8866 (16), 84.2903 (18)
V3) 1364.03 (5)
μ (mm−1) 0.31
Crystal size (mm) 0.2 × 0.2 × 0.1
 
Data collection
Tmin, Tmax 0.220, 1.000
No. of measured, independent and observed reflections [I > 2σ(I)] 317871, 33252, 23960
Rint 0.053
θ values (°) θmax = 53.9, θmin = 2.1
(sin θ/λ)max−1) 1.136
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.108, 1.06 0.024, 0.044, 0.99
No. of reflections 33252 33252
No. of parameters 340 622
H-atom treatment H atoms treated by a mixture of independent and constrained refinement All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.63, −0.29 0.38, −0.30
Computer programs: CrysAlis PRO (Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), olex2.refine (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), XP (Bruker, 1998[Bruker (1998). XP. Version 5.1. Bruker AXS Inc., Madison, Wis­con­sin, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

3. Results and discussion

3.1. Structural commentary

The structure of 2 is shown in Fig. 1[link], with selected mol­ecular dimensions in Table 3[link]. All values discussed here are those from the standard refinement (labelled as `2_IAM' in the Tables; for `2_NoSpherA2', see Section 4[link], Use of non-spherical scattering factors). As established by Taylor & Tiekink (1994[Taylor, R. & Tiekink, E. R. T. (1994). Z. Kristallogr. Cryst. Mater. 209, 64-67.]), the asymmetric unit of 2 contains three independent but closely similar mol­ecules; the second and third mol­ecules are distinguished here by atom numbers with primes (′) or double primes (′′), respectively. A suitable choice of the asymmetric unit shows that mol­ecules 2 and 3 are connected by two N—H⋯S hy­dro­gen bonds, involving a ring of graph set R22(8).

Table 3
Selected geometric parameters (Å, °) for 2_IAM[link]

S1—C1 1.6702 (4) N1′—C1′ 1.3470 (5)
O1—C1 1.3266 (4) N1′—C4′ 1.4167 (5)
O1—C2 1.4586 (5) S1′′—C1′′ 1.6724 (4)
N1—C1 1.3484 (5) O1′′—C1′′ 1.3241 (5)
N1—C4 1.4191 (5) O1′′—C2′′ 1.4541 (5)
S1′—C1′ 1.6727 (4) N1′′—C1′′ 1.3457 (5)
O1′—C1′ 1.3274 (5) N1′′—C4′′ 1.4179 (5)
O1′—C2′ 1.4604 (5)    
       
C1—O1—C2 118.52 (3) O1′—C1′—S1′ 124.18 (3)
C1—N1—C4 130.50 (3) N1′—C1′—S1′ 121.75 (3)
O1—C1—N1 113.77 (3) C1′′—O1′′—C2′′ 119.55 (3)
O1—C1—S1 124.40 (3) C1′′—N1′′—C4′′ 128.93 (3)
N1—C1—S1 121.82 (3) O1′′—C1′′—N1′′ 112.85 (3)
C1′—O1′—C2′ 118.40 (3) O1′′—C1′′—S1′′ 124.79 (3)
C1′—N1′—C4′ 131.60 (3) N1′′—C1′′—S1′′ 122.36 (3)
O1′—C1′—N1′ 114.04 (3)    
       
C2—O1—C1—N1 −179.41 (4) C1′—O1′—C2′—C3′ −178.03 (3)
C2—O1—C1—S1 0.53 (5) C1′—N1′—C4′—C5′ 16.53 (7)
C4—N1—C1—O1 −7.65 (6) C1′—N1′—C4′—C9′ −164.81 (4)
C4—N1—C1—S1 172.42 (3) C2′′—O1′′—C1′′—N1′′ 179.74 (4)
C1—O1—C2—C3 −174.98 (4) C2′′—O1′′—C1′′—S1′′ −0.49 (6)
C1—N1—C4—C5 −24.14 (6) C4′′—N1′′—C1′′—O1′′ −4.65 (6)
C1—N1—C4—C9 159.70 (4) C4′′—N1′′—C1′′—S1′′ 175.57 (3)
C2′—O1′—C1′—N1′ −173.55 (3) C1′′—O1′′—C2′′—C3′′ 176.04 (4)
C2′—O1′—C1′—S1′ 8.55 (5) C1′′—N1′′—C4′′—C5′′ 36.50 (7)
C4′—N1′—C1′—O1′ −1.46 (6) C1′′—N1′′—C4′′—C9′′ −146.97 (4)
C4′—N1′—C1′—S1′ 176.50 (3)    
[Figure 1]
Figure 1
The asymmetric unit of com­pound 2 in the crystal. Ellipsoids correspond to the 50% probability level. The dashed lines indicate hy­dro­gen bonds.

As discussed by Taylor & Tiekink (1994[Taylor, R. & Tiekink, E. R. T. (1994). Z. Kristallogr. Cryst. Mater. 209, 64-67.]), bond lengths and atoms may be considered normal. The atom sequence C4—N1—C1—S1 is anti­periplanar, whereas C2—O1—C1—S1 is synperiplanar (see torsion angles in Table 3[link]). The sequence H01—N1—C1—S1 is then necessarily synperiplanar, which facilitates the observed hy­dro­gen-bonding pattern. The central group of atoms C1, C2, C4, N1, O1 and S1 is essentially planar, with an r.m.s. deviation of 0.033 Å; atom C3, the terminal C atom of the ethyl group, lies outside this plane by only 0.126 (1) Å. The inter­planar angle to the arene ring is 28.73 (1)°. The corresponding values for mol­ecules 2 and 3 are: r.m.s. deviations 0.034 (1) and 0.021 (1), C3 deviations 0.108 (1) and 0.108 (1) Å, and inter­planar angles 11.94 (2) and 31.31 (1)°, respectively. The inter­planar angle thus varies somewhat between the three mol­ecules. The close intra­molecular contacts H5⋯O1, included in the list of hy­dro­gen bonds (Table 4[link]), are associated with the small inter­planar angles.

Table 4
Hydrogen bond geometry (Å, °) for 2_IAM[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H01⋯S1i 0.864 (9) 2.533 (10) 3.3867 (3) 169.5 (9)
N1′—H01′⋯S1′′ 0.860 (10) 2.538 (10) 3.3766 (4) 165.0 (9)
N1′′—H01′′⋯S1′ 0.807 (10) 2.573 (10) 3.3668 (4) 167.7 (10)
C5—H5⋯O1 0.95 2.31 2.8306 (5) 114
C5′—H5′⋯O1′ 0.95 2.25 2.8136 (5) 118
C5′′—H5′′⋯O1′′ 0.95 2.34 2.7983 (5) 109
C9—H9⋯S1i 0.95 3.02 3.7264 (4) 132
C9—H9⋯S1′ii 0.95 3.03 3.7860 (4) 138
C9′—H9′⋯S1′′ 0.95 2.92 3.6080 (4) 130
C9′′—H9′′⋯S1′ 0.95 2.98 3.6864 (4) 132
C2′—H2A′⋯S1iii 0.99 2.92 3.6862 (4) 135
Symmetry codes: (i) [-x, -y, -z+1]; (ii) [x-1, y-1, z]; (iii) [x+1, y+1, z].

3.2. Supra­molecular features

Hydrogen bond details are given in Table 4[link]. The packing of com­pound 2 consists of layers of mol­ecules, parallel to (0[\overline{3}]1), connected by N—H⋯S hy­dro­gen bonds to form dimers with the well-known R22(8) motif; these layers are seen edge-on in Fig. 2[link], running diagonally from top left to bottom right. One type of dimer involves mol­ecule 1 only, which forms hy­dro­gen bonds via inversion symmetry; these mol­ecules lie horizontally, top and bottom in Fig. 2[link], occupying the regions y ≃ 0 and 1. Mol­ecules 2 and 3 assemble in an exactly equivalent manner, but without crystallographic symmetry of the dimers, and occupy the two horizontal regions in the centre of Fig. 2[link], at y ≃ [1 \over 3] and [2 \over 3]. A layer com­prising all three mol­ecules is shown in Fig. 3[link]. One translation between translationally equivalent dimers is [100]; the other, lateral, translation may be chosen parallel to [013], confirming the plane (via the zone law) as (0[\overline{3}]1). The values `3' in the cited planes and vectors are clearly directly connected with the Z′ value of 3.

[Figure 2]
Figure 2
Packing of com­pound 2 projected parallel to the a axis. The layers are shown edge-on. Atom labels distinguish the S atoms of the three independent mol­ecules. For all packing diagrams, the dashed lines indicate hy­dro­gen bonds; H atoms not involved in hy­dro­gen bonding have been omitted for clarity.
[Figure 3]
Figure 3
The packing of com­pound 2, showing a layer viewed perpendicular to (0[\overline{3}]1). S atoms are labelled with different colours: S1 yellow, S1′ green and S1′′ purple.

The contacts H9⋯S1 across the dimers may be regarded as `weak' hy­dro­gen bonds that may provide additional stabilization, although they are not drawn explicitly in the figures. It is notable that the O atoms are not involved in hy­dro­gen bonding; C—O—C moieties are generally considered as less probable hy­dro­gen-bond acceptors (Allen et al., 1999[Allen, F. H., Motherwell, W. D. S., Raithby, P. R., Shields, G. P. & Taylor, R. (1999). New J. Chem. 23, 25-34.]).

There is no ππ stacking and the shortest C—H⋯Cg distance is 2.85 Å for H8⋯Cg(C4′′–C9′′)(x − 1, y − 1, z) (Cg indicates a ring centroid).

A com­parison of the hy­dro­gen-bonding patterns in com­pounds 1 and 2 shows that they are exactly equivalent, so that the com­pounds may be regarded as isotypic, whereby the O atom of 2 corresponds to one N—H group of 1; Fig. 4[link] shows the layer structure of com­pound 1. This EtNH group of 1 is thus, perhaps surprisingly, not involved in hy­dro­gen bonding.

[Figure 4]
Figure 4
The packing of com­pound 1, showing a layer viewed perpendicular to (0[\overline{3}]1). As for Fig. 3[link], the S atoms of different independent mol­ecules are given different colours. The diagram was drawn from coordinates retrieved from the CSD.

3.3. Database survey

The search employed the routine ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]), as implemented in the Cambridge Structural Database (Version 5.46 of November 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). It was designed to find only structures containing 1 or 2. In addition to the stuctures of 2 alone, it also found the 2:1 adducts (cocrystals) of 2 with 4,4′-bi­pyridine (refcode MEWJIK; Yeo & Tiekink, 2018[Yeo, C. I. & Tiekink, E. R. T. (2018). Z. Kristallogr. New Cryst. Struct. 233, 499-501.]) and trans-1,2-bis­(pyridin-4-yl)ethene (UHOSEQ; Ellis et al., 2009[Ellis, C. A., Miller, M. A., Spencer, J., Zukerman-Schpector, J. & Tiekink, E. R. T. (2009). CrystEngComm 11, 1352-1361.]).

4. Use of non-spherical scattering factors

Modern diffractometers, with their powerful X-ray sources, highly sensitive detectors and reliable low-tem­per­a­ture attachments, can nowadays deliver data of a quality that I could not have dreamt of when I began to employ X-ray structure determination half a century ago (Jones et al., 1975[Jones, P. G., Guy, J. J. & Sheldrick, G. M. (1975). Acta Cryst. B31, 2687-2688.]; Abu-Zaied et al., 2024[Abu-Zaied, M. A., Nawwar, G. A., Elgemeie, G. H. & Jones, P. G. (2024). Acta Cryst. E80, 829-839.]). Even for small crystals of organic com­pounds, data of significant intensity can often be recorded to 2θ 70° or more (for Mo Kα radiation); inspection of the data reduction shows that such data are often present even if they are too faint to be recognised on diffractometer screen images. One slightly disturbing aspect in my recent experience has been the tendency for refinements of such datasets to give rise to appreciable numbers of badly fitting reflections; these are listed by SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) as the `Most Dis­agree­able Reflections'. Thus, in a recent structure (C19H13ClN4OS), measured to 90° (Metwally et al., 2025[Metwally, N. H., Elgemeie, G. H., Abd Al-latif, E. S. M. & Jones, P. G. (2025). Acta Cryst. E81, 279-283.]), there were 13 reflections with deviations between 7σ and 10.2σ. Omitting the worst five from the refinement did not improve the wR2 value, so they were retained. Often, however, omitting a handful of `bad' reflections improves the refinement somewhat, and this is the strategy I have often employed, even if the OMIT command is rather a blunt instrument. Similarly, a recent (unpublished) structure (C19H19N2O3P), measured to 105°, had 28 reflections with deviations between 7σ and 13σ.

The new dataset for 2 proved to be an extreme case of this infelicity; in a long list of `disagreeable reflections', the 10 worst-fitting reflections (Table 5[link]) had deviations as high as 10.3–18.6σ. All these reflections have Fo2 >> Fc2, are quite weak [the highest Fc/Fc(max) is 0.026] and occur at moderate resolution (1.1–2.0 Å). This effect presents a significant challenge for accurate refinement, and might well prevent the structure being published, if editors and/or referees inter­preted the corresponding checkCIF `ALERT A' messages strictly. A pragmatist might decide not to collect data to such high angles (or to use a resolution cutoff during refinement), in order to avoid the problem; cutting the data at the `IUCr limit' of 0.84 Å reduces the error/e.s.d. values dramatically (Table 5[link]). I wish to stress that I do not recommend doing this, but one can see the temptation!

Table 5
The worst `disagreeable reflections' for com­pound 2 (IAM refinement)

h k l Error/e.s.d. Error/e.s.d. for data cut to 0.84 Å Fc/Fc(max) Resolution (Å)
5 1 1 18.62 6.67 0.009 1.92
[\overline 5] 2 4 17.26 5.52 0.006 1.48
3 5 4 14.99 5.80 0.006 1.71
5 [\overline 2] 2 13.79 5.33 0.002 1.74
[\overline 3] 3 9 12.83 3.60 0.001 1.14
5 3 1 11.56 5.78 0.017 1.79
[\overline 3] 5 0 10.88 3.91 0.009 1.80
5 4 5 10.54 4.37 0.021 1.44
[\overline 5] [\overline 1] 5 10.45 4.90 0.022 1.44
3 5 1 10.33 5.15 0.026 1.98

For 2, there were two possible explanations for this effect. Some powder rings, probably attributable to a slightly mis­moun­ted loop, might have given rise to erroneous intensities; however, assiduous removal of the affected frames did not improve the refinement. Alternatively, the use of spherical atom scattering factors might be questioned.

It is well known that the use of spherical atom scattering factors (the independent atom model, IAM) is not ideal, because the electron distribution in any real crystal must involve valence electrons, and thus cannot correspond exactly to spherically symmetric atoms. Consistent with this, IAM refinements using high-angle data generally lead to significant residual electron density with maxima at the mid-point of covalent bonds; this can lead to checkCIF `C alerts' of type PLAT094 (Ratio of maximum/minimum residual density) and `G alerts' of type PLAT978 (Number C—C bonds with positive residual density), although the latter are probably intended as a check against fraudulent data. Nevertheless, in practice, and in the absence of a better procedure that can be simply applied, spherical scattering factors continue to be used; any errors thus arising are considered to be small and tolerable.

Recent attempts to use non-spherical scattering factors include the program NoSpherA2 (Kleemiss et al., 2021[Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675-1692.], and references therein). This operates under the OLEX2 platform (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]; Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), which normally offers the alternatives of SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) or olex2.refine for structure refinement; however, only the latter is suitable for NoSpherA2. The wavefunction of the mol­ecule is calculated and used to determine the scattering factors for each atom, which are then employed in the subsequent refinement. One iteration of the procedure is generally sufficient to provide suitable scattering factors; subsequent refinement cycles omit wavefunction calculations and thus are much faster. Some aspects of the procedure are at first sight somewhat disconcerting, perhaps because they are unfamiliar to the inexperienced user: it might be regarded as somewhat circular (using the structure to determine scattering factors, then using these to refine the structure); for organic structures, H atoms can often be refined freely and anisotropically; refinement times are (on my aged com­puter) typically around 15 minutes for a full calculation including wavefunction, instead of a few seconds; R values are very low, and standard uncertainties of derived parameters are also very low; total file sizes for the refinement, excluding frames, can be in the GB rather than MB range; and the user is forced to use OLEX2 because (to the best of my knowledge) the method is not readily available in other refinement programs/platforms. A clear advantage is that bond lengths involving H atoms tend towards the `correct' values rather than the artificially shortened values from traditional refinement. Hill & Boeré (2025[Hill, N. D. D. & Boeré, R. T. (2025). Chem. Methods 5, e202400052.], and references therein) have published a valuable and thought-provoking review detailing their extensive experiences with NoSpherA2; they mention many advantages of its use and argue forcefully that it should become the standard refinement method. They also point to several disadvantages of standard refinement, but do not refer explicitly to problems with `bad' reflections.

The use of NoSpherA2 to refine the structure of 2 led to a great improvement, in that all previously `bad' reflections now fitted well (none of the ten previously worst reflections had an absolute deviation of more than 4σ; for all reflections, the highest deviation was 6.7σ and all others were < 4.8σ). The ellipsoid plot (Fig. 5[link]) is drawn at the 30% probability level to enable inclusion of the anisotropic H atoms. Tables 6[link] and 7[link] show the results of the NoSpherA2 refinement; the dimensions of the hy­dro­gen bonds (Table 7[link]) should be more realistic than those of the standard refinement, in which the bonds to hy­dro­gen are systematically shortened (a disadvantage of standard refinement that crystallographers have come to accept and, largely, ignore).

Table 6
Selected geometric parameters (Å, °) for 2_NoSpherA2[link]

S1—C1 1.6715 (2) N1′—C1′ 1.3471 (3)
O1—C1 1.3239 (3) N1′—C4′ 1.4150 (3)
O1—C2 1.4573 (3) S1′′—C1′′ 1.6746 (2)
N1—C1 1.3481 (3) O1′′—C1′′ 1.3209 (3)
N1—C4 1.4174 (3) O1′′—C2′′ 1.4506 (3)
S1′—C1′ 1.6734 (2) N1′′—C1′′ 1.3444 (3)
O1′—C1′ 1.3244 (3) N1′′—C4′′ 1.4170 (3)
O1′—C2′ 1.4579 (3)    
       
C2—O1—C1 118.704 (17) N1′—C1′—S1′ 121.673 (16)
C4—N1—C1 130.377 (18) N1′—C1′—O1′ 114.246 (18)
O1—C1—S1 124.268 (16) C2′′—O1′′—C1′′ 119.854 (18)
N1—C1—S1 121.763 (15) C4′′—N1′′—C1′′ 128.813 (19)
N1—C1—O1 113.969 (18) O1′′—C1′′—S1′′ 124.602 (16)
C2′—O1′—C1′ 118.691 (17) N1′′—C1′′—S1′′ 122.254 (17)
C4′—N1′—C1′ 131.471 (19) N1′′—C1′′—O1′′ 113.144 (19)
O1′—C1′—S1′ 124.049 (16)    
       
S1—C1—O1—C2 0.52 (2) C1′—O1′—C2′—C3′ −178.01 (2)
S1—C1—N1—C4 172.539 (16) C1′—N1′—C4′—C5′ 16.53 (3)
O1—C1—N1—C4 −7.51 (3) C1′—N1′—C4′—C9′ −164.83 (3)
N1—C1—O1—C2 −179.43 (2) S1′′—C1′′—O1′′—C2′′ −0.48 (3)
C1—O1—C2—C3 −175.01 (2) S1′′—C1′′—N1′′—C4′′ 175.539 (17)
C1—N1—C4—C5 −24.37 (3) O1′′—C1′′—N1′′—C4′′ −4.68 (3)
C1—N1—C4—C9 159.68 (3) N1′′—C1′′—O1′′—C2′′ 179.75 (2)
S1′—C1′—O1′—C2′ 8.49 (2) C1′′—O1′′—C2′′—C3′′ 176.02 (2)
S1′—C1′—N1′—C4′ 176.533 (16) C1′′—N1′′—C4′′—C5′′ 36.62 (3)
O1′—C1′—N1′—C4′ −1.49 (3) C1′′—N1′′—C4′′—C9′′ −147.02 (3)
N1′—C1′—O1′—C2′ −173.540 (19)    

Table 7
Hydrogen bond geometry (Å, °) for 2_NoSpherA2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.996 (5) 2.409 (5) 3.3863 (2) 166.6 (4)
N1′—H1′⋯S1′′ 1.014 (5) 2.415 (5) 3.3761 (2) 158.0 (4)
N1′′—H1′′⋯S1′ 1.019 (5) 2.371 (5) 3.3668 (2) 165.4 (4)
C5—H5⋯O1 1.075 (4) 2.280 (5) 2.8304 (3) 109.7 (3)
C5′—H5′⋯O1′ 1.070 (4) 2.209 (4) 2.8155 (3) 113.7 (3)
C5′′—H5′′⋯O1′′ 1.070 (4) 2.319 (4) 2.8002 (3) 105.4 (3)
C9—H9⋯S1i 1.072 (4) 2.946 (4) 3.7261 (2) 130.0 (3)
C9—H9⋯S1′ii 1.072 (4) 2.922 (5) 3.7860 (3) 137.8 (3)
C9′—H9′⋯S1′′ 1.078 (4) 2.844 (5) 3.6073 (3) 127.8 (3)
C9′′—H9′′⋯S1′ 1.074 (5) 2.896 (4) 3.6864 (2) 130.6 (3)
C2′—H2′b⋯S1iii 1.080 (4) 2.886 (4) 3.6869 (3) 131.1 (3)
Symmetry codes: (i) [-x, -y, -z+1]; (ii) [x-1, y-1, z]; (iii) [x+1, y+1, z].
[Figure 5]
Figure 5
The structure of com­pound 2 after aspherical refinement. Ellipsoids correspond to the 30% probability level, in order to show the H-atom ellipsoids on a reasonable scale. The dashed lines indicate hy­dro­gen bonds. See Fig. 1[link] for the atom numbering.

For the structure C19H13ClN4OS mentioned above, a NoSpherA2 refinement again removed the worst reflections, so that only one reflection with a deviation >7σ remained. Subjectively, this is a less dramatic improvement than for 2, so the standard refinement was retained. Similarly, for the structure C19H19N2O3P, no reflections with deviations >7σ remained after a NoSpherA2 refinement. This seems to be a general effect.

Crystallographers, authors, referees and journal editors must decide to what extent the use of programs such as NoSpherA2 is justified in preference to IAM refinement (perhaps only in extreme cases?), and how the results thus obtained should be com­pared to those of conventional refinement. The need for a decision is implied in the title of the article by Hill & Boeré (2025[Hill, N. D. D. & Boeré, R. T. (2025). Chem. Methods 5, e202400052.]): `Small mol­ecule X-ray crystal structures at a crossroads'. My opinion is that, if a crystal diffracts to 100°, data should be measured to 100°, even if the outlier reflections become more obvious with increasing data quality (judged by the usual criteria, such as 2θmax, Rint and Rsigma); if non-spherical scattering factors then have to be employed for the refinement (because otherwise the `bad' reflections become unpleasantly numerous) so be it. For less well-scattering crystals, the crossroad junction turning to NoSpherA2 may well, to resort to a mixed metaphor, be a red herring.

Supporting information


Computing details top

N-Phenylethoxycarbothioamide (2_IAM) top
Crystal data top
C9H11NOS Z = 6
Mr = 181.25 F(000) = 576
Triclinic, P1 Dx = 1.324 Mg m3
a = 9.6661 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.7465 (3) Å Cell parameters from 132444 reflections
c = 12.1224 (2) Å θ = 2.1–53.9°
α = 88.8230 (18)° µ = 0.31 mm1
β = 84.8866 (16)° T = 100 K
γ = 84.2903 (18)° Tablet, colourless
V = 1364.03 (5) Å3 0.2 × 0.2 × 0.1 mm
Data collection top
Rigaku XtaLAB Synergy
diffractometer
33252 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source 23960 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.053
Detector resolution: 10.0000 pixels mm-1 θmax = 53.9°, θmin = 2.1°
ω scans h = 2121
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2024)
k = 2626
Tmin = 0.220, Tmax = 1.000 l = 2726
317871 measured reflections
Refinement top
Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.055P)2 + 0.059P]
where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
33252 reflections Δρmax = 0.63 e Å3
340 parameters Δρmin = 0.29 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
S1 0.21600 (2) 0.02605 (2) 0.50567 (2) 0.01483 (2)
O1 0.32985 (3) 0.06362 (3) 0.31547 (3) 0.01517 (4)
N1 0.09842 (3) 0.06819 (3) 0.34623 (3) 0.01380 (4)
H01 0.0245 (10) 0.0565 (8) 0.3917 (8) 0.024 (2)*
C1 0.21653 (4) 0.03785 (3) 0.38380 (3) 0.01227 (4)
C2 0.46397 (4) 0.03567 (4) 0.34820 (3) 0.01618 (6)
H2A 0.489382 0.080976 0.414447 0.019*
H2B 0.459760 0.046626 0.365667 0.019*
C3 0.56949 (4) 0.06463 (5) 0.25113 (4) 0.02070 (7)
H3A 0.543195 0.018891 0.186377 0.031*
H3B 0.571893 0.146123 0.234477 0.031*
H3C 0.661954 0.047676 0.269449 0.031*
C4 0.07410 (4) 0.11127 (3) 0.24189 (3) 0.01202 (4)
C5 0.15684 (4) 0.09303 (4) 0.14380 (3) 0.01462 (5)
H5 0.238463 0.054408 0.145161 0.018*
C6 0.11891 (4) 0.13181 (4) 0.04409 (3) 0.01692 (6)
H6 0.174590 0.118578 0.022661 0.020*
C7 0.00048 (4) 0.18974 (4) 0.04082 (4) 0.01712 (6)
H7 0.024255 0.216337 0.027549 0.021*
C8 0.08139 (4) 0.20832 (4) 0.13884 (4) 0.01647 (6)
H8 0.162291 0.247834 0.137317 0.020*
C9 0.04514 (4) 0.16921 (3) 0.23899 (3) 0.01440 (5)
H9 0.101518 0.181893 0.305518 0.017*
S1' 0.90290 (2) 0.65349 (2) 0.50105 (2) 0.01602 (2)
O1' 0.93607 (3) 0.75571 (3) 0.68898 (2) 0.01446 (4)
N1' 0.72011 (3) 0.70799 (3) 0.67158 (3) 0.01384 (4)
H01' 0.6603 (10) 0.6881 (8) 0.6290 (9) 0.029 (2)*
C1' 0.85197 (4) 0.70961 (3) 0.62553 (3) 0.01237 (5)
C2' 1.07717 (4) 0.77284 (4) 0.64234 (3) 0.01509 (5)
H2A' 1.073819 0.826338 0.578243 0.018*
H2B' 1.127614 0.699163 0.617174 0.018*
C3' 1.14964 (4) 0.82191 (4) 0.73303 (4) 0.01761 (6)
H3A' 1.156360 0.766511 0.794342 0.026*
H3B' 1.096096 0.892756 0.759685 0.026*
H3C' 1.243557 0.838340 0.703985 0.026*
C4' 0.65594 (4) 0.74448 (3) 0.77623 (3) 0.01242 (5)
C5' 0.71125 (4) 0.81745 (4) 0.84693 (3) 0.01511 (5)
H5' 0.799562 0.844640 0.827223 0.018*
C6' 0.63564 (4) 0.84989 (4) 0.94654 (3) 0.01682 (6)
H6' 0.673613 0.898935 0.994758 0.020*
C7' 0.50574 (4) 0.81185 (4) 0.97668 (3) 0.01691 (6)
H7' 0.454597 0.835598 1.044230 0.020*
C8' 0.45154 (4) 0.73843 (4) 0.90647 (4) 0.01703 (6)
H8' 0.363195 0.711443 0.926512 0.020*
C9' 0.52614 (4) 0.70443 (4) 0.80719 (3) 0.01538 (5)
H9' 0.488853 0.653787 0.760134 0.018*
S1" 0.44626 (2) 0.67494 (2) 0.52468 (2) 0.01813 (2)
O1" 0.40937 (3) 0.60232 (3) 0.32394 (3) 0.01632 (5)
N1" 0.63052 (3) 0.61350 (3) 0.35628 (3) 0.01501 (5)
H01" 0.6888 (11) 0.6183 (8) 0.3993 (9) 0.031 (2)*
C1" 0.49569 (4) 0.62821 (3) 0.39643 (3) 0.01349 (5)
C2" 0.25987 (4) 0.61326 (4) 0.35499 (4) 0.01686 (6)
H2A" 0.227385 0.692025 0.379549 0.020*
H2B" 0.236400 0.559120 0.415865 0.020*
C3" 0.19338 (5) 0.58573 (4) 0.25230 (4) 0.01947 (7)
H3A" 0.219962 0.638672 0.192378 0.029*
H3B" 0.091629 0.593543 0.267621 0.029*
H3C" 0.225270 0.507055 0.230074 0.029*
C4" 0.68901 (4) 0.56813 (3) 0.25307 (3) 0.01299 (5)
C5" 0.62592 (4) 0.58646 (4) 0.15398 (3) 0.01591 (5)
H5" 0.536911 0.628746 0.153600 0.019*
C6" 0.69447 (5) 0.54230 (4) 0.05582 (3) 0.01759 (6)
H6" 0.651455 0.554568 0.011460 0.021*
C7" 0.82521 (5) 0.48041 (4) 0.05490 (4) 0.01741 (6)
H7" 0.870783 0.449942 0.012303 0.021*
C8" 0.88839 (4) 0.46370 (4) 0.15363 (4) 0.01653 (6)
H8" 0.978085 0.422485 0.153553 0.020*
C9" 0.82093 (4) 0.50700 (3) 0.25233 (3) 0.01479 (5)
H9" 0.864529 0.495027 0.319370 0.018*
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
S1 0.01302 (3) 0.02007 (4) 0.01170 (3) 0.00304 (3) 0.00017 (3) 0.00478 (3)
O1 0.00987 (8) 0.02325 (12) 0.01259 (10) 0.00217 (8) 0.00045 (7) 0.00494 (8)
N1 0.01062 (9) 0.01984 (12) 0.01122 (10) 0.00286 (8) 0.00003 (8) 0.00423 (9)
C1 0.01100 (10) 0.01501 (11) 0.01088 (11) 0.00155 (8) 0.00073 (8) 0.00179 (9)
C2 0.01070 (11) 0.02434 (16) 0.01394 (13) 0.00285 (10) 0.00146 (9) 0.00340 (11)
C3 0.01184 (12) 0.0331 (2) 0.01699 (15) 0.00184 (13) 0.00046 (11) 0.00482 (14)
C4 0.01056 (10) 0.01440 (11) 0.01123 (11) 0.00157 (8) 0.00078 (8) 0.00211 (8)
C5 0.01294 (11) 0.01970 (13) 0.01165 (11) 0.00435 (10) 0.00017 (9) 0.00266 (10)
C6 0.01512 (13) 0.02448 (16) 0.01157 (12) 0.00376 (11) 0.00071 (10) 0.00355 (11)
C7 0.01536 (13) 0.02254 (15) 0.01421 (13) 0.00289 (11) 0.00320 (10) 0.00468 (11)
C8 0.01392 (12) 0.02000 (14) 0.01652 (14) 0.00454 (10) 0.00320 (10) 0.00274 (11)
C9 0.01203 (11) 0.01786 (13) 0.01376 (12) 0.00372 (9) 0.00081 (9) 0.00134 (10)
S1' 0.01325 (3) 0.02159 (4) 0.01337 (4) 0.00253 (3) 0.00024 (3) 0.00580 (3)
O1' 0.01093 (8) 0.02134 (11) 0.01164 (9) 0.00378 (8) 0.00097 (7) 0.00248 (8)
N1' 0.01109 (9) 0.01926 (12) 0.01154 (10) 0.00310 (8) 0.00049 (8) 0.00310 (9)
C1' 0.01129 (10) 0.01461 (11) 0.01134 (11) 0.00166 (8) 0.00109 (8) 0.00103 (9)
C2' 0.01174 (11) 0.02033 (14) 0.01357 (12) 0.00356 (10) 0.00087 (9) 0.00080 (10)
C3' 0.01474 (13) 0.02162 (15) 0.01747 (15) 0.00428 (11) 0.00402 (11) 0.00107 (12)
C4' 0.01117 (10) 0.01519 (11) 0.01100 (11) 0.00158 (8) 0.00112 (8) 0.00066 (9)
C5' 0.01323 (11) 0.01886 (13) 0.01361 (12) 0.00342 (10) 0.00021 (9) 0.00389 (10)
C6' 0.01540 (13) 0.02139 (15) 0.01378 (13) 0.00268 (11) 0.00008 (10) 0.00472 (11)
C7' 0.01477 (13) 0.02249 (15) 0.01300 (13) 0.00110 (11) 0.00083 (10) 0.00184 (11)
C8' 0.01302 (12) 0.02379 (16) 0.01438 (13) 0.00391 (11) 0.00076 (10) 0.00080 (11)
C9' 0.01305 (12) 0.02032 (14) 0.01331 (12) 0.00453 (10) 0.00064 (10) 0.00132 (10)
S1" 0.01392 (4) 0.02775 (5) 0.01275 (4) 0.00157 (3) 0.00059 (3) 0.00587 (3)
O1" 0.01041 (9) 0.02579 (13) 0.01309 (10) 0.00231 (8) 0.00145 (7) 0.00404 (9)
N1" 0.01086 (10) 0.02288 (13) 0.01161 (10) 0.00230 (9) 0.00132 (8) 0.00290 (9)
C1" 0.01144 (10) 0.01747 (12) 0.01174 (11) 0.00172 (9) 0.00147 (9) 0.00131 (9)
C2" 0.01103 (11) 0.02335 (16) 0.01637 (14) 0.00206 (10) 0.00122 (10) 0.00238 (12)
C3" 0.01506 (13) 0.02253 (16) 0.02165 (17) 0.00110 (12) 0.00625 (12) 0.00367 (13)
C4" 0.01149 (10) 0.01645 (12) 0.01124 (11) 0.00266 (9) 0.00071 (9) 0.00061 (9)
C5" 0.01339 (12) 0.02231 (15) 0.01190 (12) 0.00083 (10) 0.00153 (9) 0.00030 (10)
C6" 0.01627 (13) 0.02501 (16) 0.01165 (12) 0.00256 (12) 0.00134 (10) 0.00076 (11)
C7" 0.01633 (13) 0.02165 (15) 0.01417 (13) 0.00276 (11) 0.00082 (11) 0.00322 (11)
C8" 0.01410 (12) 0.01851 (14) 0.01670 (14) 0.00059 (10) 0.00039 (10) 0.00250 (11)
C9" 0.01303 (11) 0.01753 (13) 0.01389 (12) 0.00127 (9) 0.00183 (9) 0.00076 (10)
Geometric parameters (Å, º) top
S1—C1 1.6702 (4) C8"—C9" 1.3912 (6)
O1—C1 1.3266 (4) N1—H01 0.864 (9)
O1—C2 1.4586 (5) C2—H2A 0.9900
N1—C1 1.3484 (5) C2—H2B 0.9900
N1—C4 1.4191 (5) C3—H3A 0.9800
C2—C3 1.5080 (6) C3—H3B 0.9800
C4—C5 1.3977 (5) C3—H3C 0.9800
C4—C9 1.3990 (5) C5—H5 0.9500
C5—C6 1.3920 (5) C6—H6 0.9500
C6—C7 1.3926 (6) C7—H7 0.9500
C7—C8 1.3934 (6) C8—H8 0.9500
C8—C9 1.3924 (6) C9—H9 0.9500
S1'—C1' 1.6727 (4) N1'—H01' 0.860 (10)
O1'—C1' 1.3274 (5) C2'—H2A' 0.9900
O1'—C2' 1.4604 (5) C2'—H2B' 0.9900
N1'—C1' 1.3470 (5) C3'—H3A' 0.9800
N1'—C4' 1.4167 (5) C3'—H3B' 0.9800
C2'—C3' 1.5084 (6) C3'—H3C' 0.9800
C4'—C5' 1.3993 (5) C5'—H5' 0.9500
C4'—C9' 1.4009 (5) C6'—H6' 0.9500
C5'—C6' 1.3942 (5) C7'—H7' 0.9500
C6'—C7' 1.3903 (6) C8'—H8' 0.9500
C7'—C8' 1.3936 (6) C9'—H9' 0.9500
C8'—C9' 1.3913 (6) N1"—H01" 0.807 (10)
S1"—C1" 1.6724 (4) C2"—H2A" 0.9900
O1"—C1" 1.3241 (5) C2"—H2B" 0.9900
O1"—C2" 1.4541 (5) C3"—H3A" 0.9800
N1"—C1" 1.3457 (5) C3"—H3B" 0.9800
N1"—C4" 1.4179 (5) C3"—H3C" 0.9800
C2"—C3" 1.5060 (6) C5"—H5" 0.9500
C4"—C5" 1.3983 (5) C6"—H6" 0.9500
C4"—C9" 1.3992 (5) C7"—H7" 0.9500
C5"—C6" 1.3931 (6) C8"—H8" 0.9500
C6"—C7" 1.3931 (6) C9"—H9" 0.9500
C7"—C8" 1.3930 (6)
C1—O1—C2 118.52 (3) C4—C5—H5 120.2
C1—N1—C4 130.50 (3) C5—C6—H6 119.5
O1—C1—N1 113.77 (3) C7—C6—H6 119.5
O1—C1—S1 124.40 (3) C6—C7—H7 120.3
N1—C1—S1 121.82 (3) C8—C7—H7 120.3
O1—C2—C3 106.45 (3) C9—C8—H8 119.9
C5—C4—C9 119.68 (3) C7—C8—H8 119.9
C5—C4—N1 123.82 (3) C8—C9—H9 119.9
C9—C4—N1 116.39 (3) C4—C9—H9 119.9
C6—C5—C4 119.60 (3) C1'—N1'—H01' 116.2 (7)
C5—C6—C7 120.92 (4) C4'—N1'—H01' 111.9 (7)
C6—C7—C8 119.34 (4) O1'—C2'—H2A' 110.4
C9—C8—C7 120.29 (4) C3'—C2'—H2A' 110.4
C8—C9—C4 120.16 (4) O1'—C2'—H2B' 110.4
C1'—O1'—C2' 118.40 (3) C3'—C2'—H2B' 110.4
C1'—N1'—C4' 131.60 (3) H2A'—C2'—H2B' 108.6
O1'—C1'—N1' 114.04 (3) C2'—C3'—H3A' 109.5
O1'—C1'—S1' 124.18 (3) C2'—C3'—H3B' 109.5
N1'—C1'—S1' 121.75 (3) H3A'—C3'—H3B' 109.5
O1'—C2'—C3' 106.84 (3) C2'—C3'—H3C' 109.5
C5'—C4'—C9' 119.46 (3) H3A'—C3'—H3C' 109.5
C5'—C4'—N1' 124.96 (3) H3B'—C3'—H3C' 109.5
C9'—C4'—N1' 115.57 (3) C6'—C5'—H5' 120.3
C6'—C5'—C4' 119.42 (4) C4'—C5'—H5' 120.3
C7'—C6'—C5' 121.28 (4) C7'—C6'—H6' 119.4
C6'—C7'—C8' 119.11 (4) C5'—C6'—H6' 119.4
C9'—C8'—C7' 120.35 (4) C6'—C7'—H7' 120.4
C8'—C9'—C4' 120.36 (4) C8'—C7'—H7' 120.4
C1"—O1"—C2" 119.55 (3) C9'—C8'—H8' 119.8
C1"—N1"—C4" 128.93 (3) C7'—C8'—H8' 119.8
O1"—C1"—N1" 112.85 (3) C8'—C9'—H9' 119.8
O1"—C1"—S1" 124.79 (3) C4'—C9'—H9' 119.8
N1"—C1"—S1" 122.36 (3) C1"—N1"—H01" 117.5 (7)
O1"—C2"—C3" 105.63 (3) C4"—N1"—H01" 112.3 (7)
C5"—C4"—C9" 119.69 (3) O1"—C2"—H2A" 110.6
C5"—C4"—N1" 123.80 (3) C3"—C2"—H2A" 110.6
C9"—C4"—N1" 116.42 (3) O1"—C2"—H2B" 110.6
C6"—C5"—C4" 119.55 (4) C3"—C2"—H2B" 110.6
C5"—C6"—C7" 120.94 (4) H2A"—C2"—H2B" 108.7
C8"—C7"—C6" 119.27 (4) C2"—C3"—H3A" 109.5
C9"—C8"—C7" 120.41 (4) C2"—C3"—H3B" 109.5
C8"—C9"—C4" 120.15 (4) H3A"—C3"—H3B" 109.5
C1—N1—H01 115.0 (6) C2"—C3"—H3C" 109.5
C4—N1—H01 114.4 (6) H3A"—C3"—H3C" 109.5
O1—C2—H2A 110.4 H3B"—C3"—H3C" 109.5
C3—C2—H2A 110.4 C6"—C5"—H5" 120.2
O1—C2—H2B 110.4 C4"—C5"—H5" 120.2
C3—C2—H2B 110.4 C5"—C6"—H6" 119.5
H2A—C2—H2B 108.6 C7"—C6"—H6" 119.5
C2—C3—H3A 109.5 C8"—C7"—H7" 120.4
C2—C3—H3B 109.5 C6"—C7"—H7" 120.4
H3A—C3—H3B 109.5 C9"—C8"—H8" 119.8
C2—C3—H3C 109.5 C7"—C8"—H8" 119.8
H3A—C3—H3C 109.5 C8"—C9"—H9" 119.9
H3B—C3—H3C 109.5 C4"—C9"—H9" 119.9
C6—C5—H5 120.2
C2—O1—C1—N1 179.41 (4) N1'—C4'—C5'—C6' 178.03 (4)
C2—O1—C1—S1 0.53 (5) C4'—C5'—C6'—C7' 0.50 (7)
C4—N1—C1—O1 7.65 (6) C5'—C6'—C7'—C8' 1.03 (7)
C4—N1—C1—S1 172.42 (3) C6'—C7'—C8'—C9' 0.48 (7)
C1—O1—C2—C3 174.98 (4) C7'—C8'—C9'—C4' 0.59 (7)
C1—N1—C4—C5 24.14 (6) C5'—C4'—C9'—C8' 1.13 (6)
C1—N1—C4—C9 159.70 (4) N1'—C4'—C9'—C8' 177.61 (4)
C9—C4—C5—C6 0.60 (6) C2"—O1"—C1"—N1" 179.74 (4)
N1—C4—C5—C6 175.44 (4) C2"—O1"—C1"—S1" 0.49 (6)
C4—C5—C6—C7 0.75 (7) C4"—N1"—C1"—O1" 4.65 (6)
C5—C6—C7—C8 0.41 (7) C4"—N1"—C1"—S1" 175.57 (3)
C6—C7—C8—C9 0.07 (7) C1"—O1"—C2"—C3" 176.04 (4)
C7—C8—C9—C4 0.21 (6) C1"—N1"—C4"—C5" 36.50 (7)
C5—C4—C9—C8 0.13 (6) C1"—N1"—C4"—C9" 146.97 (4)
N1—C4—C9—C8 176.20 (4) C9"—C4"—C5"—C6" 0.83 (6)
C2'—O1'—C1'—N1' 173.55 (3) N1"—C4"—C5"—C6" 177.25 (4)
C2'—O1'—C1'—S1' 8.55 (5) C4"—C5"—C6"—C7" 0.20 (7)
C4'—N1'—C1'—O1' 1.46 (6) C5"—C6"—C7"—C8" 0.65 (7)
C4'—N1'—C1'—S1' 176.50 (3) C6"—C7"—C8"—C9" 0.85 (7)
C1'—O1'—C2'—C3' 178.03 (3) C7"—C8"—C9"—C4" 0.22 (6)
C1'—N1'—C4'—C5' 16.53 (7) C5"—C4"—C9"—C8" 0.63 (6)
C1'—N1'—C4'—C9' 164.81 (4) N1"—C4"—C9"—C8" 177.31 (4)
C9'—C4'—C5'—C6' 0.58 (6)
Hydrogen-bond geometry (Å, º) top
D—H···A D—H H···A D···A D—H···A
N1—H01···S1i 0.864 (9) 2.533 (10) 3.3867 (3) 169.5 (9)
N1—H01···S1" 0.860 (10) 2.538 (10) 3.3766 (4) 165.0 (9)
N1"—H01"···S1 0.807 (10) 2.573 (10) 3.3668 (4) 167.7 (10)
C5—H5···O1 0.95 2.31 2.8306 (5) 114
C5—H5···O1 0.95 2.25 2.8136 (5) 118
C5"—H5"···O1" 0.95 2.34 2.7983 (5) 109
C9—H9···S1i 0.95 3.02 3.7264 (4) 132
C9—H9···S1ii 0.95 3.03 3.7860 (4) 138
C9—H9···S1" 0.95 2.92 3.6080 (4) 130
C9"—H9"···S1 0.95 2.98 3.6864 (4) 132
C2—H2A···S1iii 0.99 2.92 3.6862 (4) 135
Symmetry codes: (i) x, y, z+1; (ii) x1, y1, z; (iii) x+1, y+1, z.
N-Phenylethoxycarbothioamide (2_NoSpherA2) top
Crystal data top
C9H11NOS Z = 6
Mr = 181.26 F(000) = 577.042
Triclinic, P1 Dx = 1.324 Mg m3
a = 9.6661 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.7465 (3) Å Cell parameters from 132444 reflections
c = 12.1224 (2) Å θ = 2.1–53.9°
α = 88.8230 (18)° µ = 0.31 mm1
β = 84.8866 (16)° T = 100 K
γ = 84.2903 (18)° Tablet, colourless
V = 1364.03 (5) Å3 0.2 × 0.2 × 0.1 mm
Data collection top
Rigaku XtaLAB Synergy
diffractometer
33252 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source 23960 reflections with I 2u(I)
Mirror monochromator Rint = 0.053
Detector resolution: 10.0000 pixels mm-1 θmax = 53.9°, θmin = 2.1°
ω scans h = 2121
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2024)
k = 2626
Tmin = 0.220, Tmax = 1.000 l = 2726
317871 measured reflections
Refinement top
Refinement on F2 0 constraints
Least-squares matrix: full Primary atom site location: dual
R[F2 > 2σ(F2)] = 0.024 All H-atom parameters refined
wR(F2) = 0.044 w = 1/[σ2(Fo2) + (0.P)2 + 0.0339P]
where P = (Fo2 + 2Fc2)/3
S = 0.99 (Δ/σ)max = 0.0001
33252 reflections Δρmax = 0.38 e Å3
622 parameters Δρmin = 0.29 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
S1 0.216017 (6) 0.026041 (5) 0.505639 (5) 0.014724 (10)
O1 0.329751 (16) 0.063505 (16) 0.315626 (14) 0.01510 (3)
N1 0.098316 (19) 0.068113 (17) 0.346197 (16) 0.01372 (3)
H1 0.0149 (5) 0.0548 (4) 0.4005 (4) 0.0283 (11)
C1 0.21650 (2) 0.037877 (18) 0.383661 (18) 0.01218 (3)
C2 0.46384 (2) 0.03566 (2) 0.34821 (2) 0.01604 (3)
H2a 0.4548 (5) 0.0547 (4) 0.3687 (4) 0.0322 (11)
H2b 0.4853 (5) 0.0845 (4) 0.4220 (4) 0.0330 (11)
C3 0.56945 (3) 0.06465 (3) 0.25119 (2) 0.02058 (4)
H3a 0.5426 (5) 0.0133 (5) 0.1790 (4) 0.0432 (14)
H3b 0.6697 (5) 0.0448 (5) 0.2713 (4) 0.0394 (13)
H3c 0.5752 (5) 0.1540 (5) 0.2315 (5) 0.0454 (15)
C4 0.07420 (2) 0.111266 (17) 0.242003 (17) 0.01188 (3)
C5 0.15691 (2) 0.09293 (2) 0.143859 (19) 0.01450 (3)
H5 0.2478 (5) 0.0472 (4) 0.1448 (4) 0.0291 (11)
C6 0.11895 (2) 0.13188 (2) 0.04406 (2) 0.01683 (4)
H6 0.1828 (5) 0.1149 (4) 0.0310 (4) 0.0348 (12)
C7 0.00044 (2) 0.18973 (2) 0.04081 (2) 0.01704 (4)
H7 0.0282 (5) 0.2192 (4) 0.0370 (4) 0.0301 (11)
C8 0.08152 (2) 0.20827 (2) 0.13887 (2) 0.01631 (3)
H8 0.1725 (5) 0.2540 (4) 0.1381 (4) 0.0351 (12)
C9 0.04521 (2) 0.169194 (19) 0.239039 (19) 0.01429 (3)
H9 0.1065 (5) 0.1845 (4) 0.3150 (4) 0.0297 (11)
S1' 0.902876 (6) 0.653483 (5) 0.501090 (5) 0.015900 (10)
O1' 0.936166 (17) 0.755641 (15) 0.688718 (14) 0.01439 (3)
N1' 0.720080 (19) 0.707978 (17) 0.671594 (16) 0.01374 (3)
H1' 0.6537 (5) 0.6782 (4) 0.6213 (4) 0.0262 (11)
C1' 0.85200 (2) 0.709631 (18) 0.625636 (18) 0.01230 (3)
C2' 1.07710 (2) 0.77285 (2) 0.64242 (2) 0.01489 (3)
H2'a 1.1288 (5) 0.6915 (4) 0.6129 (4) 0.0282 (11)
H2'b 1.0685 (5) 0.8306 (4) 0.5723 (4) 0.0303 (11)
C3' 1.14965 (3) 0.82191 (2) 0.73304 (2) 0.01742 (4)
H3'a 1.1579 (5) 0.7615 (4) 0.8011 (4) 0.0349 (12)
H3'b 1.2526 (5) 0.8379 (5) 0.7004 (4) 0.0405 (13)
H3'c 1.0951 (5) 0.9022 (4) 0.7620 (4) 0.0380 (13)
C4' 0.65614 (2) 0.744510 (18) 0.776140 (18) 0.01226 (3)
C5' 0.71131 (2) 0.81744 (2) 0.846875 (19) 0.01501 (3)
H5' 0.8100 (5) 0.8494 (4) 0.8251 (4) 0.0311 (12)
C6' 0.63565 (2) 0.84993 (2) 0.94658 (2) 0.01671 (4)
H6' 0.6792 (5) 0.9055 (4) 1.0012 (4) 0.0340 (12)
C7' 0.50562 (2) 0.81180 (2) 0.97673 (2) 0.01677 (4)
H7' 0.4470 (5) 0.8377 (4) 1.0540 (4) 0.0292 (11)
C8' 0.45146 (2) 0.73839 (2) 0.90644 (2) 0.01689 (4)
H8' 0.3521 (5) 0.7059 (4) 0.9292 (4) 0.0360 (12)
C9' 0.52607 (2) 0.70441 (2) 0.80715 (2) 0.01524 (3)
H9' 0.4845 (5) 0.6463 (4) 0.7539 (4) 0.0320 (12)
S1" 0.446304 (6) 0.674946 (6) 0.524679 (5) 0.017971 (11)
O1" 0.409267 (17) 0.602406 (16) 0.324206 (15) 0.01618 (3)
N1" 0.63052 (2) 0.613529 (18) 0.356296 (17) 0.01490 (3)
H1" 0.7001 (5) 0.6267 (4) 0.4120 (4) 0.0260 (11)
C1" 0.49575 (2) 0.628160 (19) 0.396260 (18) 0.01345 (3)
C2" 0.26009 (2) 0.61325 (2) 0.35498 (2) 0.01674 (4)
H2"a 0.2386 (5) 0.5536 (4) 0.4220 (4) 0.0358 (12)
H2"b 0.2279 (4) 0.6998 (4) 0.3834 (4) 0.0317 (12)
C3" 0.19332 (3) 0.58572 (2) 0.25225 (2) 0.01924 (4)
H3"a 0.2155 (6) 0.6467 (4) 0.1870 (4) 0.0398 (13)
H3"b 0.2313 (6) 0.5003 (4) 0.2241 (5) 0.0431 (14)
H3"c 0.0815 (5) 0.5910 (5) 0.2708 (5) 0.0452 (14)
C4" 0.68891 (2) 0.568123 (18) 0.253160 (18) 0.01281 (3)
C5" 0.62586 (2) 0.58657 (2) 0.154044 (19) 0.01576 (3)
H5" 0.5265 (5) 0.6354 (4) 0.1530 (4) 0.0320 (11)
C6" 0.69442 (3) 0.54223 (2) 0.05576 (2) 0.01745 (4)
H6" 0.6457 (5) 0.5567 (4) 0.0192 (4) 0.0357 (12)
C7" 0.82520 (3) 0.48036 (2) 0.05490 (2) 0.01722 (4)
H7" 0.8781 (5) 0.4462 (4) 0.0199 (4) 0.0349 (12)
C8" 0.88845 (2) 0.46367 (2) 0.15363 (2) 0.01641 (3)
H8" 0.9899 (5) 0.4166 (4) 0.1548 (4) 0.0317 (11)
C9" 0.82093 (2) 0.507047 (19) 0.25234 (2) 0.01456 (3)
H9" 0.8688 (4) 0.4940 (4) 0.3288 (4) 0.0284 (11)
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
S1 0.012819 (19) 0.01994 (2) 0.01172 (2) 0.002974 (16) 0.000195 (15) 0.004706 (16)
O1 0.01053 (5) 0.02264 (7) 0.01233 (6) 0.00200 (5) 0.00070 (4) 0.00469 (5)
N1 0.01080 (6) 0.01929 (7) 0.01128 (6) 0.00270 (5) 0.00000 (5) 0.00376 (5)
H1 0.027 (3) 0.036 (3) 0.024 (3) 0.008 (2) 0.006 (2) 0.000 (2)
C1 0.01098 (6) 0.01512 (7) 0.01060 (7) 0.00173 (5) 0.00086 (5) 0.00217 (5)
C2 0.01119 (7) 0.02383 (10) 0.01343 (8) 0.00246 (6) 0.00132 (6) 0.00331 (7)
H2a 0.022 (2) 0.035 (3) 0.039 (3) 0.002 (2) 0.001 (2) 0.009 (2)
H2b 0.024 (3) 0.049 (3) 0.028 (3) 0.008 (2) 0.005 (2) 0.001 (2)
C3 0.01170 (8) 0.03289 (12) 0.01697 (10) 0.00176 (8) 0.00035 (7) 0.00500 (9)
H3a 0.038 (3) 0.063 (4) 0.025 (3) 0.005 (3) 0.001 (2) 0.005 (3)
H3b 0.016 (2) 0.064 (4) 0.039 (3) 0.005 (2) 0.005 (2) 0.012 (3)
H3c 0.034 (3) 0.048 (3) 0.051 (4) 0.003 (3) 0.010 (3) 0.013 (3)
C4 0.01020 (6) 0.01453 (7) 0.01106 (7) 0.00180 (5) 0.00062 (5) 0.00209 (5)
C5 0.01274 (7) 0.01994 (8) 0.01129 (7) 0.00464 (6) 0.00029 (6) 0.00287 (6)
H5 0.024 (3) 0.044 (3) 0.021 (3) 0.014 (2) 0.000 (2) 0.007 (2)
C6 0.01491 (8) 0.02476 (10) 0.01131 (8) 0.00420 (7) 0.00053 (6) 0.00364 (7)
H6 0.035 (3) 0.051 (3) 0.019 (3) 0.015 (2) 0.003 (2) 0.004 (2)
C7 0.01509 (8) 0.02300 (9) 0.01385 (8) 0.00334 (7) 0.00306 (6) 0.00475 (7)
H7 0.027 (3) 0.042 (3) 0.021 (3) 0.010 (2) 0.001 (2) 0.007 (2)
C8 0.01370 (7) 0.02034 (9) 0.01592 (9) 0.00484 (6) 0.00292 (6) 0.00288 (7)
H8 0.031 (3) 0.047 (3) 0.029 (3) 0.016 (2) 0.003 (2) 0.009 (2)
C9 0.01185 (7) 0.01811 (8) 0.01342 (8) 0.00401 (6) 0.00080 (6) 0.00150 (6)
H9 0.026 (3) 0.043 (3) 0.022 (3) 0.012 (2) 0.001 (2) 0.003 (2)
S1' 0.01313 (2) 0.02140 (2) 0.01333 (2) 0.002523 (16) 0.000181 (16) 0.005704 (17)
O1' 0.01148 (5) 0.02070 (7) 0.01140 (6) 0.00327 (5) 0.00087 (4) 0.00227 (5)
N1' 0.01121 (6) 0.01872 (7) 0.01166 (7) 0.00307 (5) 0.00067 (5) 0.00279 (5)
H1' 0.018 (2) 0.038 (3) 0.024 (3) 0.007 (2) 0.002 (2) 0.009 (2)
C1' 0.01109 (6) 0.01491 (7) 0.01098 (7) 0.00171 (5) 0.00071 (5) 0.00121 (5)
C2' 0.01215 (7) 0.01961 (9) 0.01329 (8) 0.00334 (6) 0.00103 (6) 0.00082 (6)
H2'a 0.023 (2) 0.031 (3) 0.032 (3) 0.006 (2) 0.001 (2) 0.004 (2)
H2'b 0.029 (3) 0.046 (3) 0.018 (3) 0.014 (2) 0.005 (2) 0.006 (2)
C3' 0.01456 (8) 0.02131 (9) 0.01741 (9) 0.00420 (7) 0.00405 (7) 0.00100 (7)
H3'a 0.041 (3) 0.038 (3) 0.029 (3) 0.015 (2) 0.013 (2) 0.008 (2)
H3'b 0.025 (3) 0.055 (3) 0.043 (3) 0.014 (2) 0.001 (2) 0.014 (3)
H3'c 0.040 (3) 0.035 (3) 0.039 (3) 0.003 (2) 0.010 (3) 0.012 (2)
C4' 0.01084 (6) 0.01515 (7) 0.01097 (7) 0.00190 (5) 0.00112 (5) 0.00081 (6)
C5' 0.01302 (7) 0.01901 (8) 0.01336 (8) 0.00364 (6) 0.00001 (6) 0.00400 (6)
H5' 0.023 (2) 0.038 (3) 0.034 (3) 0.013 (2) 0.006 (2) 0.010 (2)
C6' 0.01504 (8) 0.02165 (9) 0.01359 (8) 0.00294 (7) 0.00022 (6) 0.00489 (7)
H6' 0.027 (3) 0.050 (3) 0.025 (3) 0.008 (2) 0.004 (2) 0.013 (2)
C7' 0.01444 (8) 0.02257 (9) 0.01290 (8) 0.00144 (7) 0.00100 (6) 0.00224 (7)
H7' 0.023 (3) 0.046 (3) 0.018 (3) 0.006 (2) 0.0021 (19) 0.008 (2)
C8' 0.01291 (7) 0.02387 (9) 0.01402 (8) 0.00417 (7) 0.00098 (6) 0.00114 (7)
H8' 0.032 (3) 0.044 (3) 0.034 (3) 0.013 (2) 0.004 (2) 0.009 (2)
C9' 0.01263 (7) 0.02050 (9) 0.01314 (8) 0.00472 (6) 0.00035 (6) 0.00169 (6)
H9' 0.030 (3) 0.042 (3) 0.026 (3) 0.020 (2) 0.008 (2) 0.006 (2)
S1" 0.01369 (2) 0.02754 (3) 0.01273 (2) 0.001556 (18) 0.000653 (16) 0.005781 (19)
O1" 0.01104 (5) 0.02497 (8) 0.01282 (6) 0.00220 (5) 0.00132 (5) 0.00381 (5)
N1" 0.01096 (6) 0.02230 (8) 0.01175 (7) 0.00225 (5) 0.00139 (5) 0.00255 (6)
H1" 0.022 (3) 0.038 (3) 0.018 (3) 0.005 (2) 0.001 (2) 0.003 (2)
C1" 0.01119 (7) 0.01785 (8) 0.01142 (7) 0.00159 (6) 0.00105 (5) 0.00164 (6)
C2" 0.01157 (7) 0.02280 (10) 0.01605 (9) 0.00204 (6) 0.00145 (6) 0.00243 (7)
H2"a 0.027 (3) 0.050 (3) 0.031 (3) 0.009 (2) 0.002 (2) 0.003 (2)
H2"b 0.018 (2) 0.039 (3) 0.039 (3) 0.001 (2) 0.006 (2) 0.012 (2)
C3" 0.01481 (8) 0.02212 (10) 0.02169 (11) 0.00117 (7) 0.00645 (7) 0.00341 (8)
H3"a 0.053 (4) 0.038 (3) 0.031 (3) 0.010 (3) 0.012 (3) 0.004 (2)
H3"b 0.050 (4) 0.035 (3) 0.046 (4) 0.001 (3) 0.014 (3) 0.010 (3)
H3"c 0.021 (3) 0.071 (4) 0.045 (4) 0.000 (3) 0.013 (2) 0.010 (3)
C4" 0.01102 (6) 0.01641 (7) 0.01123 (7) 0.00240 (5) 0.00097 (5) 0.00050 (6)
C5" 0.01307 (7) 0.02251 (9) 0.01152 (8) 0.00056 (6) 0.00145 (6) 0.00027 (7)
H5" 0.026 (3) 0.049 (3) 0.018 (3) 0.008 (2) 0.004 (2) 0.002 (2)
C6" 0.01589 (8) 0.02515 (10) 0.01137 (8) 0.00200 (7) 0.00131 (6) 0.00086 (7)
H6" 0.029 (3) 0.052 (3) 0.025 (3) 0.002 (2) 0.001 (2) 0.000 (2)
C7" 0.01609 (8) 0.02174 (9) 0.01370 (8) 0.00240 (7) 0.00069 (7) 0.00322 (7)
H7" 0.035 (3) 0.050 (3) 0.019 (3) 0.000 (2) 0.000 (2) 0.007 (2)
C8" 0.01392 (8) 0.01871 (8) 0.01626 (9) 0.00026 (6) 0.00047 (6) 0.00255 (7)
H8" 0.029 (3) 0.040 (3) 0.025 (3) 0.007 (2) 0.002 (2) 0.009 (2)
C9" 0.01266 (7) 0.01762 (8) 0.01346 (8) 0.00099 (6) 0.00187 (6) 0.00089 (6)
H9" 0.024 (3) 0.036 (3) 0.024 (3) 0.002 (2) 0.000 (2) 0.004 (2)
Geometric parameters (Å, º) top
S1—C1 1.6715 (2) C4'—C5' 1.3987 (3)
O1—C1 1.3239 (3) C4'—C9' 1.4036 (3)
O1—C2 1.4573 (3) C5'—H5' 1.070 (4)
N1—H1 0.996 (5) C5'—C6' 1.3954 (3)
N1—C1 1.3481 (3) C6'—H6' 1.079 (5)
N1—C4 1.4174 (3) C6'—C7' 1.3919 (3)
C2—H2a 1.088 (4) C7'—H7' 1.084 (4)
C2—H2b 1.077 (5) C7'—C8' 1.3940 (3)
C2—C3 1.5082 (3) C8'—H8' 1.079 (4)
C3—H3a 1.088 (5) C8'—C9' 1.3913 (3)
C3—H3b 1.069 (4) C9'—H9' 1.078 (4)
C3—H3c 1.076 (5) S1"—C1" 1.6746 (2)
C4—C5 1.3983 (3) O1"—C1" 1.3209 (3)
C4—C9 1.4005 (3) O1"—C2" 1.4506 (3)
C5—H5 1.075 (4) N1"—H1" 1.019 (5)
C5—C6 1.3939 (3) N1"—C1" 1.3444 (3)
C6—H6 1.080 (4) N1"—C4" 1.4170 (3)
C6—C7 1.3927 (3) C2"—H2"a 1.082 (5)
C7—H7 1.080 (4) C2"—H2"b 1.087 (4)
C7—C8 1.3943 (4) C2"—C3" 1.5077 (4)
C8—H8 1.076 (4) C3"—H3"a 1.078 (5)
C8—C9 1.3925 (3) C3"—H3"b 1.084 (5)
C9—H9 1.072 (4) C3"—H3"c 1.080 (5)
S1'—C1' 1.6734 (2) C4"—C5" 1.3984 (3)
O1'—C1' 1.3244 (3) C4"—C9" 1.3996 (3)
O1'—C2' 1.4579 (3) C5"—H5" 1.070 (4)
N1'—H1' 1.014 (5) C5"—C6" 1.3950 (3)
N1'—C1' 1.3471 (3) C6"—H6" 1.063 (5)
N1'—C4' 1.4150 (3) C6"—C7" 1.3934 (4)
C2'—H2'a 1.085 (4) C7"—H7" 1.066 (4)
C2'—H2'b 1.080 (4) C7"—C8" 1.3935 (4)
C2'—C3' 1.5082 (3) C8"—H8" 1.078 (4)
C3'—H3'a 1.081 (5) C8"—C9" 1.3918 (3)
C3'—H3'b 1.071 (5) C9"—H9" 1.074 (5)
C3'—H3'c 1.083 (4)
C2—O1—C1 118.704 (17) C5'—C4'—N1' 125.087 (19)
C1—N1—H1 113.6 (3) C9'—C4'—N1' 115.500 (19)
C4—N1—H1 116.0 (3) C9'—C4'—C5' 119.399 (19)
C4—N1—C1 130.377 (18) H5'—C5'—C4' 120.9 (2)
O1—C1—S1 124.268 (16) C6'—C5'—C4' 119.49 (2)
N1—C1—S1 121.763 (15) C6'—C5'—H5' 119.6 (2)
N1—C1—O1 113.969 (18) H6'—C6'—C5' 119.1 (2)
H2a—C2—O1 108.4 (2) C7'—C6'—C5' 121.25 (2)
H2b—C2—O1 107.8 (2) C7'—C6'—H6' 119.6 (2)
H2b—C2—H2a 108.1 (4) H7'—C7'—C6' 121.0 (2)
C3—C2—O1 106.546 (19) C8'—C7'—C6' 119.10 (2)
C3—C2—H2a 112.5 (2) C8'—C7'—H7' 119.9 (2)
C3—C2—H2b 113.3 (2) H8'—C8'—C7' 120.3 (3)
H3a—C3—C2 110.2 (3) C9'—C8'—C7' 120.37 (2)
H3b—C3—C2 109.1 (3) C9'—C8'—H8' 119.3 (3)
H3b—C3—H3a 107.7 (4) C8'—C9'—C4' 120.38 (2)
H3c—C3—C2 111.1 (3) H9'—C9'—C4' 119.6 (2)
H3c—C3—H3a 109.5 (4) H9'—C9'—C8' 120.0 (2)
H3c—C3—H3b 109.0 (4) C2"—O1"—C1" 119.854 (18)
C5—C4—N1 123.831 (19) C1"—N1"—H1" 114.9 (3)
C9—C4—N1 116.383 (18) C4"—N1"—H1" 115.7 (3)
C9—C4—C5 119.66 (2) C4"—N1"—C1" 128.813 (19)
H5—C5—C4 120.4 (2) O1"—C1"—S1" 124.602 (16)
C6—C5—C4 119.57 (2) N1"—C1"—S1" 122.254 (17)
C6—C5—H5 120.0 (2) N1"—C1"—O1" 113.144 (19)
H6—C6—C5 118.3 (3) H2"a—C2"—O1" 108.4 (2)
C7—C6—C5 120.93 (2) H2"b—C2"—O1" 108.9 (2)
C7—C6—H6 120.7 (3) H2"b—C2"—H2"a 109.1 (4)
H7—C7—C6 120.3 (2) C3"—C2"—O1" 105.814 (19)
C8—C7—C6 119.36 (2) C3"—C2"—H2"a 112.0 (3)
C8—C7—H7 120.3 (2) C3"—C2"—H2"b 112.4 (3)
H8—C8—C7 120.3 (3) H3"a—C3"—C2" 110.5 (3)
C9—C8—C7 120.28 (2) H3"b—C3"—C2" 110.5 (3)
C9—C8—H8 119.4 (3) H3"b—C3"—H3"a 109.3 (4)
C8—C9—C4 120.19 (2) H3"c—C3"—C2" 109.1 (3)
H9—C9—C4 119.0 (2) H3"c—C3"—H3"a 107.9 (4)
H9—C9—C8 120.7 (2) H3"c—C3"—H3"b 109.5 (4)
C2'—O1'—C1' 118.691 (17) C5"—C4"—N1" 123.79 (2)
C1'—N1'—H1' 114.4 (3) C9"—C4"—N1" 116.44 (2)
C4'—N1'—H1' 114.1 (3) C9"—C4"—C5" 119.66 (2)
C4'—N1'—C1' 131.471 (19) H5"—C5"—C4" 120.5 (2)
O1'—C1'—S1' 124.049 (16) C6"—C5"—C4" 119.54 (2)
N1'—C1'—S1' 121.673 (16) C6"—C5"—H5" 119.9 (2)
N1'—C1'—O1' 114.246 (18) H6"—C6"—C5" 119.0 (2)
H2'a—C2'—O1' 108.8 (2) C7"—C6"—C5" 120.91 (2)
H2'b—C2'—O1' 107.8 (2) C7"—C6"—H6" 120.1 (2)
H2'b—C2'—H2'a 108.3 (4) H7"—C7"—C6" 121.3 (3)
C3'—C2'—O1' 107.021 (18) C8"—C7"—C6" 119.31 (2)
C3'—C2'—H2'a 112.7 (2) C8"—C7"—H7" 119.4 (3)
C3'—C2'—H2'b 112.1 (2) H8"—C8"—C7" 120.5 (2)
H3'a—C3'—C2' 110.2 (3) C9"—C8"—C7" 120.36 (2)
H3'b—C3'—C2' 108.5 (3) C9"—C8"—H8" 119.1 (2)
H3'b—C3'—H3'a 108.6 (4) C8"—C9"—C4" 120.21 (2)
H3'c—C3'—C2' 111.2 (3) H9"—C9"—C4" 119.1 (2)
H3'c—C3'—H3'a 110.1 (4) H9"—C9"—C8" 120.7 (2)
H3'c—C3'—H3'b 108.1 (4)
S1—C1—O1—C2 0.52 (2) C1'—N1'—C4'—C9' 164.83 (3)
S1—C1—N1—C4 172.539 (16) C4'—C5'—C6'—C7' 0.48 (3)
O1—C1—N1—C4 7.51 (3) C4'—C9'—C8'—C7' 0.59 (3)
N1—C1—O1—C2 179.43 (2) C5'—C4'—C9'—C8' 1.10 (3)
N1—C4—C5—C6 175.40 (2) C5'—C6'—C7'—C8' 0.99 (3)
N1—C4—C9—C8 176.08 (2) C6'—C5'—C4'—C9' 0.56 (3)
C1—O1—C2—C3 175.01 (2) C6'—C7'—C8'—C9' 0.45 (3)
C1—N1—C4—C5 24.37 (3) S1"—C1"—O1"—C2" 0.48 (3)
C1—N1—C4—C9 159.68 (3) S1"—C1"—N1"—C4" 175.539 (17)
C4—C5—C6—C7 0.57 (3) O1"—C1"—N1"—C4" 4.68 (3)
C4—C9—C8—C7 0.19 (3) N1"—C1"—O1"—C2" 179.75 (2)
C5—C4—C9—C8 0.05 (3) N1"—C4"—C5"—C6" 177.28 (2)
C5—C6—C7—C8 0.33 (3) N1"—C4"—C9"—C8" 177.29 (2)
C6—C5—C4—C9 0.43 (3) C1"—O1"—C2"—C3" 176.02 (2)
C6—C7—C8—C9 0.06 (3) C1"—N1"—C4"—C5" 36.62 (3)
S1'—C1'—O1'—C2' 8.49 (2) C1"—N1"—C4"—C9" 147.02 (3)
S1'—C1'—N1'—C4' 176.533 (16) C4"—C5"—C6"—C7" 0.36 (3)
O1'—C1'—N1'—C4' 1.49 (3) C4"—C9"—C8"—C7" 0.17 (3)
N1'—C1'—O1'—C2' 173.540 (19) C5"—C4"—C9"—C8" 0.77 (3)
N1'—C4'—C5'—C6' 178.02 (2) C5"—C6"—C7"—C8" 0.58 (3)
N1'—C4'—C9'—C8' 177.62 (2) C6"—C5"—C4"—C9" 1.03 (3)
C1'—O1'—C2'—C3' 178.01 (2) C6"—C7"—C8"—C9" 0.84 (3)
C1'—N1'—C4'—C5' 16.53 (3)
Hydrogen-bond geometry (Å, º) top
D—H···A D—H H···A D···A D—H···A
N1—H1···S1i 0.996 (5) 2.409 (5) 3.3863 (2) 166.6 (4)
N1—H1···S1" 1.014 (5) 2.415 (5) 3.3761 (2) 158.0 (4)
N1"—H1"···S1 1.019 (5) 2.371 (5) 3.3668 (2) 165.4 (4)
C2—H2b···S1ii 1.077 (5) 3.232 (4) 3.7125 (2) 108.2 (3)
C5—H5···O1 1.075 (4) 2.280 (5) 2.8304 (3) 109.7 (3)
C5—H5···O1 1.070 (4) 2.209 (4) 2.8155 (3) 113.7 (3)
C5"—H5"···O1" 1.070 (4) 2.319 (4) 2.8002 (3) 105.4 (3)
C9—H9···S1i 1.072 (4) 2.946 (4) 3.7261 (2) 130.0 (3)
C9—H9···S1iii 1.072 (4) 2.922 (5) 3.7860 (3) 137.8 (3)
C9—H9···S1" 1.078 (4) 2.844 (5) 3.6073 (3) 127.8 (3)
C9"—H9"···S1 1.074 (5) 2.896 (4) 3.6864 (2) 130.6 (3)
C9"—H9"···O1iv 1.074 (5) 3.324 (4) 3.7831 (3) 107.2 (3)
C2—H2a···S1"v 1.085 (4) 3.148 (4) 3.7998 (2) 119.4 (3)
C2—H2b···S1vi 1.080 (4) 2.886 (4) 3.6869 (3) 131.1 (3)
C2—H2b···N1vii 1.080 (4) 3.208 (5) 3.7056 (3) 109.1 (3)
C3—H3b···S1vi 1.071 (5) 3.219 (6) 3.6714 (3) 106.6 (3)
C3—H3c···N1vii 1.083 (4) 2.936 (5) 3.7347 (3) 130.8 (3)
C2"—H2"a···N1vii 1.082 (5) 3.272 (5) 3.7780 (3) 109.8 (3)
C3"—H3"b···N1vii 1.084 (5) 2.749 (5) 3.5899 (4) 134.2 (4)
C8"—H8"···O1iv 1.078 (4) 2.828 (5) 3.5593 (3) 125.1 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x1, y1, z; (iv) x+2, y+1, z+1; (v) x+1, y, z; (vi) x+1, y+1, z; (vii) x+1, y+1, z+1.
Structure determinations of 1 and 2 and their unit-cell constants top
For all structures, the space group is P1 and Z = 6.
Compound/refcode Reference T (K) a (Å) b (Å) c (Å) α (°) β (°) γ(°) V3)
1/NOQTUK Singh et al. (2015) 293 9.7037 (8) 12.0974 (10) 12.2300 (10) 89.337 (7) 84.504 (7) 85.224 (7) 1424.1 (2)
2/PINPIL Taylor & Tiekink (1994) 295 11.972 (4) 12.114 (1) 9.607 (2) 95.52 (1) 94.80 (3) 89.34 (2) 1382.0
2/PINPIL01 Nieger et al. (2019) 123 9.6664 (3) 11.7827 (3) 12.1319 (3) 88.829 (1) 84.823 (1) 84.368 (1) 1369.41 (6)
2/PINPIL02a Alsayari et al. (2021) 293 9.6587 (4) 11.7585 (5) 12.1212 (5) 88.807 (2) 84.858 (2) 84.314 (2) 1364.24 (10)
2 This work 100 9.6661 (2) 11.7465 (3) 12.1224 (2) 88.8230 (18) 84.8866 (16) 84.2903 (18) 1364.03 (5)
Note: (a) the unit-cell constants for PINPIL02 and title structure 2 are closely similar, despite the recorded temperature of PINPIL02 being given as 293 K in the CCDC.
The worst `disagreeable reflections' for compound 2 (IAM refinement) top
h k l Error/e.s.d. Error/e.s.d. for data cut to 0.84 Å Fc/Fc(max) Resolution (Å)
5 1 1 18.62 6.67 0.009 1.92
-5 2 4 17.26 5.52 0.006 1.48
3 5 4 14.99 5.80 0.006 1.71
5 -2 2 13.79 5.33 0.002 1.74
-3 3 9 12.83 3.60 0.001 1.14
5 3 1 11.56 5.78 0.017 1.79
-3 5 0 10.88 3.91 0.009 1.80
5 4 5 10.54 4.37 0.021 1.44
-5 -1 5 10.45 4.90 0.022 1.44
3 5 1 10.33 5.15 0.026 1.98
 

Acknowledgements

I am grateful to Dr Ma­thias Meyer and Dr Christian Schürmann (Rigaku OD), Professor Dr Florian Kleemiss (RWTH Aachen University, Germany) and Dr Horst Puschmann (University of Durham, UK) for helpful discussions. Open access funding enabled and organized by Projekt DEAL.

References

First citationAbu-Zaied, M. A., Nawwar, G. A., Elgemeie, G. H. & Jones, P. G. (2024). Acta Cryst. E80, 829–839.  CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Motherwell, W. D. S., Raithby, P. R., Shields, G. P. & Taylor, R. (1999). New J. Chem. 23, 25–34.  Web of Science CrossRef CAS Google Scholar
First citationAlsayari, A., Muhsinah, A. B., Asiri, Y. I., Al-aizari, F. A., Kheder, N. A., Almarhoon, Z. M., Ghabbour, H. A. & Mabkhot, Y. N. (2021). Molecules 26, 26175383.  Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (1998). XP. Version 5.1. Bruker AXS Inc., Madison, Wis­con­sin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEllis, C. A., Miller, M. A., Spencer, J., Zukerman-Schpector, J. & Tiekink, E. R. T. (2009). CrystEngComm 11, 1352–1361.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHill, N. D. D. & Boeré, R. T. (2025). Chem. Methods 5, e202400052.  CrossRef Google Scholar
First citationJones, P. G., Guy, J. J. & Sheldrick, G. M. (1975). Acta Cryst. B31, 2687–2688.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675–1692.  Web of Science CSD CrossRef CAS Google Scholar
First citationMetwally, N. H., Elgemeie, G. H., Abd Al-latif, E. S. M. & Jones, P. G. (2025). Acta Cryst. E81, 279–283.  CSD CrossRef IUCr Journals Google Scholar
First citationNeese, F. (2022). WIREs Comput. Mol. Sci. 12, e1606.  Google Scholar
First citationNeese, F., Wennmohs, F., Becker, U. & Riplinger, C. (2020). J. Chem. Phys. 152, 224108.  Web of Science CrossRef PubMed Google Scholar
First citationNieger, M., Aly, A. A. & Brase, S. (2019). CSD Communication, CCDC deposition No. 1969433, doi: 10.5517/ccdc.csd.cc234c3rGoogle Scholar
First citationRigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, A., Bharty, M. K., Bharati, P., Bharti, A., Singh, S. & Singh, N. K. (2015). Polyhedron 85, 918–925.  CSD CrossRef CAS Google Scholar
First citationStrey, M. & Jones, P. G. (2018). Acta Cryst. C74, 406–410.  CSD CrossRef IUCr Journals Google Scholar
First citationTaylor, R. & Tiekink, E. R. T. (1994). Z. Kristallogr. Cryst. Mater. 209, 64–67.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYeo, C. I. & Tiekink, E. R. T. (2018). Z. Kristallogr. New Cryst. Struct. 233, 499–501.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logo STRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds