research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logo STRUCTURAL
CHEMISTRY
ISSN: 2053-2296

High-pressure crystal structure of n-hexyl­amine

crossmark logo

aFaculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
*Correspondence e-mail: [email protected]

Edited by I. Oswald, University of Strathclyde, United Kingdom (Received 26 March 2025; accepted 20 May 2025; online 27 May 2025)

A primary amine, n-hexyl­amine (HA, C6H15N), has been studied at high pressure by single-crystal X-ray diffraction. The structure of this com­pound has been determined, at ambient tem­per­a­ture, from the freezing pressure up to 1.40 GPa. HA at high pressure crystallizes in the space group Pca21, which was already found at ambient pressure and low tem­per­a­ture. The com­pressibility of the N—H⋯N hy­dro­gen bonds has been com­pared with that of the shortest C—H⋯N and H⋯H inter­molecular distances, revealing that the H⋯H distances exhibit the highest degree of com­pressibility among them.

1. Introduction

N—H⋯N hy­dro­gen bonds often com­pete with weaker C—H⋯N hy­dro­gen bonds in crystals (Huang et al., 2013[Huang, C., LI, Y. & Wang, C. (2013). Sci. China Chem. 56, 238-248.]; Leigh et al., 2013[Leigh, D. A., Robertson, C. C., Slawin, A. M. Z. & Thomson, P. I. T. (2013). J. Am. Chem. Soc. 135, 9939-9943.]; Podsiadło et al., 2017[Podsiadło, M., Olejniczak, A. & Katrusiak, A. (2017). Cryst. Growth Des. 17, 2218-2222.]; Sacharczuk et al., 2023[Sacharczuk, N., Olejniczak, A., Bujak, M. & Podsiadło, M. (2023). Cryst. Growth Des. 23, 7119-7125.]; Vega et al., 2005[Vega, I. E. D., Gale, P. A., Light, M. E. & Loeb, S. J. (2005). Chem. Commun. pp. 4913-4915.]). The role of these inter­actions, as the main cohesion forces in crystals, has been well documented for biomolecules, self-organizing materials, pharmaceuticals and mol­ecular switches (Desiraju & Steiner, 2001[Desiraju, G. R. & Steiner, T. (2001). In The Weak Hydrogen Bond in Structural Chemistry and Biology. International Union of Crystallography: Monographs on Crystallography. Oxford University Press.]; Jeffrey & Saenger, 1994[Jeffrey, G. A. & Saenger, W. (1994). In Hydrogen Bonding in Biological Structures. Berlin, Heidelberg: Springer-Verlag.]). The simplest aliphatic amines serve as model com­pounds for studying the nature of such inter­actions due to their mol­ecular com­position and the minimized effect of the mol­ecular shape on dense packing.

[Scheme 1]

Structural studies of the simplest n-aliphatic amines have been per­formed at low tem­per­a­ture and ambient pressure for methyl­amine (Atoji & Lipscomb, 1953[Atoji, M. & Lipscomb, W. N. (1953). Acta Cryst. 6, 770-774.]), as well as for the series from ethyl­amine to n-decyl­amine (Maloney et al., 2014[Maloney, A. G. P., Wood, P. A. & Parsons, S. (2014). CrystEngComm, 16, 3867-3882.]). These studies described the role of various types of inter­molecular inter­actions in mol­ecular association. N—H⋯N hy­dro­gen bonds have been identified as the main cohesion force for the early primary amines; however, the role of dispersive inter­actions between alkyl chains was also emphasized (for the later com­pounds, the dispersion inter­actions dominate over hy­dro­gen bonding). It was also found that dispersive inter­actions were particularly dominant in the regions between mol­ecular layers linked by N—H⋯N hy­dro­gen bonds (Maloney et al., 2014[Maloney, A. G. P., Wood, P. A. & Parsons, S. (2014). CrystEngComm, 16, 3867-3882.]).

This study of n-hexyl­amine (HA; Scheme 1[link] and Fig. 1[link]) extends our previous research on the simplest primary amines under high pressure. Recently, we have investigated the series from methyl­amine to n-pentyl­amine (Podsiadło et al., 2017[Podsiadło, M., Olejniczak, A. & Katrusiak, A. (2017). Cryst. Growth Des. 17, 2218-2222.]; Sacharczuk et al., 2023[Sacharczuk, N., Olejniczak, A., Bujak, M. & Podsiadło, M. (2023). Cryst. Growth Des. 23, 7119-7125.]). Only ethyl­amine crystallizes in the same phase under high pressure (phase II) as found at low tem­per­a­ture. In contrast, seven new polymorphs, different from the low-tem­per­a­ture ones, have been identified at high pressure for the remaining amines, i.e. one for methyl­amine (Podsiadło et al., 2017[Podsiadło, M., Olejniczak, A. & Katrusiak, A. (2017). Cryst. Growth Des. 17, 2218-2222.]) and two each for propyl­amine, butyl­amine and pentyl­amine (Sacharczuk et al., 2023[Sacharczuk, N., Olejniczak, A., Bujak, M. & Podsiadło, M. (2023). Cryst. Growth Des. 23, 7119-7125.]). In all these polymorphs, mol­ecules inter­act through N—H⋯N hy­dro­gen bonds. However, at high pressure, the role of C—H⋯N hy­dro­gen bonds increases (Sacharczuk et al., 2023[Sacharczuk, N., Olejniczak, A., Bujak, M. & Podsiadło, M. (2023). Cryst. Growth Des. 23, 7119-7125.]).

[Figure 1]
Figure 1
The mol­ecular structures of HA at (a) 0.50 GPa, (b) 0.65 GPa and (c) 1.40 GPa (all at 295 K), showing the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

In the present study, we have investigated HA at high pressure using single-crystal X-ray diffraction. The crystal structure has been determined previously at ambient pressure and low tem­per­a­ture only (Maloney et al., 2014[Maloney, A. G. P., Wood, P. A. & Parsons, S. (2014). CrystEngComm, 16, 3867-3882.]). We have obtained and investigated single crystals of HA in a diamond-anvil cell (DAC) in the range between the freezing pressure at ambient tem­per­a­ture of 0.33 GPa up to 1.40 GPa.

2. Experimental

n-Hexyl­amine, HA (99%), from Sigma–Aldrich was crystallized in situ in a modified Merrill–Basset diamond-anvil cell (DAC; Bassett, 2009[Bassett, W. A. (2009). High Pressure Res. 29, 163-186.]). The DAC was equipped with a 0.3 mm thick steel gasket with a hole of diameter 0.3 mm. At 295 K, HA froze at 0.33 GPa, in the form of a polycrystalline mass, filling the whole volume of the DAC chamber. A single crystal of HA was obtained under isothermal conditions. The polycrystalline mass was melted, except for one crystallite, by decreasing the pressure slowly. Then, again slowly, the pressure was increased allowing a single crystal of HA to grow and eventually fill the entire volume of the chamber (Fig. 2[link]). Afterwards, the pressure was increased by ca 0.2 GPa to achieve a stable single crystal required for the X-ray diffraction measurement. Several attempts were made to grow a single crystal under isochoric conditions at pressures above 0.50 GPa; however, all were unsuccessful. The growing single crystals were very sensitive to tem­per­a­ture changes, and each time additional crystallites occurred, even with slow cooling. For this reason, single crystals at pressures of 0.65 and 1.40 GPa were obtained at room tem­per­a­ture by increasing the pressure in the chamber after per­forming the X-ray measurements at 0.50 and 0.65 GPa. The pressure was calibrated by the ruby fluorescence method (Mao et al., 1986[Mao, H. K., Xu, J. & Bell, P. M. (1986). J. Geophys. Res. 91, 4673-4676.]; Piermarini et al., 1975[Piermarini, G. J., Block, S., Barnett, J. D. & Forman, R. A. (1975). J. Appl. Phys. 46, 2774-2780.]) using a Photon Control spectrometer with an accuracy of 0.02 GPa. The calibrations were per­formed before and after each X-ray diffraction experiment. The progress of the growth of the HA single crystal is shown in Fig. 2[link] and Fig. S1 in the supporting information.

[Figure 2]
Figure 2
Stages of the HA single-crystal growth inside the DAC chamber (polarized-light mode): (a) one crystal seed at 295 K and 0.33 GPa, (b)/(c) the single-crystal growth with increasing pressure and a simultaneous decrease in the volume of the high-pressure chamber, and (d) the single crystal filling the DAC chamber at 295 K and 0.50 GPa. The ruby chip, for pressure calibration, is located by the left edge of the DAC.

Rigaku Xcalibur EOS and Xcalibur ATLAS dif­frac­tom­eters were used for the high-pressure studies. The DAC was centred by the gasket-shadow method (Budzianowski & Katrusiak, 2004[Budzianowski, A. & Katrusiak, A. (2004). High-Pressure Crystallography, edited by A. Katrusiak & P. F. McMillan, pp. 101-112. Dordrecht: Kluwer Academic Publishers.]).

The room-tem­per­a­ture com­pressibility measurement was per­formed up to ca 2 GPa in a piston-and-cylinder apparatus (Baranowski & Moroz, 1982[Baranowski, B. & Moroz, A. (1982). Pol. J. Chem. 56, 379-391.]; Dziubek & Katrusiak, 2014[Dziubek, K. & Katrusiak, A. (2014). Z. Kristallogr. 229, 129-134.]) with an initial volume of ca 8.5 cm3.

2.1. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The H atoms of the methyl­ene and methyl groups were located based on the mol­ecular geometry, with the C—H distances equal to 0.97 or 0.96 Å and their Uiso factors constrained to 1.2 or 1.5 times the Ueq value of their carrier. The H atoms of the amine (–NH2) group were located based on the mol­ecular geometry, assuming N—H distances equal to 0.90 Å, and their Uiso factors were constrained to 1.2 times the Ueq value of their carrier. The crystal data and refinement details are summarized in Tables 1[link] and 2[link], and Table S1 in the supporting information.

Table 1
Experimental details

For all determinations: C6H15N, Mr = 101.19, orthorhombic, Pca21, Z = 4. Experiments were carried out at 295 K with Mo Kα radiation. Absorption was corrected for by multi-scan methods (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]). Refinement was on 64 parameters with 1 restraint. H-atom parameters were constrained.

  HA at 0.50 GPa HA at 0.65 GPa HA at 1.40 GPa
Crystal data
a, b, c (Å) 6.9050 (9), 17.549 (7), 5.5212 (13) 6.8591 (9), 17.494 (5), 5.4892 (4) 6.7241 (19), 17.052 (13), 5.3367 (7)
V3) 669.1 (3) 658.7 (2) 611.9 (5)
μ (mm−1) 0.06 0.06 0.06
Crystal size (mm) 0.28 × 0.28 × 0.27 0.27 × 0.27 × 0.26 0.26 × 0.26 × 0.23
 
Data collection
Diffractometer Rigaku Xcalibur Eos Rigaku Xcalibur Atlas Rigaku Xcalibur Atlas
Tmin, Tmax 0.573, 1.000 0.600, 1.000 0.447, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4308, 832, 373 5447, 1085, 527 4114, 852, 401
Rint 0.071 0.063 0.068
(sin θ/λ)max−1) 0.663 0.732 0.713
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.118, 1.04 0.047, 0.131, 0.98 0.061, 0.194, 1.04
No. of reflections 832 1085 852
Δρmax, Δρmin (e Å−3) 0.09, −0.09 0.10, −0.10 0.17, −0.20
Absolute structure Flack x determined using 128 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 181 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 130 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −10.0 (10) 0.7 (10) 3.1 (10)
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Table 2
Selected crystal data of HA at 0.1 MPa/150 K and 0.50, 0.65 and 1.40 GPa (all at 295 K)

  C6H15Na C6H15Nb C6H15Nb C6H15Nb
p (GPa) 0.0001 0.50 (2) 0.65 (2) 1.40 (2)
T (K) 150 295 (2) 295 (2) 295 (2)
Crystal system Ortho­rhom­bic Ortho­rhom­bic Ortho­rhom­bic Ortho­rhom­bic
Space group Pca21 Pca21 Pca21 Pca21
a (Å) 6.9725 (3) 6.9050 (9) 6.8591 (9) 6.7241 (19)
b (Å) 17.7977 (6) 17.549 (7) 17.494 (5) 17.052 (13)
c (Å) 5.6105 (2) 5.5212 (13) 5.4892 (4) 5.3367 (7)
V3) 696.23 (5) 669.1 (3) 658.7 (2) 611.9 (5)
Z, Z 4, 1 4, 1 4, 1 4, 1
Dx (g cm−3) 0.965 1.005 1.020 1.098
R1 [F2 > 2σ(F2)] 0.0418 0.0544 0.0472 0.0612
R1 (all data) - 0.1726 0.1434 0.1624
References: (a) Maloney et al. (2014[Maloney, A. G. P., Wood, P. A. & Parsons, S. (2014). CrystEngComm, 16, 3867-3882.]); (b) this work.

3. Results and discussion

The single crystal of HA was obtained at the lowest possible pressure of 0.50 GPa (ca 0.2 GPa above the freezing pressure) to ensure the stability of the crystal during the X-ray diffraction data collection experiment. Two additional measurements were per­formed on this crystal com­pressed under isothermal conditions to 0.65 GPa and then to 1.40 GPa. The pressure of 1.40 GPa was the highest, at which the com­pressive stress on the crystal did not significantly affect the quality of the diffraction data. Above 1.40 GPa, the HA single crystal cracked due to mechanical stress. The crystals obtained under high pressure are denser than those crystallized at ambient pressure and low tem­per­a­ture (Table 2[link]). All the unit-cell parameters of the investigated HA crystals decrease with increasing pressure, leading to the more dense structures. The mol­ecular volume of HA as a function of pressure has been plotted in Fig. 3[link].

[Figure 3]
Figure 3
The mol­ecular volume of HA at room tem­per­a­ture as a function of pressure measured in the piston-and-cylinder press (blue circles). The volumes measured at high pressure (red triangles) and low tem­per­a­ture (green square; Maloney et al., 2014[Maloney, A. G. P., Wood, P. A. & Parsons, S. (2014). CrystEngComm, 16, 3867-3882.]) by single-crystal X-ray diffraction have been indicated. The freezing pressure (f.p.) of 0.33 GPa is marked with a vertical dashed line.

The com­pression of the mol­ecular volume of HA measured at 295 K in a piston-and-cylinder press (Baranowski & Moroz, 1982[Baranowski, B. & Moroz, A. (1982). Pol. J. Chem. 56, 379-391.]; Dziubek & Katrusiak, 2014[Dziubek, K. & Katrusiak, A. (2014). Z. Kristallogr. 229, 129-134.]) changes abruptly by 2.6% on freezing the liquid at 0.33 GPa (Fig. 3[link]). After freezing, the solid HA is initially strongly com­pressed until about 0.80 GPa; thereafter, the com­pression decreases monotonically, and at 1.96 GPa, the volume reaches about 65% of the liquid at 0.1 MPa and 80% of the solid at 0.33 GPa. The mol­ecular volume determined using the piston-and-cylinder press is consistent with that obtained by single-crystal X-ray diffraction (Fig. 3[link]).

HA at 0.1 MPa/150 K crystallizes in the noncentrosymmetric space group Pca21, adopting a layered arrangement with infinite N—H⋯N hy­dro­gen-bonded chains running within the layers (Maloney et al., 2014[Maloney, A. G. P., Wood, P. A. & Parsons, S. (2014). CrystEngComm, 16, 3867-3882.]). These N—H⋯N hy­dro­gen-bonded chains can be described by the symbol C11(2) according to the graph-set notation of hy­dro­gen bonds (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). Within the chains, each N atom acts as a donor and an acceptor of an H atom. These chains are retained at high pressure when HA crystallizes in the same phase at 0.33 GPa/295 K (Fig. 4[link]). This structure remains stable up to at least a pressure of 1.40 GPa.

[Figure 4]
Figure 4
Structures of HA at low-tem­per­a­ture (Maloney et al., 2014[Maloney, A. G. P., Wood, P. A. & Parsons, S. (2014). CrystEngComm, 16, 3867-3882.]) and high-pressure conditions: (a) 0.1 MPa/150 K and (b) 1.40 GPa/295 K. Four hy­dro­gen bonds (N—H⋯N) and one short inter­molecular H⋯H distance at the end of the carbon chains are marked with dashed lines (distances are indicated). The inter­molecular space accessible to a probe with a radius of 0.7 Å and a grid spacing of 0.1 Å (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) is indicated in yellow.

N—H⋯N hy­dro­gen bonds play a major role in the cohesion force in HA crystals at ambient pressure/low tem­per­a­ture and within the investigated pressure range at room tem­per­a­ture. These inter­actions at ambient pressure/low tem­per­a­ture are characterized by inter­molecular H⋯N distances shorter by ca 0.45 Å (Maloney et al., 2014[Maloney, A. G. P., Wood, P. A. & Parsons, S. (2014). CrystEngComm, 16, 3867-3882.]) than the sum of the van der Waals radii of H and N atoms of 2.75 Å (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]) (Figs. 4[link] and 5[link]). At 0.50 GPa, these distances are 2.229 (6) Å, and they are even shorter at 1.40 GPa, i.e. 2.168 (5) Å (Figs. 4[link] and 5[link], and Table 3[link]).

Table 3
Hydrogen-bond geometry (Å, °)

N1—H1⋯N1i 0.50 GPa 0.65 GPa 1.40 GPa
N1—H1 0.900 (7) 0.900 (4) 0.900 (7)
H1⋯N1i 2.229 (6) 2.230 (3) 2.168 (5)
N1⋯N1i 3.116 (7) 3.115 (4) 3.050 (8)
N1—H1⋯N1i 168.2 (2) 167.44 (13) 166.4 (2)
Symmetry code: (i) −x + 1, −y, z − [{1\over 2}].
[Figure 5]
Figure 5
Inter­molecular H⋯N and H⋯H distances (Å) observed in HA structures plotted as a function of pressure. The two shortest distances for each type are presented: blue circles represent the N—H⋯N and blue squares depict the C—H⋯N hy­dro­gen–acceptor (H⋯A) distances, while red triangles represent inter­molecular H⋯H distances. Blue and red horizontal lines show the sum of the van der Waals radii of H and N of 2.75 Å, and of two H atoms of 2.40 Å (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). The estimated standard deviations are smaller than the plotted symbols.

It is characteristic that the second shortest inter­molecular H⋯N distances from the N—H⋯N hy­dro­gen bonding are approximately 0.6 Å longer than the shortest. Within the investigated pressure range, these distances remain longer than the sum of the van der Waals radii (Fig. 5[link]). Such a property was observed for the first time in the high-pressure structures of the simplest primary amines (Podsiadło et al., 2017[Podsiadło, M., Olejniczak, A. & Katrusiak, A. (2017). Cryst. Growth Des. 17, 2218-2222.]; Sacharczuk et al., 2023[Sacharczuk, N., Olejniczak, A., Bujak, M. & Podsiadło, M. (2023). Cryst. Growth Des. 23, 7119-7125.]). Furthermore, even in the HA structure at 1.40 GPa, no inter­molecular H⋯N distances from C—H⋯N hy­dro­gen bonds shorter than the sum of the van der Waals radii are observed. HA is therefore the first primary n-amine in the series from methyl- to hexyl­amine where, at high pressure, only single N—H⋯N hy­dro­gen-bonded chains are observed. The C—H⋯N hy­dro­gen bonds are not formed at all and no phase transition, that would allow mol­ecular rearrangement and the formation of C—H⋯N inter­actions, occurred (Podsiadło et al., 2017[Podsiadło, M., Olejniczak, A. & Katrusiak, A. (2017). Cryst. Growth Des. 17, 2218-2222.]; Sacharczuk et al., 2023[Sacharczuk, N., Olejniczak, A., Bujak, M. & Podsiadło, M. (2023). Cryst. Growth Des. 23, 7119-7125.]). In the series from methyl- to pentyl­amine, high pressure does not affect the main cohesive force (N—H⋯N hy­dro­gen bonds); however, inter­molecular C—H⋯N inter­actions are observed in the high-pressure polymorphs (Podsiadło et al., 2017[Podsiadło, M., Olejniczak, A. & Katrusiak, A. (2017). Cryst. Growth Des. 17, 2218-2222.]; Sacharczuk et al., 2023[Sacharczuk, N., Olejniczak, A., Bujak, M. & Podsiadło, M. (2023). Cryst. Growth Des. 23, 7119-7125.]).

In the HA crystals, only at a pressure of 1.40 GPa do the shortest inter­molecular H⋯H distances, at the end of the carbon chains, become shorter than the sum of the van der Waals radii of two H atoms of 2.4 Å (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]) (Figs. 4[link] and 5[link], and Fig. S2 in the supporting information). It is characteristic that, with increasing pressure, these shortest inter­molecular H⋯H distances are more com­pressible than the main N—H⋯N contacts (Figs. 4[link] and 5[link]). This is related to the voids observed in the crystals between the ends of the carbon chains (Fig. 4[link]).

In the series from methyl- to hexyl­amine, HA forms the least dense crystals in the structures determined just above their freezing pressure. The crystal density of methyl­amine determined at 3.65 GPa is 1.165 g cm−3 (Podsiadło et al., 2017[Podsiadło, M., Olejniczak, A. & Katrusiak, A. (2017). Cryst. Growth Des. 17, 2218-2222.]), ethyl­amine at 1.40 GPa is 1.046 g cm−3 (Sacharczuk et al., 2023[Sacharczuk, N., Olejniczak, A., Bujak, M. & Podsiadło, M. (2023). Cryst. Growth Des. 23, 7119-7125.]), propyl­amine at 2.25 GPa is 1.109 g cm−3 (Sa­char­czuk et al., 2023[Sacharczuk, N., Olejniczak, A., Bujak, M. & Podsiadło, M. (2023). Cryst. Growth Des. 23, 7119-7125.]), butyl­amine at 1.45 GPa is 1.059 g cm−3 (Sacharczuk et al., 2023[Sacharczuk, N., Olejniczak, A., Bujak, M. & Podsiadło, M. (2023). Cryst. Growth Des. 23, 7119-7125.]) and pentyl­amine at 1.05 GPa is 1.049 g cm−3 (Sacharczuk et al., 2023[Sacharczuk, N., Olejniczak, A., Bujak, M. & Podsiadło, M. (2023). Cryst. Growth Des. 23, 7119-7125.]). The crystal density of HA, determined within this study, at 0.50 GPa is 1.005 g cm−3. This correlates with the void volumes in the structures mentioned above, which, in the series from methyl- to hexyl­amine, are 0, 7.15, 7.86, 12.94, 13.65 and 38.45 Å3, respectively (the inter­molecular space accessible to a probe with a radius of 0.6 Å and a grid spacing of 0.1 Å; the parameters used in the calculations differ from those used in Fig. 4[link], ensuring distinguishable void volumes across the entire series; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

4. Conclusions

The high-pressure crystal structure of HA is isostructural with the phase determined at low tem­per­a­ture at 0.1 MPa (Maloney et al., 2014[Maloney, A. G. P., Wood, P. A. & Parsons, S. (2014). CrystEngComm, 16, 3867-3882.]). This represents the first example among the series of the simplest aliphatic amines where the crystal symmetry remains unchanged between low-tem­per­a­ture and high-pressure conditions. The space group symmetry of Pca21 remains stable within the investigated pressure range. Similar to other aliphatic n-amines, the main cohesion force in the HA crystals involves the N—H⋯N hy­dro­gen-bonded chains. However, no additional inter­molecular distances shorter than the sum of the van der Waals radii are observed. This is unique within the high-pressure studies of the methyl- to pentyl­amine series, where high pressure enhances the role of inter­molecular C—H⋯N inter­actions. Only at 1.40 GPa does the first inter­molecular H⋯H distance become shorter than the sum of the van der Waals radii of two H atoms. The com­pressibility of this distance exceeds that of the inter­molecular N—H⋯N hydrogen bonds. This effect results from the voids surrounding the methyl groups at the ends of the carbon chains. The HA crystal obtained just above the freezing pressure is the least dense structure among the high-pressure structures determined in the methyl- to hexyl­amine series.

Supporting information


Computing details top

n-Hexylamine (hexylamine_0_50GPa) top
Crystal data top
C6H15N Dx = 1.005 Mg m3
Mr = 101.19 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21 Cell parameters from 598 reflections
a = 6.9050 (9) Å θ = 3.8–17.7°
b = 17.549 (7) Å µ = 0.06 mm1
c = 5.5212 (13) Å T = 295 K
V = 669.1 (3) Å3 Disc, colourless
Z = 4 0.28 × 0.28 × 0.27 mm
F(000) = 232
Data collection top
Rigaku Xcalibur Eos
diffractometer
373 reflections with I > 2σ(I)
Detector resolution: 16.2413 pixels mm-1 Rint = 0.071
φ– and ω–scans θmax = 28.1°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2022)
h = 99
Tmin = 0.573, Tmax = 1.000 k = 1616
4308 measured reflections l = 66
832 independent reflections
Refinement top
Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.054 w = 1/[σ2(Fo2) + (0.0376P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.118 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.09 e Å3
832 reflections Δρmin = 0.09 e Å3
64 parameters Absolute structure: Flack x determined using 128 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: 10.0 (10)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Rigaku Xcalibur EOS and Xcalibur ATLAS diffractometers were used for the high-pressure studies. The X-ray wavelength used in all experiments was 0.71073 Å. The DAC was centred by the gasket-shadow method (Budzianowski & Katrusiak, 2004). The CrysAlis PRO program suite was used for data collection, determination of the UB matrices and data reductions. All data were accounted for the Lorentz, polarization and absorption effects. OLEX2 (Dolomanov et al., 2009), SHELXT (Sheldrick, 2015a) and SHELXL (Sheldrick, 2015b) were used to solve the structures by direct methods, and then to the full-matrix least-squares refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
N1 0.5556 (7) 0.0349 (4) 0.9147 (10) 0.0687 (19)
H2 0.682796 0.038908 0.947803 0.082*
H1 0.539765 0.010808 0.772063 0.082*
C1 0.4704 (8) 0.1102 (6) 0.9009 (13) 0.063 (3)
H12 0.488877 0.134938 1.056331 0.076*
H11 0.332065 0.104265 0.877298 0.076*
C2 0.5449 (8) 0.1627 (6) 0.7081 (12) 0.055 (3)
H22 0.683900 0.167532 0.728087 0.066*
H21 0.522184 0.138989 0.551947 0.066*
C3 0.4591 (6) 0.2410 (7) 0.7031 (12) 0.062 (3)
H32 0.480115 0.264728 0.859597 0.075*
H31 0.320307 0.236485 0.679769 0.075*
C4 0.5394 (8) 0.2926 (5) 0.5096 (13) 0.061 (3)
H42 0.678221 0.297005 0.532398 0.074*
H41 0.517725 0.269072 0.352958 0.074*
C5 0.4533 (8) 0.3714 (5) 0.5061 (12) 0.070 (3)
H52 0.470541 0.394238 0.664685 0.084*
H51 0.315124 0.367130 0.477184 0.084*
C6 0.5390 (8) 0.4243 (5) 0.3177 (16) 0.088 (3)
H63 0.476617 0.473119 0.327290 0.132*
H62 0.675190 0.430265 0.347089 0.132*
H61 0.519522 0.403112 0.159285 0.132*
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
N1 0.073 (3) 0.079 (7) 0.055 (5) 0.004 (3) 0.001 (4) 0.003 (3)
C1 0.059 (3) 0.076 (10) 0.054 (7) 0.003 (5) 0.000 (5) 0.003 (5)
C2 0.053 (3) 0.055 (11) 0.057 (7) 0.001 (5) 0.007 (5) 0.002 (5)
C3 0.048 (3) 0.085 (12) 0.054 (7) 0.005 (5) 0.001 (5) 0.004 (5)
C4 0.056 (3) 0.078 (11) 0.051 (7) 0.002 (4) 0.002 (5) 0.004 (4)
C5 0.071 (4) 0.082 (10) 0.057 (7) 0.004 (5) 0.001 (5) 0.005 (5)
C6 0.088 (4) 0.099 (12) 0.076 (9) 0.008 (5) 0.005 (6) 0.012 (5)
Geometric parameters (Å, º) top
N1—H2 0.9000 C3—C4 1.507 (8)
N1—H1 0.9001 C4—H42 0.9700
N1—C1 1.449 (9) C4—H41 0.9700
C1—H12 0.9700 C4—C5 1.506 (8)
C1—H11 0.9700 C5—H52 0.9700
C1—C2 1.498 (10) C5—H51 0.9700
C2—H22 0.9700 C5—C6 1.515 (11)
C2—H21 0.9700 C6—H63 0.9600
C2—C3 1.497 (12) C6—H62 0.9600
C3—H32 0.9700 C6—H61 0.9600
C3—H31 0.9700
H2—N1—H1 109.5 C4—C3—H31 108.6
C1—N1—H2 109.6 C3—C4—H42 108.6
C1—N1—H1 109.4 C3—C4—H41 108.6
N1—C1—H12 108.0 H42—C4—H41 107.6
N1—C1—H11 108.0 C5—C4—C3 114.6 (7)
N1—C1—C2 117.3 (7) C5—C4—H42 108.6
H12—C1—H11 107.2 C5—C4—H41 108.6
C2—C1—H12 108.0 C4—C5—H52 108.6
C2—C1—H11 108.0 C4—C5—H51 108.6
C1—C2—H22 108.2 C4—C5—C6 114.7 (6)
C1—C2—H21 108.2 H52—C5—H51 107.6
H22—C2—H21 107.4 C6—C5—H52 108.6
C3—C2—C1 116.2 (7) C6—C5—H51 108.6
C3—C2—H22 108.2 C5—C6—H63 109.5
C3—C2—H21 108.2 C5—C6—H62 109.5
C2—C3—H32 108.6 C5—C6—H61 109.5
C2—C3—H31 108.6 H63—C6—H62 109.5
C2—C3—C4 114.8 (6) H63—C6—H61 109.5
H32—C3—H31 107.5 H62—C6—H61 109.5
C4—C3—H32 108.6
N1—C1—C2—C3 178.1 (6) C2—C3—C4—C5 179.7 (6)
C1—C2—C3—C4 179.1 (6) C3—C4—C5—C6 177.9 (6)
n-Hexylamine (hexylamine_0_65GPa) top
Crystal data top
C6H15N Dx = 1.020 Mg m3
Mr = 101.19 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21 Cell parameters from 1173 reflections
a = 6.8591 (9) Å θ = 3.2–23.5°
b = 17.494 (5) Å µ = 0.06 mm1
c = 5.4892 (4) Å T = 295 K
V = 658.7 (2) Å3 Disc, colourless
Z = 4 0.27 × 0.27 × 0.26 mm
F(000) = 232
Data collection top
Rigaku Xcalibur Atlas
diffractometer
527 reflections with I > 2σ(I)
Detector resolution: 10.5384 pixels mm-1 Rint = 0.063
φ– and ω–scans θmax = 31.4°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2022)
h = 88
Tmin = 0.600, Tmax = 1.000 k = 1515
5447 measured reflections l = 77
1085 independent reflections
Refinement top
Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0573P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.131 (Δ/σ)max < 0.001
S = 0.98 Δρmax = 0.10 e Å3
1085 reflections Δρmin = 0.10 e Å3
64 parameters Absolute structure: Flack x determined using 181 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: 0.7 (10)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Rigaku Xcalibur EOS and Xcalibur ATLAS diffractometers were used for the high-pressure studies. The X-ray wavelength used in all experiments was 0.71073 Å. The DAC was centred by the gasket-shadow method (Budzianowski & Katrusiak, 2004). The CrysAlis PRO program suite was used for data collection, determination of the UB matrices and data reductions. All data were accounted for the Lorentz, polarization and absorption effects. OLEX2 (Dolomanov et al., 2009), SHELXT (Sheldrick, 2015a) and SHELXL (Sheldrick, 2015b) were used to solve the structures by direct methods, and then to the full-matrix least-squares refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
N1 0.5563 (5) 0.0358 (3) 0.9205 (5) 0.0550 (14)
H2 0.684017 0.040646 0.954979 0.066*
H1 0.542127 0.011566 0.777019 0.066*
C1 0.4676 (5) 0.1112 (3) 0.9056 (6) 0.0464 (17)
H12 0.484199 0.136515 1.061406 0.056*
H11 0.328753 0.104832 0.879059 0.056*
C2 0.5472 (5) 0.1630 (3) 0.7083 (6) 0.0442 (17)
H22 0.686689 0.168369 0.731413 0.053*
H21 0.526551 0.138715 0.551522 0.053*
C3 0.4575 (5) 0.2410 (4) 0.7023 (7) 0.0497 (17)
H32 0.475565 0.264744 0.860355 0.060*
H31 0.318406 0.235580 0.675689 0.060*
C4 0.5404 (5) 0.2940 (3) 0.5071 (7) 0.0464 (15)
H42 0.679673 0.299029 0.533055 0.056*
H41 0.521480 0.270362 0.349076 0.056*
C5 0.4517 (5) 0.3729 (4) 0.5013 (6) 0.0539 (16)
H51 0.312578 0.368251 0.473613 0.065*
H52 0.470200 0.396829 0.659017 0.065*
C6 0.5376 (5) 0.4237 (3) 0.3078 (9) 0.0695 (17)
H63 0.475481 0.472863 0.313277 0.104*
H62 0.674870 0.429650 0.336080 0.104*
H61 0.517151 0.401053 0.150563 0.104*
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
N1 0.065 (3) 0.055 (5) 0.0453 (17) 0.0000 (18) 0.004 (2) 0.004 (2)
C1 0.051 (3) 0.045 (7) 0.043 (2) 0.003 (2) 0.001 (3) 0.003 (3)
C2 0.046 (3) 0.049 (7) 0.0372 (19) 0.001 (2) 0.000 (2) 0.001 (2)
C3 0.040 (3) 0.065 (7) 0.044 (2) 0.000 (2) 0.000 (3) 0.002 (2)
C4 0.043 (3) 0.055 (6) 0.041 (2) 0.002 (2) 0.003 (3) 0.000 (2)
C5 0.054 (3) 0.059 (6) 0.048 (2) 0.002 (2) 0.004 (3) 0.001 (2)
C6 0.072 (3) 0.077 (6) 0.060 (3) 0.004 (2) 0.001 (3) 0.008 (3)
Geometric parameters (Å, º) top
N1—H2 0.9000 C3—C4 1.528 (6)
N1—H1 0.9000 C4—H42 0.9700
N1—C1 1.454 (6) C4—H41 0.9700
C1—H12 0.9700 C4—C5 1.508 (6)
C1—H11 0.9700 C5—H51 0.9700
C1—C2 1.514 (6) C5—H52 0.9700
C2—H22 0.9700 C5—C6 1.505 (6)
C2—H21 0.9700 C6—H63 0.9600
C2—C3 1.496 (6) C6—H62 0.9600
C3—H32 0.9700 C6—H61 0.9600
C3—H31 0.9700
H2—N1—H1 109.5 C4—C3—H31 108.6
C1—N1—H2 109.5 C3—C4—H42 108.5
C1—N1—H1 109.4 C3—C4—H41 108.5
N1—C1—H12 108.4 H42—C4—H41 107.5
N1—C1—H11 108.4 C5—C4—C3 114.9 (4)
N1—C1—C2 115.6 (3) C5—C4—H42 108.5
H12—C1—H11 107.4 C5—C4—H41 108.5
C2—C1—H12 108.4 C4—C5—H51 108.9
C2—C1—H11 108.4 C4—C5—H52 108.9
C1—C2—H22 108.7 H51—C5—H52 107.7
C1—C2—H21 108.7 C6—C5—C4 113.4 (4)
H22—C2—H21 107.6 C6—C5—H51 108.9
C3—C2—C1 114.4 (4) C6—C5—H52 108.9
C3—C2—H22 108.7 C5—C6—H63 109.5
C3—C2—H21 108.7 C5—C6—H62 109.5
C2—C3—H32 108.6 C5—C6—H61 109.5
C2—C3—H31 108.6 H63—C6—H62 109.5
C2—C3—C4 114.6 (3) H63—C6—H61 109.5
H32—C3—H31 107.6 H62—C6—H61 109.5
C4—C3—H32 108.6
N1—C1—C2—C3 178.2 (4) C2—C3—C4—C5 179.6 (4)
C1—C2—C3—C4 178.7 (3) C3—C4—C5—C6 179.7 (3)
n-Hexylamine (hexylamine_1_40GPa) top
Crystal data top
C6H15N Dx = 1.098 Mg m3
Mr = 101.19 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21 Cell parameters from 794 reflections
a = 6.7241 (19) Å θ = 3.8–23.7°
b = 17.052 (13) Å µ = 0.06 mm1
c = 5.3367 (7) Å T = 295 K
V = 611.9 (5) Å3 Disc, colourless
Z = 4 0.26 × 0.26 × 0.23 mm
F(000) = 232
Data collection top
Rigaku Xcalibur Atlas
diffractometer
401 reflections with I > 2σ(I)
Detector resolution: 10.5384 pixels mm-1 Rint = 0.068
φ– and ω–scans θmax = 30.4°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2022)
h = 88
Tmin = 0.447, Tmax = 1.000 k = 1413
4114 measured reflections l = 77
852 independent reflections
Refinement top
Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.061 w = 1/[σ2(Fo2) + (0.0896P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.194 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.17 e Å3
852 reflections Δρmin = 0.19 e Å3
64 parameters Absolute structure: Flack x determined using 130 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: 3.1 (10)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Rigaku Xcalibur EOS and Xcalibur ATLAS diffractometers were used for the high-pressure studies. The X-ray wavelength used in all experiments was 0.71073 Å. The DAC was centred by the gasket-shadow method (Budzianowski & Katrusiak, 2004). The CrysAlis PRO program suite was used for data collection, determination of the UB matrices and data reductions. All data were accounted for the Lorentz, polarization and absorption effects. OLEX2 (Dolomanov et al., 2009), SHELXT (Sheldrick, 2015a) and SHELXL (Sheldrick, 2015b) were used to solve the structures by direct methods, and then to the full-matrix least-squares refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
N1 0.5636 (8) 0.0353 (5) 0.9407 (9) 0.058 (2)
H2 0.694796 0.041899 0.966999 0.069*
H1 0.544766 0.009549 0.795479 0.069*
C1 0.4647 (9) 0.1130 (6) 0.9275 (12) 0.053 (3)
H12 0.484791 0.140747 1.084208 0.063*
H11 0.322777 0.105681 0.904622 0.063*
C2 0.5466 (9) 0.1622 (6) 0.7122 (11) 0.050 (3)
H22 0.689124 0.168003 0.733140 0.060*
H21 0.523657 0.134733 0.555654 0.060*
C3 0.4542 (8) 0.2414 (6) 0.6972 (12) 0.056 (3)
H32 0.470772 0.267628 0.857227 0.067*
H31 0.312710 0.235476 0.667628 0.067*
C4 0.5425 (9) 0.2932 (6) 0.4908 (10) 0.047 (3)
H42 0.684285 0.298718 0.519215 0.057*
H41 0.524514 0.267358 0.330484 0.057*
C5 0.4508 (9) 0.3733 (6) 0.4782 (11) 0.063 (3)
H52 0.467165 0.398929 0.639147 0.075*
H51 0.309275 0.367858 0.447405 0.075*
C6 0.5408 (8) 0.4251 (5) 0.2748 (12) 0.069 (3)
H63 0.476291 0.475376 0.275976 0.103*
H62 0.680310 0.431891 0.306105 0.103*
H61 0.522333 0.400803 0.114258 0.103*
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
N1 0.067 (4) 0.064 (9) 0.042 (3) 0.002 (3) 0.009 (3) 0.005 (3)
C1 0.059 (5) 0.048 (13) 0.051 (4) 0.002 (4) 0.002 (4) 0.004 (4)
C2 0.048 (5) 0.064 (12) 0.038 (3) 0.002 (4) 0.004 (4) 0.002 (4)
C3 0.043 (5) 0.084 (12) 0.041 (3) 0.007 (4) 0.005 (4) 0.005 (4)
C4 0.052 (5) 0.055 (11) 0.035 (3) 0.000 (4) 0.003 (4) 0.006 (4)
C5 0.057 (6) 0.082 (13) 0.049 (4) 0.002 (4) 0.006 (4) 0.004 (5)
C6 0.068 (5) 0.095 (12) 0.043 (4) 0.006 (4) 0.006 (5) 0.008 (4)
Geometric parameters (Å, º) top
N1—H2 0.9000 C3—C4 1.532 (11)
N1—H1 0.8998 C4—H42 0.9700
N1—C1 1.485 (12) C4—H41 0.9700
C1—H12 0.9700 C4—C5 1.499 (11)
C1—H11 0.9700 C5—H52 0.9700
C1—C2 1.526 (11) C5—H51 0.9700
C2—H22 0.9700 C5—C6 1.525 (10)
C2—H21 0.9700 C6—H63 0.9600
C2—C3 1.489 (11) C6—H62 0.9600
C3—H32 0.9700 C6—H61 0.9600
C3—H31 0.9700
H2—N1—H1 109.5 C4—C3—H31 108.8
C1—N1—H2 109.5 C3—C4—H42 108.9
C1—N1—H1 109.3 C3—C4—H41 108.9
N1—C1—H12 109.4 H42—C4—H41 107.7
N1—C1—H11 109.4 C5—C4—C3 113.4 (6)
N1—C1—C2 111.4 (6) C5—C4—H42 108.9
H12—C1—H11 108.0 C5—C4—H41 108.9
C2—C1—H12 109.4 C4—C5—H52 108.9
C2—C1—H11 109.4 C4—C5—H51 108.9
C1—C2—H22 109.0 C4—C5—C6 113.4 (6)
C1—C2—H21 109.0 H52—C5—H51 107.7
H22—C2—H21 107.8 C6—C5—H52 108.9
C3—C2—C1 112.9 (6) C6—C5—H51 108.9
C3—C2—H22 109.0 C5—C6—H63 109.5
C3—C2—H21 109.0 C5—C6—H62 109.5
C2—C3—H32 108.8 C5—C6—H61 109.5
C2—C3—H31 108.8 H63—C6—H62 109.5
C2—C3—C4 113.6 (5) H63—C6—H61 109.5
H32—C3—H31 107.7 H62—C6—H61 109.5
C4—C3—H32 108.8
N1—C1—C2—C3 178.5 (7) C2—C3—C4—C5 179.3 (7)
C1—C2—C3—C4 176.9 (6) C3—C4—C5—C6 179.2 (5)
Selected crystal data of HA at 0.1 MPa/150 K and 0.50, 0.65 and 1.40 GPa (all at 295 K) top
C6H15Na C6H15Nb C6H15Nb C6H15Nb
p (GPa) 0.0001 0.50 (2) 0.65 (2) 1.40 (2)
T (K) 150 295 (2) 295 (2) 295 (2)
Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic
Space group Pca21 Pca21 Pca21 Pca21
a (Å) 6.9725 (3) 6.9050 (9) 6.8591 (9) 6.7241 (19)
b (Å) 17.7977 (6) 17.549 (7) 17.494 (5) 17.052 (13)
c (Å) 5.6105 (2) 5.5212 (13) 5.4892 (4) 5.3367 (7)
V3) 696.23 (5) 669.1 (3) 658.7 (2) 611.9 (5)
Z, Z? 4, 1 4, 1 4, 1 4, 1
Dx (g?cm-3) 0.965 1.005 1.020 1.098
R1 [F2 > 2σ(F2)] 0.0418 0.0544 0.0472 0.0612
R1 (all data) - 0.1726 0.1434 0.1624
References: (a) Maloney et al. (2014); (b) this work.
Hydrogen-bond geometry (Å, °) top
N1—H1···N1i 0.50 GPa 0.65 GPa 1.40 GPa
N1—H1 0.900 (7) 0.900 (4) 0.900 (7)
H1···N1 2.229 (6) 2.230 (3) 2.168 (5)
N1···N1 3.116 (7) 3.115 (4) 3.050 (8)
N1—H1···N1 168.2 (2) 167.44 (13) 166.4 (2)
Symmetry code: (i) -x+1, -y, z-1/2.
 

Funding information

Funding for this research was provided by: National Science Centre (grant No. 2020/37/B/ST4/00982).

References

First citationAtoji, M. & Lipscomb, W. N. (1953). Acta Cryst. 6, 770–774.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBaranowski, B. & Moroz, A. (1982). Pol. J. Chem. 56, 379–391.  CAS Google Scholar
First citationBassett, W. A. (2009). High Pressure Res. 29, 163–186.  Web of Science CrossRef CAS Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBudzianowski, A. & Katrusiak, A. (2004). High-Pressure Crystallography, edited by A. Katrusiak & P. F. McMillan, pp. 101–112. Dordrecht: Kluwer Academic Publishers.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (2001). In The Weak Hydrogen Bond in Structural Chemistry and Biology. International Union of Crystallography: Monographs on Crystallography. Oxford University Press.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDziubek, K. & Katrusiak, A. (2014). Z. Kristallogr. 229, 129–134.  CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationHuang, C., LI, Y. & Wang, C. (2013). Sci. China Chem. 56, 238–248.  CrossRef CAS Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1994). In Hydrogen Bonding in Biological Structures. Berlin, Heidelberg: Springer-Verlag.  Google Scholar
First citationLeigh, D. A., Robertson, C. C., Slawin, A. M. Z. & Thomson, P. I. T. (2013). J. Am. Chem. Soc. 135, 9939–9943.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaloney, A. G. P., Wood, P. A. & Parsons, S. (2014). CrystEngComm, 16, 3867–3882.  Web of Science CSD CrossRef CAS Google Scholar
First citationMao, H. K., Xu, J. & Bell, P. M. (1986). J. Geophys. Res. 91, 4673–4676.  CrossRef CAS Web of Science Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPiermarini, G. J., Block, S., Barnett, J. D. & Forman, R. A. (1975). J. Appl. Phys. 46, 2774–2780.  CrossRef CAS Web of Science Google Scholar
First citationPodsiadło, M., Olejniczak, A. & Katrusiak, A. (2017). Cryst. Growth Des. 17, 2218–2222.  Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSacharczuk, N., Olejniczak, A., Bujak, M. & Podsiadło, M. (2023). Cryst. Growth Des. 23, 7119–7125.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVega, I. E. D., Gale, P. A., Light, M. E. & Loeb, S. J. (2005). Chem. Commun. pp. 4913–4915.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logo STRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds