

research papers

Synthesis and properties of Sr2La2NiW2O12, a new S = 1 triangular lattice magnet
aLeibniz Institute for Solid State and Materials Research IFW Dresden, Helmholtzstraße
20, Dresden, 01069, Germany, and bFederal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str.
11, Berlin, 12489, Germany
*Correspondence e-mail: [email protected]
This article is part of a collection of articles from the IUCr 2023 Congress in Melbourne, Australia, and commemorates the 75th anniversary of the IUCr.
Magnetic materials featuring triangular arrangements of spins are frequently investigated as platforms hosting magnetic frustration. Hexagonal perovskites with ordered vacancies serve as excellent candidates for two-dimensional triangular magnetism due to the considerable separation of the magnetic planes. In this work, the effects of chemical pressure on the ferromagnetic ground state of Ba2La2NiW2O12 by substitution of Ba2+ with Sr2+ to produce Sr2La2NiW2O12 are investigated. The two materials are characterized using synchrotron-based XRD, XANES and in addition to magnetometry in order to correlate their crystal structures and magnetic properties. Both materials form in R3, yet as a result of the enhanced bending of key bond angles due to the effects of chemical pressure, the TC value of the magnetic Ni2+ is reduced from ∼6 K in Ba2La2NiW2O12 to 4 K in Sr2La2NiW2O12.
1. Introduction
Frustrated magnetism, typically defined empirically as the case where a large ratio
exists between the Weiss temperature and the onset temperature of long-range magnetic
order, has been suggested to arise from a variety of fundamental origins. However,
for the realization of a maximally frustrated magnetic system as it is manifested
in various theoretically proposed spin liquids (Balents, 2010; Savary & Balents, 2017
), one nearly universal ingredient is the implementation of geometric spatial arrangement
of the spins in the solid which yields a fine balancing of the exchange interaction(s)
between them. As highly degenerate energy levels of the ground state are typically
associated with such an entanglement, even small perturbations of the can result in preferential solutions to alleviate the frustration. As theoretical
models can avoid this contingency, many of the theoretical constructs involve simple
idyllic patterns as templates for calculations such as the famous kagome or honeycomb
lattices.
One of the simplest of such frustrated arrangements, frequently used as an example
for introductory purposes, is the antiferromagnetic (AFM) interaction on a triangle,
and by extension, tilings in two and three dimensions which are based on triangular
arrangements, such as the edge-sharing tetrahedra found in the f.c.c. lattice. While
the kagome lattice, also based on triangles, has maintained its status as a frustrated
system, the completely tiled 2D triangular plane has received less attention due to
the solution to the system which commonly materializes – the 120° AFM structure. However,
recent works in the frustrated cobaltate magnet systems suggest the possibility of
Kitaev interactions between high-spin d7 Co2+ at low temperatures which may yet again produce interesting results even in 3d transition metal triangular magnets (Liu & Khaliullin, 2018; Kim et al., 2021
, 2023
).
While triangular patterns are very commonly observed in a wide variety of crystalline
lattices, simple chemical formulae such as binaries frequently bring neighboring magnetic
planes in close proximity, allowing for the out-of-plane terms to significantly impact
the properties. Complex oxides, on the other hand, enable for rather exotic and elaborate
crystal structures to be designed resulting in well separated 2D planes and more idealistic
correspondence to theoretical models. Hexagonal perovskites, one such class of materials,
have been studied for many reasons, but recent interest has shown these materials
to include excellent candidates for low-dimensional triangular magnets and quantum
materials (Nguyen & Cava, 2021).
One such variant of hexagonal perovskite, first demonstrated in the 1960s (Longo et al., 1965), has a generalized quadruple perovskite formula (A4B4O12) convoluted by both cation and vacancy ordering to yield a formula of A4BB′2O12. The crystal chemistry of these vacancy and cation ordered hexagonal perovskites
was elaborated considerably in the 1980s in the group of Kemmler-Sack (Herrmann &
Kemmler-Sack, 1980a
; Rother & Kemmler-Sack, 1980
; Herrmann & Kemmler-Sack, 1981
; Herrmann & Kemmler-Sack, 1980b
; Kemmler-Sack & Herrmann, 1980
), demonstrating some of the chemical flexibility enjoyed by its more commonly known
simple perovskite parents. Apparently abandoned for several decades, these materials
have recently resurfaced in the context of a materials platform to study low-dimensional
and frustrated magnetism (Evans et al., 2021
).
While many potential members remain yet unexplored, several teams have published results
which begin to paint a picture of the interesting accessible properties in these systems.
Recent research has focused on inclusion of a single magnetic ion at the B site with an of 2+, with focus on the magnetism of triangular lattices of Mn2+, Co2+ and Ni2+ (Doi et al., 2017; Rawl, Lee et al., 2017
; Kojima et al., 2018
; Saito et al., 2019
). Meanwhile, the counterbalancing A and B′ cations typically are all nonmagnetic to yield a clean 2D magnetic system. The A cations utilized thus far have been a combination of alkaline earth and rare earth
cations typical of hexagonal perovskites, while the B′ cations include d0 configuration ions such as Re7+, W6+, Te6+ and Nb5+. The combinations of charge balance between the A and B′ sublattices allow for numerous combinations of nonmagnetic scaffolding for each
magnetic lattice, in turn allowing for studies with the application of chemical pressure
by aliovalent or isovalent cation substitutions (Rawl, Lee et al., 2017
). Furthermore, materials with yet another doubling of the formula and greater dilution
of the magnetic layers in these materials produce even greater separation between
the layers in related A8BB′6O24 compounds (Rawl, Ge et al., 2017
, 2019
).
In this work, the topic of investigation concerns the magnetism of Ni2+ in A4BB′2O12 materials. Two such compounds have been reported thus far with considerable difference
in properties. Ba2La2NiTe2O12 features AFM interactions on the triangular lattice, with two magnetic transitions
upon cooling: from paramagnetic to a collinear AFM structure and then to a 120° structure
(Saito et al., 2019). Conversely, Ba2La2NiW2O12 exhibits ferromagnetic (FM) interactions and a low-temperature long-range-ordering
transition to an FM state (Rawl, Lee et al., 2017
). In order to shed further light on the surprising system, in this work we synthesize
additional member Sr2La2NiW2O12, effectively applying chemical pressure to Ba2La2NiW2O12. Both of these materials are characterized for their magnetic properties and crystal
structures using synchrotron X-rays for direct comparison, both to each other as well
as to recent neutron powder diffraction results (Yu et al., 2023
).
2. Experimental
Polycrystalline samples of Sr2La2NiW2O12 and Ba2La2NiW2O12 were synthesized in high-density alumina crucibles using the solid-state method. Stoichiometric quantities of La2O3, SrCO3 or BaCO3, NiO and WO3 were weighed, thoroughly ground in an agate mortar and pestle, and heated in a muffle furnace at 1250°C for a period of 24 h. The rate of heating to the dwell temperature was 100°C h−1, while the rate of cooling after dwelling was 50°C h−1. Prior to weighing, the La2O3 reagent had been dried overnight in a muffle furnace at 800°C.
For the preliminary characterization by in-house powder X-ray diffraction (XRD), the
samples were finely ground and mounted on to a thin-film sample holder, to be analyzed
on a Stoe Stadi diffractometer, in transmission geometry with Co Kα1 radiation, equipped with a Ge monochromator and a DECTRIS MYTHEN 1K detector. Powder
XRD data were collected at room temperature (∼293 K) on beamline P02.1 (PETRA III)
with an energy of approximately 60 keV and λ = 0.2073 Å (Dippel et al., 2015). Data were acquired on a Perkin Elmer XRD1621 CN3-EHS (200 µm × 200 µm pixel size,
2048 × 2048 pixel area) area detector and integrated using the Fit2D program (Hammersley et al., 1996
). Powder XRD data were analyzed with the using the GSAS EXPGUI program (Larson & Von Dreele, 2004
; Toby, 2001
).
X-ray absorption spectroscopy (XAS) measurements containing both X-ray absorption
near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) were
performed in fluorescence mode at the Ni K-edge (8.333 keV) at the BAMline (Buzanich et al., 2023), located at BESSY II (Berlin, Germany). The incident energy was tuned by a double-crystal
monochromator in a Si(111) arrangement (ΔE/E = 2 × 10−4). A 5 cm-long filled with nitrogen was used to measure the I0 signal (before the sample). The beam size was 4 mm (horizontal) × 1 mm (vertical).
A four-element silicon drift detector was used to collect the fluorescence signal
in backscattered mode, as described by Buzanich et al. (2023
). The measurement protocol was: 10 eV steps until 20 eV before the edge, followed
by 0.25 eV steps until 20 eV above the edge and 2 eV steps until 200 eV above the
edge. From then on equidistant k-steps were taken (every 0.06 Å) until 16 Å. The data evaluation and treatment were
performed by using the ATHENA program from the DEMETER (Ravel & Newville, 2005
) package. The signal was Fourier transformed, by convoluting a Hanning-type window with the signal
in k-space between 2 and 14 Å−1, with tapering parameter dk = 2.
The temperature and field dependence of the direct current magnetization of both samples were measured using a Quantum Design SQUID MPMS. The powder samples were contained in size #4 gel capsules, mounted inside straws, and attached to a standard sample stick for insertion into the device. Temperature dependence of the magnetization was collected in an applied magnetic field of 1000 Oe following both field cooled (FC) and zero field cooled (ZFC) protocols in the temperature range of 2 to 350 K. Field dependent measurements were collected at 2 K, starting from a virginal ZFC state, in the applied field range of ±50 kOe. No corrections to the data for the diamagnetism of the sample holder were necessary given the magnitude of the response.
3. Results and discussion
Both samples crystallize in rhombohedral with an overall similar to a quadrupled hexagonal perovskite (Nguyen & Cava, 2021
). The primary difference is that the trimer of face-sharing octahedra normally found
in such a hexagonal perovskite instead contains an ordered vacancy in the center of
this trimer. The location of these sites is highlighted in Fig. 1
. The severed trimers are linked by corner-sharing connections to NiO6 octahedra. Much like the more typical hexagonal perovskites, both the face-sharing
columns and the linking octahedra are arranged in a triangular layout when viewed
down the c axis, which has lent hexagonal perovskites opportunities to serve as platforms for
low-dimensional and frustrated magnetism. The distance separating the nearest-neighbor
Ni ions is equivalent to the a unit-cell parameter in each material. However, notably, there is no direct connection
via shared ligands between neighboring NiO6 octahedra. Therefore, while the severed connectivity between the triangular planes
weakens potential out-of-plane exchange interactions, the exchange mechanisms within
the plane are also longer ranged and, therefore, of marginal strength. The consideration
of a direct exchange between the nickel ions as a potential mechanism is supplemented
by superexchange pathways which take into account the neighboring chemical scaffolding.
The bonding angle considering a pathway from Ni through W to the nearest Ni is just
shy of 90°, meanwhile, there exists the possibility for exchange to proceed via a
Ni–O–O–Ni pathway. Interestingly, it appears that the comparison of Ba2La2NiW2O12 and nearly isostructural Ba2La2NiTe2O12 directly probes these pathways. While Te6+ has a full d shell, participation in superexchange is precluded, and the remaining mechanism of
Ni–O–O–Ni lends an AFM exchange and resultant properties. Meanwhile, Ba2La2NiW2O12 has an empty d shell in the chemical scaffolding in W6+. Apparently, the availability of these orbitals for participation in a super-superexchange
mechanism is sufficient to overtake the AFM Ni–O–O–Ni mechanism, which likely persists.
The nearly 90° exchange pathway through W yields an FM exchange, much like what is
seen in the Goodenough–Kanamori rules (Goodenough, 1955
; Kanamori, 1959
) of simpler directly linked polyhedra. Interestingly, it is highly rational that
both mechanisms should be sensitive to any distortions or rotations of the octahedra
and resulting oxygen position.
![]() |
Figure 1 Representation of the crystal structure of Sr2La2NiW2O12 viewed along the a axis, highlighting the ordered cation vacancies (left), and a cross sectional perovskite-like slab viewed along the c axis showing the triangular arrangement of magnetic Ni ions (bottom right). This figure was drawn using the VESTA (Momma & Izumi, 2011 ![]() |
The and numerically in Table 1
. Two structural models have been proposed in the literature for similar materials
with space groups
and
(Saito et al., 2019
), including a recent comparison and assignment of
for Sr2La2NiW2O12 and Ba2La2NiW2O12 on the basis of neutron diffraction (Yu et al., 2023
). The primary difference between the two structural models is that the
model includes an out-of-phase rotation between neighboring corner-connected octahedra
within the perovskite-like slabs as can be seen in Fig. 1
, whereas the
model does not (see supporting information, Fig. S1
). While neutron diffraction is more sensitive to the differences in these structural
models as they primarily involve oxygen positions, there is a statistically significant
difference in the fitting of the synchrotron XRD patterns favoring the octahedral
tilt model associated with
, which is consistent with the previous report (Yu et al., 2023
). The refined parameters of both structural models for both materials are given in
Table 1
for direct comparison.
|
![]() |
Figure 2 Synchrotron XRD patterns collected at room temperature (∼293 K) of (a) Ba2La2NiW2O12 and (b) Sr2La2NiW2O12. The black symbols, red curve and blue curve correspond to the observed data, calculated pattern and difference curve, respectively. Black vertical bars (top) refer to Bragg angles of the main phase while the secondary ones below refer to (a) BaWO4 and La2O3 and (b) SrWO4. |
The structural impact of the cation substitution can be clearly seen by comparing
the structural models of the two materials. The substitution of smaller Sr2+ for Ba2+ creates chemical pressure by compressing the material to alleviate potential underbonding
of the relatively smaller cation. This can be seen in the unit-cell parameters and
unit-cell volume, which are noticeably reduced. Important effects of this compression
include the reduced distance between neighboring Ni2+ ions and the change in bonding angles implicated in the superexchange mechanisms
previously described. In order to verify the accuracy of the bond lengths and angles
of importance, it is instructive to compare directly to the neutron diffraction results
which can be presumed to more accurately determine the oxygen positions. In Ba2La2NiW2O12 and Sr2La2NiW2O12, respectively, the Ni—O2 bond lengths are given as 2.064 (4) Å and 2.051 (2) Å, the
W—O2 bond lengths as 2.009 (6) Å and 2.004 (2) Å, and ∠Ni—O2—O2 bond angles as 121.50 (5)°
and 120.62 (4)° (Yu et al., 2023). While these values are qualitatively similar to those refined and presented in
Table 1
in the present work, the based on synchrotron X-ray data places the O2 anions closer to W. Presuming a higher
precision of the oxygen position refined from neutron data, this results in a slight
distortion of the octahedra and bond angles. Meanwhile, the a unit-cell parameters of 5.66126 (9) Å and 5.59654 (5) Å and c unit-cell parameters of 27.35363 (3) Å and 26.58389 (1) Å given for Ba2La2NiW2O12 and Sr2La2NiW2O12, respectively (Yu et al., 2023
), compare very closely to the refined values given in Table 1
.
Several impurities exist in the samples which could be accounted for in the 2La2NiW2O12 sample contains 4.24 (9)% of SrWO4 by weight fraction, while the Ba2La2NiW2O12 sample contains 5.99 (11)% BaWO4 and 0.42 (3)% La2O3. As the impurities determined were nonmagnetic, they were not considered detrimental to subsequent magnetic characterizations after attempts to purify the samples by revised synthesis were not entirely successful.
process. The SrThe assumption that the magnetic Ni ions were in the 2+ K-edge (8.333 keV) as shown in Fig. 3. Standards used in the measurement for comparison purposes were a Ni metal foil and
NiO. As shown in the inset of Fig. 3
(a), the position of the edge for both samples is directly beneath the signal from the
Ni2+ standard, signifying a strong agreement with the assumption of the nominal Furthermore, the components of the data were able to be analyzed to produce pair correlations corresponding
to the local structure radiating from Ni centers. From the basis of the refined averaged
tentative assignments of the pair distances to neighboring species could be made.
The similarity of the crystal structures is immediately evident in the distribution
of the peaks of the two samples. The relatively small change in unit-cell parameters
makes little impact on the curves, yet in this data, there is the possibility of checking
for cation disorder, namely, that the smaller Sr2+ may yield antisite disorder with La3+ whereas Ba2+ does not seem to. We can observe a similar radial distribution of the peaks between
both samples, even at higher radial distances. Noteworthy are the peaks at ∼3.8 Å
and ∼5.8 Å, which can arise from Ni–Sr and Ni–Ba scattering paths, respectively. The
magnitude in the Ni–Ba case is higher than Ni–Sr, due to stronger scattering from
Ba than from Sr. In addition, if there is a distortion prone to happen in the case
of Sr, this would produce a lower magnitude in the scattering paths at those distances.
![]() |
Figure 3 (a) Normalized data measured at room temperature near the Ni K-edges of Ba2La2NiW2O12, Sr2La2NiW2O12, standard Ni0 foil, and standard Ni2+O. The inset displays a close up of the edge position. (b) The Fourier transformed component, with peaks corresponding to distances from Ni to neighboring pairs, are labeled in the figure. |
Having established these details, we now turn to examine the magnetic behavior of
the samples. Both samples have an apparently FM ground state as witnessed in their
low-temperature hysteretic field dependence, as shown in Figs. 4(a) and 4
(b). Considering the given Ni2+ the preponderance of Ni2+O6 octahedra in the literature establish a high-spin d8 S = 1 as the most reasonable expectation. Indeed, the saturation magnetization of both
compounds is very nearly the ideal 2 μB per Ni2+ with 1.87 μB and 1.93 μB in Ba2La2NiW2O12 and Sr2La2NiW2O12, respectively. In light of the presence of approximately 6% and 4% of nonmagnetic
impurities in the two samples, a correction accounting for the precise moles of magnetic
species would bring these two numbers even closer together and even closer to the
nominal value of 2 μB. Given the proximity of these values to the nominal value, interpretations of the
ground state as anything more complex than a trivial collinear ferromagnet can be
considered unreasonable. Both materials are soft with low coercive fields, and with Sr2La2NiW2O12 being softer than Ba2La2NiW2O12.
![]() |
Figure 4 The field dependence of the magnetization of (a) Ba2La2NiW2O12 and (b) Sr2La2NiW2O12 at 2 K, the temperature dependence of the magnetization of (c) Ba2La2NiW2O12 and (d) Sr2La2NiW2O12 with FC conditions (red) and ZFC conditions (blue) plotted against the left axis and with the inverse of the FC dataset (black) plotted against the right axis with a fitting described in the main text, and (e) displays the comparison of the low-temperature FC data of both compounds with the derivative of both plotted in the inset. |
The temperature dependence of the magnetization reveals FM transitions in both materials
at low temperatures. The temperatures of these transitions can be best assigned on
the basis of the derivative of the (e). TC lies just above 6 K and 4 K in Ba2La2NiW2O12 and Sr2La2NiW2O12, respectively, within resolution of the temperature spacings measured. These values
agree are consistent with those previously reported (Yu et al., 2023
) on the basis of several methods. The higher temperature portion of both data sets
adheres to a well behaved Curie–Weiss law, as shown in Figs. 4
(c) and 4
(d). The effective moments of both samples are similar with 3.08 μB and 3.00 μB for Ba2La2NiW2O12 and Sr2La2NiW2O12, respectively. These values can be compared to a spin only effective moment of 2.83 μB, with a positive orbital contribution typical of a d8 configuration. The Weiss temperatures were +5.83 K and +5.40 K for Ba2La2NiW2O12 and Sr2La2NiW2O12, respectively, highlighting the presence of FM interactions. The corresponding literature
values reported for Ba2La2NiW2O12 by Rawl, Lee et al. (2017
) were 3.19 μB for the effective moment, +25.5 K for the Weiss temperature, and with a TC value of 6.2 K while those reported by Yu et al. (2017
) for Ba2La2NiW2O12 and Sr2La2NiW2O12, respectively, are effective moments of 3.17 μB and 3.13 μB, Weiss temperatures of 7.4 K and 8.4 K, and TC values of 4.3 and 4.8 K.
The results, combined, indicate that the substitution of Sr for Ba effectively applies chemical pressure to the system, reducing the unit-cell parameters and twisting bond angles as a result. The effect of these structural changes on the magnetism are to lower the TC by a considerable degree, on the relative low-temperature scale. While naively, one may expect that the chemical pressure serves to bring the Ni ions closer together, which it does, and to enhance the exchange interactions as a result. This would be true if direct exchange were the responsible mechanism. However, it is clear from the change in the sign of the exchange between Ba2La2NiW2O12 and Ba2La2NiTe2O12, that direct exchange is not responsible. Therefore, the bending of the bond angles, and its implications for the longer-range indirect exchange mechanisms must be the cause. The reduced TC can then be considered as weakening of the FM exchange as a result of the less ideal bond angles, it can be considered as a strengthening of the competing AFM Ni–O–O–Ni mechanism, which manifests in the ground state of Ba2La2NiTe2O12, or as a combination of the two effects.
Supporting information
Figure S1. DOI: https://doi.org/10.1107/S2052520624007091/dv5014sup2.pdf
contains datablocks SR2LA2NIW2O12_SYNCH4_publ, SR2LA2NIW2O12_SYNCH4_overall, SR2LA2NIW2O12_SYNCH4_phase_1, SR2LA2NIW2O12_SYNCH4_phase_2, SR2LA2NIW2O12_SYNCH4_phase_3, SR2LA2NIW2O12_SYNCH4_phase_4, SR2LA2NIW2O12_SYNCH4_phase_5, SR2LA2NIW2O12_SYNCH4_p_05. DOI:La2NiO12Sr2W2 | c = 26.5639 (6) Å |
Mr = 1071.44 | V = 719.56 (3) Å3 |
Trigonal, R3 | Z = 3 |
a = 5.59270 (8) Å |
x | y | z | Uiso*/Ueq | ||
SR1 | 0.0 | 0.0 | 0.13430 (16) | 0.00534 | |
LA2 | 0.0 | 0.0 | 0.29173 (13) | 0.01114 | |
NI3 | 0.0 | 0.0 | 0.0 | 0.00656 | |
W4 | 0.0 | 0.0 | 0.42188 (10) | 0.00775 | |
O5 | 0.460 (9) | 0.467 (9) | 0.1238 (4) | 0.04418 | |
O6 | 0.422 (3) | 0.462 (3) | 0.2910 (5) | 0.07198 |
U11 | U22 | U33 | U12 | U13 | U23 | |
SR1 | 0.0023 (11) | 0.0023 (11) | 0.012 (3) | 0.0011 (6) | 0.0 | 0.0 |
LA2 | 0.0047 (16) | 0.0047 (16) | 0.024 (2) | 0.0024 (8) | 0.0 | 0.0 |
NI3 | 0.013 (5) | 0.013 (5) | −0.007 (5) | 0.007 (2) | 0.0 | 0.0 |
W4 | 0.0043 (9) | 0.0043 (9) | 0.0146 (14) | 0.0022 (5) | 0.0 | 0.0 |
O5 | 0.08 (3) | 0.07 (2) | 0.013 (12) | 0.06 (2) | −0.054 (16) | −0.032 (16) |
O6 | 0.062 (19) | 0.036 (15) | −0.008 (12) | −0.070 (9) | −0.011 (8) | 0.011 (8) |
SR1—SR1i | 3.658 (4) | LA2—O6x | 2.478 (16) |
SR1—SR1ii | 3.658 (4) | LA2—O6xi | 3.128 (16) |
SR1—SR1iii | 3.658 (4) | LA2—O6xvi | 2.665 (14) |
SR1—LA2 | 4.182 (7) | LA2—O6xx | 2.665 (14) |
SR1—LA2i | 4.061 (2) | LA2—O6xxi | 2.665 (14) |
SR1—LA2ii | 4.061 (2) | NI3—SR1 | 3.568 (4) |
SR1—LA2iii | 4.061 (2) | NI3—SR1xxii | 3.568 (4) |
SR1—NI3 | 3.568 (4) | NI3—LA2iv | 3.4128 (11) |
SR1—W4iv | 3.450 (2) | NI3—LA2v | 3.4128 (11) |
SR1—W4v | 3.450 (2) | NI3—LA2vi | 3.4128 (11) |
SR1—W4vi | 3.450 (2) | NI3—LA2i | 3.4128 (11) |
SR1—O5vii | 3.01 (5) | NI3—LA2ii | 3.4128 (11) |
SR1—O5 | 2.61 (5) | NI3—LA2iii | 3.4128 (11) |
SR1—O5viii | 2.61 (5) | NI3—O6iv | 2.153 (14) |
SR1—O5ix | 3.01 (5) | NI3—O6xxiii | 2.153 (14) |
SR1—O5x | 2.61 (5) | NI3—O6xxiv | 2.153 (14) |
SR1—O5xi | 3.01 (5) | NI3—O6iii | 2.153 (14) |
SR1—O5iii | 2.602 (12) | NI3—O6xii | 2.153 (14) |
SR1—O5xii | 2.602 (12) | NI3—O6xiii | 2.153 (14) |
SR1—O5xiii | 2.602 (12) | W4—SR1xvii | 3.450 (2) |
SR1—O6iii | 3.056 (14) | W4—SR1xviii | 3.450 (2) |
SR1—O6xii | 3.056 (14) | W4—SR1xix | 3.450 (2) |
SR1—O6xiii | 3.056 (14) | W4—LA2 | 3.457 (2) |
LA2—SR1 | 4.182 (7) | W4—LA2xiv | 3.461 (2) |
LA2—SR1i | 4.061 (2) | W4—LA2xv | 3.461 (2) |
LA2—SR1ii | 4.061 (2) | W4—LA2xvi | 3.461 (2) |
LA2—SR1iii | 4.061 (2) | W4—O5xvii | 1.845 (13) |
LA2—LA2xiv | 3.913 (4) | W4—O5xxv | 1.845 (13) |
LA2—LA2xv | 3.913 (4) | W4—O5xxvi | 1.845 (13) |
LA2—LA2xvi | 3.913 (4) | W4—O6xvi | 1.906 (13) |
LA2—NI3xvii | 3.4128 (11) | W4—O6xx | 1.906 (13) |
LA2—NI3xviii | 3.4128 (11) | W4—O6xxi | 1.906 (13) |
LA2—NI3xix | 3.4128 (11) | O5—SR1 | 2.61 (5) |
LA2—W4 | 3.457 (2) | O5—SR1xxvii | 3.01 (5) |
LA2—W4xiv | 3.461 (2) | O5—SR1iii | 2.602 (12) |
LA2—W4xv | 3.461 (2) | O5—LA2iii | 2.745 (14) |
LA2—W4xvi | 3.461 (2) | O5—W4vi | 1.845 (13) |
LA2—O5iii | 2.745 (14) | O6—SR1iii | 3.056 (14) |
LA2—O5xii | 2.745 (14) | O6—LA2 | 2.478 (16) |
LA2—O5xiii | 2.745 (14) | O6—LA2xxvii | 3.128 (16) |
LA2—O6vii | 3.128 (16) | O6—LA2xvi | 2.665 (14) |
LA2—O6 | 2.478 (16) | O6—NI3xix | 2.153 (14) |
LA2—O6viii | 2.478 (16) | O6—W4xvi | 1.906 (13) |
LA2—O6ix | 3.128 (16) | ||
SR1i—SR1—SR1ii | 99.71 (15) | O5x—SR1—O5xi | 168.4 (5) |
SR1i—SR1—SR1iii | 99.71 (15) | O5x—SR1—O5iii | 64.5 (9) |
SR1i—SR1—W4iv | 75.674 (19) | O5x—SR1—O5xii | 131.7 (8) |
SR1i—SR1—W4v | 75.674 (19) | O5x—SR1—O5xiii | 90.8 (10) |
SR1i—SR1—W4vi | 172.6 (2) | O5xi—SR1—O5iii | 125.1 (8) |
SR1i—SR1—O5vii | 44.6 (2) | O5xi—SR1—O5xii | 58.8 (8) |
SR1i—SR1—O5 | 144.8 (3) | O5xi—SR1—O5xiii | 99.1 (10) |
SR1i—SR1—O5viii | 92.2 (3) | O5iii—SR1—O5xii | 67.3 (5) |
SR1i—SR1—O5ix | 91.9 (3) | O5iii—SR1—O5xiii | 67.3 (5) |
SR1i—SR1—O5x | 45.3 (3) | O5xii—SR1—O5xiii | 67.3 (5) |
SR1i—SR1—O5xi | 144.1 (3) | O5iii—LA2—O5xii | 63.4 (4) |
SR1i—SR1—O5iii | 54.4 (11) | O5iii—LA2—O5xiii | 63.4 (4) |
SR1i—SR1—O5xii | 101.5 (4) | O5iii—LA2—O6 | 88.1 (11) |
SR1i—SR1—O5xiii | 45.5 (11) | O5iii—LA2—O6viii | 122.1 (7) |
SR1ii—SR1—SR1iii | 99.71 (15) | O5iii—LA2—O6x | 58.9 (6) |
SR1ii—SR1—W4iv | 75.674 (19) | O5iii—LA2—O6xvi | 167.8 (9) |
SR1ii—SR1—W4v | 172.6 (2) | O5iii—LA2—O6xx | 127.4 (7) |
SR1ii—SR1—W4vi | 75.674 (19) | O5iii—LA2—O6xxi | 114.3 (6) |
SR1ii—SR1—O5vii | 91.9 (3) | O5xii—LA2—O5xiii | 63.4 (4) |
SR1ii—SR1—O5 | 92.2 (3) | O5xii—LA2—O6 | 58.9 (6) |
SR1ii—SR1—O5viii | 45.3 (3) | O5xii—LA2—O6viii | 88.1 (11) |
SR1ii—SR1—O5ix | 144.1 (3) | O5xii—LA2—O6x | 122.1 (7) |
SR1ii—SR1—O5x | 144.8 (3) | O5xii—LA2—O6xvi | 114.3 (6) |
SR1ii—SR1—O5xi | 44.6 (2) | O5xii—LA2—O6xx | 167.8 (9) |
SR1ii—SR1—O5iii | 101.5 (4) | O5xii—LA2—O6xxi | 127.4 (7) |
SR1ii—SR1—O5xii | 45.5 (11) | O5xiii—LA2—O6 | 122.1 (7) |
SR1ii—SR1—O5xiii | 54.4 (11) | O5xiii—LA2—O6viii | 58.9 (6) |
SR1iii—SR1—W4iv | 172.6 (2) | O5xiii—LA2—O6x | 88.1 (11) |
SR1iii—SR1—W4v | 75.674 (19) | O5xiii—LA2—O6xvi | 127.4 (7) |
SR1iii—SR1—W4vi | 75.674 (19) | O5xiii—LA2—O6xx | 114.3 (6) |
SR1iii—SR1—O5vii | 144.1 (3) | O5xiii—LA2—O6xxi | 167.8 (9) |
SR1iii—SR1—O5 | 45.3 (3) | O6—LA2—O6viii | 119.994 (8) |
SR1iii—SR1—O5viii | 144.8 (3) | O6—LA2—O6x | 119.994 (8) |
SR1iii—SR1—O5ix | 44.6 (2) | O6—LA2—O6xvi | 81.0 (5) |
SR1iii—SR1—O5x | 92.2 (3) | O6—LA2—O6xx | 122.8 (3) |
SR1iii—SR1—O5xi | 91.9 (3) | O6—LA2—O6xxi | 68.7 (5) |
SR1iii—SR1—O5iii | 45.5 (11) | O6viii—LA2—O6x | 119.994 (8) |
SR1iii—SR1—O5xii | 54.4 (11) | O6viii—LA2—O6xvi | 68.7 (5) |
SR1iii—SR1—O5xiii | 101.5 (4) | O6viii—LA2—O6xx | 81.0 (5) |
W4iv—SR1—W4v | 108.29 (10) | O6viii—LA2—O6xxi | 122.8 (3) |
W4iv—SR1—W4vi | 108.29 (10) | O6x—LA2—O6xvi | 122.8 (3) |
W4iv—SR1—O5vii | 32.3 (2) | O6x—LA2—O6xx | 68.7 (5) |
W4iv—SR1—O5 | 139.6 (3) | O6x—LA2—O6xxi | 81.0 (5) |
W4iv—SR1—O5viii | 31.8 (3) | O6xvi—LA2—O6xx | 56.6 (5) |
W4iv—SR1—O5ix | 140.2 (3) | O6xvi—LA2—O6xxi | 56.6 (5) |
W4iv—SR1—O5x | 88.6 (3) | O6xx—LA2—O6xxi | 56.6 (5) |
W4iv—SR1—O5xi | 88.8 (3) | SR1xvii—W4—SR1xviii | 108.29 (10) |
W4iv—SR1—O5iii | 129.2 (11) | SR1xvii—W4—SR1xix | 108.29 (10) |
W4iv—SR1—O5xii | 120.3 (11) | SR1xvii—W4—O5xvii | 48.1 (15) |
W4iv—SR1—O5xiii | 71.1 (3) | SR1xvii—W4—O5xxv | 128.4 (5) |
W4v—SR1—W4vi | 108.29 (10) | SR1xvii—W4—O5xxvi | 60.7 (15) |
W4v—SR1—O5vii | 88.8 (3) | SR1xvii—W4—O6xvi | 135.6 (5) |
W4v—SR1—O5 | 88.6 (3) | SR1xvii—W4—O6xx | 61.9 (4) |
W4v—SR1—O5viii | 139.6 (3) | SR1xvii—W4—O6xxi | 115.9 (5) |
W4v—SR1—O5ix | 32.3 (2) | SR1xviii—W4—SR1xix | 108.29 (10) |
W4v—SR1—O5x | 31.8 (3) | SR1xviii—W4—O5xvii | 128.4 (5) |
W4v—SR1—O5xi | 140.2 (3) | SR1xviii—W4—O5xxv | 60.7 (15) |
W4v—SR1—O5iii | 71.1 (3) | SR1xviii—W4—O5xxvi | 48.1 (15) |
W4v—SR1—O5xii | 129.2 (11) | SR1xviii—W4—O6xvi | 61.9 (4) |
W4v—SR1—O5xiii | 120.3 (11) | SR1xviii—W4—O6xx | 115.9 (5) |
W4vi—SR1—O5vii | 140.2 (3) | SR1xviii—W4—O6xxi | 135.6 (5) |
W4vi—SR1—O5 | 31.8 (3) | SR1xix—W4—O5xvii | 60.7 (15) |
W4vi—SR1—O5viii | 88.6 (3) | SR1xix—W4—O5xxv | 48.1 (15) |
W4vi—SR1—O5ix | 88.8 (3) | SR1xix—W4—O5xxvi | 128.4 (5) |
W4vi—SR1—O5x | 139.6 (3) | SR1xix—W4—O6xvi | 115.9 (5) |
W4vi—SR1—O5xi | 32.3 (2) | SR1xix—W4—O6xx | 135.6 (5) |
W4vi—SR1—O5iii | 120.3 (11) | SR1xix—W4—O6xxi | 61.9 (4) |
W4vi—SR1—O5xii | 71.1 (3) | O5xvii—W4—O5xxv | 96.6 (6) |
W4vi—SR1—O5xiii | 129.2 (11) | O5xvii—W4—O5xxvi | 96.6 (6) |
O5vii—SR1—O5 | 168.4 (5) | O5xvii—W4—O6xvi | 169.4 (9) |
O5vii—SR1—O5viii | 58.1 (6) | O5xvii—W4—O6xx | 93.0 (13) |
O5vii—SR1—O5ix | 119.15 (8) | O5xvii—W4—O6xxi | 86.7 (11) |
O5vii—SR1—O5x | 61.2 (6) | O5xxv—W4—O5xxvi | 96.6 (6) |
O5vii—SR1—O5xi | 119.15 (8) | O5xxv—W4—O6xvi | 86.7 (11) |
O5vii—SR1—O5iii | 99.1 (10) | O5xxv—W4—O6xx | 169.4 (9) |
O5vii—SR1—O5xii | 125.1 (8) | O5xxv—W4—O6xxi | 93.0 (13) |
O5vii—SR1—O5xiii | 58.8 (8) | O5xxvi—W4—O6xvi | 93.0 (13) |
O5—SR1—O5viii | 118.86 (10) | O5xxvi—W4—O6xx | 86.7 (11) |
O5—SR1—O5ix | 61.2 (6) | O5xxvi—W4—O6xxi | 169.4 (9) |
O5—SR1—O5x | 118.86 (10) | O6xvi—W4—O6xx | 83.0 (7) |
O5—SR1—O5xi | 58.1 (6) | O6xvi—W4—O6xxi | 83.0 (7) |
O5—SR1—O5iii | 90.8 (10) | O6xx—W4—O6xxi | 83.0 (7) |
O5—SR1—O5xii | 64.5 (9) | SR1—O5—SR1xxvii | 168.4 (5) |
O5—SR1—O5xiii | 131.7 (8) | SR1—O5—SR1iii | 89.2 (10) |
O5viii—SR1—O5ix | 168.4 (5) | SR1—O5—LA2iii | 98.7 (11) |
O5viii—SR1—O5x | 118.86 (10) | SR1—O5—W4vi | 100.2 (16) |
O5viii—SR1—O5xi | 61.2 (6) | SR1xxvii—O5—SR1iii | 80.9 (10) |
O5viii—SR1—O5iii | 131.7 (8) | SR1xxvii—O5—LA2iii | 89.6 (11) |
O5viii—SR1—O5xii | 90.8 (10) | SR1xxvii—O5—W4vi | 87.0 (16) |
O5viii—SR1—O5xiii | 64.5 (9) | SR1iii—O5—LA2iii | 102.9 (5) |
O5ix—SR1—O5x | 58.1 (6) | SR1iii—O5—W4vi | 157.5 (14) |
O5ix—SR1—O5xi | 119.15 (8) | LA2iii—O5—W4vi | 95.9 (5) |
O5ix—SR1—O5iii | 58.8 (8) | LA2—O6—LA2xvi | 99.0 (5) |
O5ix—SR1—O5xii | 99.1 (10) | LA2—O6—W4xvi | 103.5 (6) |
O5ix—SR1—O5xiii | 125.1 (8) | LA2xvi—O6—W4xvi | 96.9 (6) |
Symmetry codes: (i) −x−5/3, −y−4/3, −z−1/3; (ii) −x−5/3, −y−1/3, −z−1/3; (iii) −x−2/3, −y−1/3, −z−1/3; (iv) x−2/3, y−1/3, z−1/3; (v) x+1/3, y−1/3, z−1/3; (vi) x+1/3, y+2/3, z−1/3; (vii) x−1, y−1, z; (viii) −y, x−y, z; (ix) −y+1, x−y, z; (x) y−x, −x, z; (xi) y−x, −x+1, z; (xii) y−5/3, y−x−1/3, −z−1/3; (xiii) x−y−5/3, x−4/3, −z−1/3; (xiv) −x−4/3, −y−5/3, −z−2/3; (xv) −x−1/3, −y−5/3, −z−2/3; (xvi) −x−1/3, −y−2/3, −z−2/3; (xvii) x−1/3, y−2/3, z+1/3; (xviii) x−1/3, y+1/3, z+1/3; (xix) x+2/3, y+1/3, z+1/3; (xx) y−4/3, y−x−5/3, −z−2/3; (xxi) x−y−1/3, x−5/3, −z−2/3; (xxii) −x, −y, −z; (xxiii) −y+1/3, x−y−1/3, z−1/3; (xxiv) y−x+1/3, −x+2/3, z−1/3; (xxv) −y+2/3, x−y+1/3, z+1/3; (xxvi) y−x−1/3, −x+1/3, z+1/3; (xxvii) x+1, y+1, z. |
La2O3 | c = 6.1345 (8) Å |
Mr = 325.81 | V = 82.55 (1) Å3 |
Hexagonal, P63/mmc | Z = 2 |
a = 3.9418 (3) Å |
x | y | z | Uiso*/Ueq | ||
La1 | 0.3333 | 0.6667 | 0.22956 | 0.00263* | |
O1 | 0.0 | 0.0 | 0.0 | 0.01* | |
O2 | 0.3333 | 0.6667 | 0.6421 | 0.01* |
La1—La1i | 3.9418 (3) | La1—O1xii | 2.8164 (2) |
La1—La1ii | 3.9418 (3) | La1—O2 | 2.5307 (3) |
La1—La1iii | 3.9418 (3) | La1—O2vii | 2.3383 (2) |
La1—La1iv | 3.9418 (3) | La1—O2ix | 2.3383 (2) |
La1—La1v | 3.9418 (3) | La1—O2xi | 2.3380 (2) |
La1—La1vi | 3.9418 (3) | La1—O2xiv | 2.4079 (2) |
La1—La1vii | 3.8194 (3) | La1—O2xvi | 2.4086 (2) |
La1—La1viii | 3.8194 (3) | La1—O2xviii | 2.4079 (2) |
La1—La1ix | 3.8194 (3) | La1—O2xxii | 2.2799 (3) |
La1—La1x | 3.8194 (3) | O1—La1i | 2.6764 (2) |
La1—La1xi | 3.8192 (3) | O1—La1iii | 2.6761 (2) |
La1—La1xii | 3.8192 (3) | O1—La1 | 2.6764 (2) |
La1—La1xiii | 3.6209 (3) | O1—La1xxvii | 2.8164 (2) |
La1—La1xiv | 4.0234 (4) | O1—La1vii | 2.8164 (2) |
La1—La1xv | 3.6213 (3) | O1—La1ix | 2.8161 (2) |
La1—La1xvi | 4.0237 (4) | O1—La1xxviii | 2.6764 (2) |
La1—La1xvii | 3.6209 (3) | O1—La1xiii | 2.6761 (2) |
La1—La1xviii | 4.0234 (4) | O1—La1xv | 2.6764 (2) |
La1—La1xix | 3.9496 (3) | O1—La1xix | 2.8161 (2) |
La1—La1xx | 3.9494 (3) | O1—La1xxi | 2.8164 (2) |
La1—La1xxi | 3.9500 (3) | O1—La1xxii | 2.8164 (2) |
La1—La1xxii | 0.2508 (1) | O2—La1 | 2.5307 (3) |
La1—La1xxiii | 3.9496 (3) | O2—La1viii | 2.3383 (2) |
La1—La1xxiv | 3.9502 (3) | O2—La1x | 2.3383 (2) |
La1—La1xxv | 3.9500 (3) | O2—La1xii | 2.3380 (2) |
La1—O1 | 2.6764 (2) | O2—La1xiv | 2.4079 (2) |
La1—O1iv | 2.6761 (2) | O2—La1xvi | 2.4086 (2) |
La1—O1vi | 2.6764 (2) | O2—La1xviii | 2.4079 (2) |
La1—O1viii | 2.8164 (2) | O2—La1xxii | 2.2799 (3) |
La1—O1xxvi | 2.8161 (2) | O2—O2xxix | 1.3238 (2) |
La1xiii—La1—La1xv | 65.952 (7) | O2—La1—O2ix | 103.2645 (19) |
La1xiii—La1—La1xvii | 65.957 (7) | O2—La1—O2xi | 103.2664 (19) |
La1xiii—La1—La1xxii | 141.141 (4) | O2—La1—O2xiv | 70.916 (3) |
La1xiii—La1—O1 | 47.427 (3) | O2—La1—O2xvi | 70.921 (3) |
La1xiii—La1—O1iv | 47.434 (3) | O2—La1—O2xviii | 70.916 (3) |
La1xiii—La1—O1vi | 97.190 (8) | O2—La1—O2xxii | 180.0 |
La1xiii—La1—O2 | 141.063 (4) | O2vii—La1—O2ix | 114.8907 (14) |
La1xiii—La1—O2vii | 37.799 (2) | O2vii—La1—O2xi | 114.9035 (14) |
La1xiii—La1—O2ix | 97.310 (4) | O2vii—La1—O2xiv | 32.349 (4) |
La1xiii—La1—O2xi | 97.322 (4) | O2vii—La1—O2xvi | 122.3343 (7) |
La1xiii—La1—O2xiv | 70.147 (7) | O2vii—La1—O2xviii | 122.3534 (7) |
La1xiii—La1—O2xvi | 123.4449 (12) | O2vii—La1—O2xxii | 76.7441 (19) |
La1xiii—La1—O2xviii | 123.4673 (12) | O2ix—La1—O2xi | 114.9035 (14) |
La1xiii—La1—O2xxii | 38.946 (4) | O2ix—La1—O2xiv | 122.3253 (7) |
La1xv—La1—La1xvii | 65.952 (7) | O2ix—La1—O2xvi | 32.343 (4) |
La1xv—La1—La1xxii | 140.977 (4) | O2ix—La1—O2xviii | 122.3347 (7) |
La1xv—La1—O1 | 47.427 (3) | O2ix—La1—O2xxii | 76.7269 (19) |
La1xv—La1—O1iv | 97.195 (8) | O2xi—La1—O2xiv | 122.3492 (7) |
La1xv—La1—O1vi | 47.427 (3) | O2xi—La1—O2xvi | 122.3395 (7) |
La1xv—La1—O2 | 141.055 (4) | O2xi—La1—O2xviii | 32.351 (4) |
La1xv—La1—O2vii | 97.320 (4) | O2xi—La1—O2xxii | 76.7336 (19) |
La1xv—La1—O2ix | 37.790 (2) | O2xiv—La1—O2xvi | 109.850 (3) |
La1xv—La1—O2xi | 97.321 (4) | O2xiv—La1—O2xviii | 109.872 (3) |
La1xv—La1—O2xiv | 123.4506 (12) | O2xiv—La1—O2xxii | 109.093 (3) |
La1xv—La1—O2xvi | 70.134 (7) | O2xvi—La1—O2xviii | 109.850 (3) |
La1xv—La1—O2xviii | 123.4506 (12) | O2xvi—La1—O2xxii | 109.070 (3) |
La1xv—La1—O2xxii | 38.937 (4) | O2xviii—La1—O2xxii | 109.084 (3) |
La1xvii—La1—La1xxii | 141.063 (4) | La1i—O1—La1iii | 94.860 (5) |
La1xvii—La1—O1 | 97.190 (8) | La1i—O1—La1 | 94.854 (5) |
La1xvii—La1—O1iv | 47.434 (3) | La1i—O1—La1xxviii | 85.146 (5) |
La1xvii—La1—O1vi | 47.427 (3) | La1i—O1—La1xiii | 85.140 (5) |
La1xvii—La1—O2 | 141.063 (4) | La1i—O1—La1xv | 180.0 |
La1xvii—La1—O2vii | 97.326 (4) | La1iii—O1—La1 | 94.860 (5) |
La1xvii—La1—O2ix | 97.315 (4) | La1iii—O1—La1xxviii | 85.140 (5) |
La1xvii—La1—O2xi | 37.797 (2) | La1iii—O1—La1xiii | 180.0 |
La1xvii—La1—O2xiv | 123.4673 (12) | La1iii—O1—La1xv | 85.140 (5) |
La1xvii—La1—O2xvi | 123.4449 (12) | La1—O1—La1xxviii | 180.0 |
La1xvii—La1—O2xviii | 70.147 (7) | La1—O1—La1xiii | 85.140 (5) |
La1xvii—La1—O2xxii | 38.937 (4) | La1—O1—La1xv | 85.146 (5) |
La1xxii—La1—O1 | 121.747 (4) | La1xxviii—O1—La1xiii | 94.860 (5) |
La1xxii—La1—O1iv | 121.829 (4) | La1xxviii—O1—La1xv | 94.854 (5) |
La1xxii—La1—O1vi | 121.669 (4) | La1xiii—O1—La1xv | 94.860 (5) |
La1xxii—La1—O2 | 0.0 | La1—O2—La1viii | 103.2645 (19) |
La1xxii—La1—O2vii | 103.3425 (19) | La1—O2—La1x | 103.2645 (19) |
La1xxii—La1—O2ix | 103.1865 (19) | La1—O2—La1xii | 103.2664 (19) |
La1xxii—La1—O2xi | 103.2664 (19) | La1—O2—La1xiv | 109.084 (3) |
La1xxii—La1—O2xiv | 70.994 (3) | La1—O2—La1xvi | 109.079 (3) |
La1xxii—La1—O2xvi | 70.843 (3) | La1—O2—La1xviii | 109.084 (3) |
La1xxii—La1—O2xviii | 70.916 (3) | La1—O2—La1xxii | 0.0 |
La1xxii—La1—O2xxii | 180.0 | La1—O2—O2xxix | 180.0 |
O1—La1—O1iv | 94.860 (5) | La1viii—O2—La1x | 114.8907 (14) |
O1—La1—O1vi | 94.854 (5) | La1viii—O2—La1xii | 114.9035 (14) |
O1—La1—O2 | 121.747 (4) | La1viii—O2—La1xiv | 5.8198 (7) |
O1—La1—O2vii | 57.6850 (7) | La1viii—O2—La1xvi | 112.6350 (19) |
O1—La1—O2ix | 57.6765 (7) | La1viii—O2—La1xviii | 112.650 (2) |
O1—La1—O2xi | 134.987 (6) | La1viii—O2—La1xxii | 103.2731 (19) |
O1—La1—O2xiv | 76.712 (4) | La1viii—O2—O2xxix | 76.7503 (19) |
O1—La1—O2xvi | 76.709 (4) | La1x—O2—La1xii | 114.9035 (14) |
O1—La1—O2xviii | 167.3373 (12) | La1x—O2—La1xiv | 112.6243 (19) |
O1—La1—O2xxii | 58.253 (4) | La1x—O2—La1xvi | 5.8145 (7) |
O1iv—La1—O1vi | 94.860 (5) | La1x—O2—La1xviii | 112.6328 (19) |
O1iv—La1—O2 | 121.751 (4) | La1x—O2—La1xxii | 103.2559 (19) |
O1iv—La1—O2vii | 57.6894 (7) | La1x—O2—O2xxix | 76.7207 (19) |
O1iv—La1—O2ix | 134.985 (6) | La1xii—O2—La1xiv | 112.645 (2) |
O1iv—La1—O2xi | 57.6843 (7) | La1xii—O2—La1xvi | 112.6384 (19) |
O1iv—La1—O2xiv | 76.725 (4) | La1xii—O2—La1xviii | 5.8179 (7) |
O1iv—La1—O2xvi | 167.3282 (12) | La1xii—O2—La1xxii | 103.2664 (19) |
O1iv—La1—O2xviii | 76.725 (4) | La1xii—O2—O2xxix | 76.7336 (19) |
O1iv—La1—O2xxii | 58.258 (4) | La1xiv—O2—La1xvi | 109.850 (3) |
O1vi—La1—O2 | 121.747 (4) | La1xiv—O2—La1xviii | 109.872 (3) |
O1vi—La1—O2vii | 134.988 (6) | La1xiv—O2—La1xxii | 109.093 (3) |
O1vi—La1—O2ix | 57.6850 (7) | La1xiv—O2—O2xxix | 70.931 (3) |
O1vi—La1—O2xi | 57.6882 (7) | La1xvi—O2—La1xviii | 109.850 (3) |
O1vi—La1—O2xiv | 167.3373 (12) | La1xvi—O2—La1xxii | 109.070 (3) |
O1vi—La1—O2xvi | 76.709 (4) | La1xvi—O2—O2xxix | 70.906 (3) |
O1vi—La1—O2xviii | 76.712 (4) | La1xviii—O2—La1xxii | 109.084 (3) |
O1vi—La1—O2xxii | 58.244 (4) | La1xviii—O2—O2xxix | 70.916 (3) |
O2—La1—O2vii | 103.2645 (19) | La1xxii—O2—O2xxix | 180.0 |
Symmetry codes: (i) x−1, y−1, z; (ii) x−1, y, z; (iii) x, y−1, z; (iv) x, y+1, z; (v) x+1, y, z; (vi) x+1, y+1, z; (vii) x−y, x, z−1/2; (viii) x−y, x, z+1/2; (ix) x−y+1, x, z−1/2; (x) x−y+1, x, z+1/2; (xi) x−y+1, x+1, z−1/2; (xii) x−y+1, x+1, z+1/2; (xiii) −x, −y+1, −z; (xiv) −x, −y+1, −z+1; (xv) −x+1, −y+1, −z; (xvi) −x+1, −y+1, −z+1; (xvii) −x+1, −y+2, −z; (xviii) −x+1, −y+2, −z+1; (xix) y−x−1, −x, −z+1/2; (xx) y−x−1, −x+1, −z+1/2; (xxi) y−x, −x, −z+1/2; (xxii) y−x, −x+1, −z+1/2; (xxiii) y−x, −x+2, −z+1/2; (xxiv) y−x+1, −x+1, −z+1/2; (xxv) y−x+1, −x+2, −z+1/2; (xxvi) x−y, x+1, z+1/2; (xxvii) x−y, x−1, z−1/2; (xxviii) −x, −y, −z; (xxix) y−x, −x+1, −z+3/2. |
OZn | c = 5.2062 (7) Å |
Mr = 81.38 | V = 47.68 (1) Å3 |
Hexagonal, P63mc | Z = 2 |
a = 3.2520 (3) Å |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.3333 | 0.6667 | 0.01069 | 0.013* | |
O1 | 0.3333 | 0.6667 | 0.37181 | 0.01* |
Zn1—O1 | 1.8801 (3) | O1—Zn1 | 1.8801 (3) |
Zn1—O1i | 2.0120 (2) | O1—Zn1iv | 2.0120 (2) |
Zn1—O1ii | 2.0120 (2) | O1—Zn1v | 2.0120 (2) |
Zn1—O1iii | 2.0118 (2) | O1—Zn1vi | 2.0118 (2) |
O1—Zn1—O1i | 111.060 (3) | Zn1—O1—Zn1iv | 111.060 (3) |
O1—Zn1—O1ii | 111.060 (3) | Zn1—O1—Zn1v | 111.060 (3) |
O1—Zn1—O1iii | 111.063 (3) | Zn1—O1—Zn1vi | 111.063 (3) |
O1i—Zn1—O1ii | 107.829 (3) | Zn1iv—O1—Zn1v | 107.829 (3) |
O1i—Zn1—O1iii | 107.839 (3) | Zn1iv—O1—Zn1vi | 107.839 (3) |
O1ii—Zn1—O1iii | 107.839 (3) | Zn1v—O1—Zn1vi | 107.839 (3) |
Symmetry codes: (i) x−y, x, z−1/2; (ii) x−y+1, x, z−1/2; (iii) x−y+1, x+1, z−1/2; (iv) x−y, x, z+1/2; (v) x−y+1, x, z+1/2; (vi) x−y+1, x+1, z+1/2. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
La1 | 0.0 | 0.0 | 0.0 | 0.00402* | 0.435 |
O1 | 0.0 | 0.5 | 0.5 | 0.003* | -0.152 |
La1—La1i | 3.9068 (4) | La1—O1i | 2.2556 (3) |
La1—La1ii | 3.9068 (4) | La1—O1v | 2.2556 (3) |
La1—La1iii | 3.9068 (4) | La1—O1ix | 2.2556 (3) |
La1—La1iv | 3.9068 (4) | La1—O1x | 2.2556 (3) |
La1—La1v | 3.9068 (4) | La1—O1xi | 2.2556 (3) |
La1—La1vi | 3.9068 (4) | La1—O1xii | 2.2556 (3) |
La1—La1vii | 3.9068 (4) | O1—La1iv | 2.2556 (3) |
La1—La1viii | 3.9068 (4) | O1—La1viii | 2.2556 (3) |
O1i—La1—O1v | 180.0 | O1v—La1—O1xii | 90.0 |
O1i—La1—O1ix | 90.0 | O1ix—La1—O1x | 180.0 |
O1i—La1—O1x | 90.0 | O1ix—La1—O1xi | 90.0 |
O1i—La1—O1xi | 90.0 | O1ix—La1—O1xii | 90.0 |
O1i—La1—O1xii | 90.0 | O1x—La1—O1xi | 90.0 |
O1v—La1—O1ix | 90.0 | O1x—La1—O1xii | 90.0 |
O1v—La1—O1x | 90.0 | O1xi—La1—O1xii | 180.0 |
O1v—La1—O1xi | 90.0 | La1iv—O1—La1viii | 180.0 |
Symmetry codes: (i) x−1/2, y−1/2, z−1/2; (ii) x−1/2, y−1/2, z+1/2; (iii) x−1/2, y+1/2, z−1/2; (iv) x−1/2, y+1/2, z+1/2; (v) x+1/2, y−1/2, z−1/2; (vi) x+1/2, y−1/2, z+1/2; (vii) x+1/2, y+1/2, z−1/2; (viii) x+1/2, y+1/2, z+1/2; (ix) z−1/2, x−1/2, y−1/2; (x) z−1/2, x+1/2, y−1/2; (xi) y−1/2, z−1/2, x−1/2; (xii) y−1/2, z−1/2, x+1/2. |
O4SrW | c = 11.948 (4) Å |
Mr = 335.47 | V = 350.11 (9) Å3 |
Tetragonal, I41/a | Z = 4 |
a = 5.4133 (8) Å |
x | y | z | Uiso*/Ueq | ||
SR1 | 0.0 | 0.25 | 0.625 | 0.09371* | |
W2 | 0.0 | 0.25 | 0.125 | 0.00322* | |
O3 | 0.2362 | 0.1395 | 0.0818 | 0.02* |
SR1—SR1i | 4.0309 (7) | SR1—O3xiv | 2.9158 (7) |
SR1—SR1ii | 4.0309 (7) | SR1—O3xv | 2.5983 (4) |
SR1—SR1iii | 4.0309 (7) | W2—SR1xvi | 3.8277 (5) |
SR1—SR1iv | 4.0309 (7) | W2—SR1xvii | 3.8277 (5) |
SR1—W2v | 3.8277 (5) | W2—SR1xviii | 3.8277 (5) |
SR1—W2vi | 3.8277 (5) | W2—SR1xix | 3.8277 (5) |
SR1—W2vii | 3.8277 (5) | W2—O3 | 1.5030 (2) |
SR1—W2viii | 3.8277 (5) | W2—O3xx | 1.5030 (2) |
SR1—O3vii | 2.5983 (4) | W2—O3xxi | 1.5030 (2) |
SR1—O3ix | 2.9158 (7) | W2—O3xxii | 1.5030 (2) |
SR1—O3x | 2.5983 (4) | O3—SR1xxiii | 2.9158 (7) |
SR1—O3xi | 2.9158 (7) | O3—SR1xviii | 2.5983 (4) |
SR1—O3xii | 2.5983 (4) | O3—W2 | 1.5030 (2) |
SR1—O3xiii | 2.9158 (7) | ||
SR1i—SR1—SR1ii | 84.362 (19) | O3vii—SR1—O3ix | 132.726 (5) |
SR1i—SR1—SR1iii | 123.307 (11) | O3vii—SR1—O3x | 92.2615 (15) |
SR1i—SR1—SR1iv | 123.307 (11) | O3vii—SR1—O3xxiv | 86.237 (5) |
SR1i—SR1—O3vii | 121.0805 (2) | O3vii—SR1—O3xii | 157.084 (7) |
SR1i—SR1—O3ix | 40.032 (9) | O3vii—SR1—O3xxv | 70.011 (12) |
SR1i—SR1—O3x | 113.433 (11) | O3vii—SR1—O3xiv | 74.275 (3) |
SR1i—SR1—O3xxiv | 107.402 (18) | O3vii—SR1—O3xxvi | 92.2615 (15) |
SR1i—SR1—O3xii | 77.183 (8) | O3ix—SR1—O3x | 74.275 (3) |
SR1i—SR1—O3xxv | 60.647 (14) | O3ix—SR1—O3xxiv | 135.895 (11) |
SR1i—SR1—O3xiv | 163.095 (3) | O3ix—SR1—O3xii | 70.011 (12) |
SR1i—SR1—O3xxvi | 46.205 (3) | O3ix—SR1—O3xxv | 64.143 (17) |
SR1ii—SR1—SR1iii | 123.307 (11) | O3ix—SR1—O3xiv | 135.895 (11) |
SR1ii—SR1—SR1iv | 123.307 (11) | O3ix—SR1—O3xxvi | 86.237 (5) |
SR1ii—SR1—O3vii | 77.183 (8) | O3x—SR1—O3xxiv | 132.726 (5) |
SR1ii—SR1—O3ix | 60.647 (14) | O3x—SR1—O3xii | 92.2615 (15) |
SR1ii—SR1—O3x | 46.205 (3) | O3x—SR1—O3xxv | 86.237 (5) |
SR1ii—SR1—O3xxiv | 163.095 (3) | O3x—SR1—O3xiv | 70.011 (12) |
SR1ii—SR1—O3xii | 121.0805 (2) | O3x—SR1—O3xxvi | 157.084 (7) |
SR1ii—SR1—O3xxv | 40.032 (9) | O3xxiv—SR1—O3xii | 74.275 (3) |
SR1ii—SR1—O3xiv | 107.402 (18) | O3xxiv—SR1—O3xxv | 135.895 (11) |
SR1ii—SR1—O3xxvi | 113.433 (11) | O3xxiv—SR1—O3xiv | 64.143 (17) |
SR1iii—SR1—SR1iv | 84.362 (19) | O3xxiv—SR1—O3xxvi | 70.011 (12) |
SR1iii—SR1—O3vii | 46.205 (3) | O3xii—SR1—O3xxv | 132.726 (5) |
SR1iii—SR1—O3ix | 163.095 (3) | O3xii—SR1—O3xiv | 86.237 (5) |
SR1iii—SR1—O3x | 121.0805 (2) | O3xii—SR1—O3xxvi | 92.2615 (15) |
SR1iii—SR1—O3xxiv | 40.032 (9) | O3xxv—SR1—O3xiv | 135.895 (11) |
SR1iii—SR1—O3xii | 113.433 (11) | O3xxv—SR1—O3xxvi | 74.275 (3) |
SR1iii—SR1—O3xxv | 107.402 (18) | O3xiv—SR1—O3xxvi | 132.726 (5) |
SR1iii—SR1—O3xiv | 60.647 (14) | O3—W2—O3xx | 96.773 (4) |
SR1iii—SR1—O3xxvi | 77.183 (8) | O3—W2—O3xxvii | 139.831 (12) |
SR1iv—SR1—O3vii | 113.433 (11) | O3—W2—O3xxviii | 96.773 (4) |
SR1iv—SR1—O3ix | 107.402 (18) | O3xx—W2—O3xxvii | 96.773 (4) |
SR1iv—SR1—O3x | 77.183 (8) | O3xx—W2—O3xxviii | 139.831 (12) |
SR1iv—SR1—O3xxiv | 60.647 (14) | O3xxvii—W2—O3xxviii | 96.773 (4) |
SR1iv—SR1—O3xii | 46.205 (3) | SR1xxiii—O3—SR1xviii | 93.763 (5) |
SR1iv—SR1—O3xxv | 163.095 (3) | SR1xxiii—O3—W2 | 128.7545 (14) |
SR1iv—SR1—O3xiv | 40.032 (9) | SR1xviii—O3—W2 | 136.242 (7) |
SR1iv—SR1—O3xxvi | 121.0805 (2) |
Symmetry codes: (i) −y−1/4, x+1/4, z+1/4; (ii) −y+3/4, x+1/4, z+1/4; (iii) y−1/4, −x−1/4, z−1/4; (iv) y−1/4, −x+3/4, z−1/4; (v) −x−1/2, −y, z+1/2; (vi) −x−1/2, −y+1, z+1/2; (vii) −x+1/2, −y, z+1/2; (viii) −x+1/2, −y+1, z+1/2; (ix) y−1/4, −x+3/4, z+3/4; (x) y+1/4, −x+3/4, −z+3/4; (xi) x−1/2, y, −z+1/2; (xii) x−1/2, y+1/2, z+1/2; (xiii) −y+1/4, x−1/4, z+3/4; (xiv) −x−1/2, −y−1/2, −z−1/2; (xv) −y−5/4, x−5/4, −z−1/4; (xvi) −x−1/2, −y, z−1/2; (xvii) −x−1/2, −y+1, z−1/2; (xviii) −x+1/2, −y, z−1/2; (xix) −x+1/2, −y+1, z−1/2; (xx) −y+1/4, x+1/4, −z+1/4; (xxi) −x, −y+1/2, z; (xxii) y−5/4, −x−3/4, −z−3/4; (xxiii) −y+3/4, x+1/4, z−3/4; (xxiv) x−1/2, y−1, −z+1/2; (xxv) −y−7/4, x−5/4, z−1/4; (xxvi) −y−1/4, x−1/4, −z+3/4; (xxvii) −x−2, −y−1/2, z−2; (xxviii) y−1/4, −x−3/4, −z−3/4. |
Acknowledgements
XAS experiments were performed at the BAMline at the BESSY-II storage ring (Helmholtz Center Berlin). We thank the Helmholtz-Zentrum Berlin für Materialien und Energie for the allocation of synchrotron radiation beamtime. We acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. Parts of this research were carried out at PETRA III and we would like to thank Ahmed Omar for assistance in using P02.1. Open access funding enabled and organized by Projekt DEAL.
Conflict of interest
The authors declare no competing interests.
Data availability
The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.
Funding information
This research was partly supported by the UKRATOP project funded by the Federal Ministry of Education and Research (BMBF) under reference 01DK18002 (to Anastasiia Smerechuk) partially supported by the Deutsche Forschungsgemeinschaft DFG through SFB 1143 (Project-Id 247310070 to Ryan Morrow, Sabine Wurmehl, Bernd Büchner). The following funding is acknowledged: Deutsche Forschungsgemeinschaft (grant No. 247310070); Bundesministerium für Bildung und Forschung (award No. 01DK18002).
References
Balents, L. (2010). Nature, 464, 199–208. Web of Science CrossRef CAS PubMed Google Scholar
Dippel, A.-C., Liermann, H.-P., Delitz, J. T., Walter, P., Schulte-Schrepping, H.,
Seeck, O. H. & Franz, H. (2015). J. Synchrotron Rad. 22, 675–687. Web of Science CrossRef CAS IUCr Journals Google Scholar
Doi, Y., Wakeshima, M., Tezuka, K., Shan, Y. J., Ohoyama, K., Lee, S., Torii, S.,
Kamiyama, T. & Hinatsu, Y. (2017). J. Phys. Condens. Matter, 29, 365802. CrossRef PubMed Google Scholar
Evans, H. A., Mao, L., Seshadri, R. & Cheetham, A. K. (2021). Annu. Rev. Mater. Res. 51, 351–380. CrossRef CAS Google Scholar
Goodenough, J. B. (1955). Phys. Rev. 100, 564–573. CrossRef CAS Web of Science Google Scholar
Guilherme Buzanich, A., Radtke, M., Yusenko, K. V., Stawski, T. M., Kulow, A., Cakir,
C. T., Röder, B., Naese, C., Britzke, R., Sintschuk, M. & Emmerling, F. (2023). J. Chem. Phys. 158, 244202. CrossRef PubMed Google Scholar
Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N. & Hausermann, D. (1996).
High Pressure Res. 14, 235–248. CrossRef Google Scholar
Herrmann, M. & Kemmler–Sack, S. (1980a). Z. Anorg. Allg. Chem. 469, 51–60. CrossRef CAS Google Scholar
Herrmann, M. & Kemmler–Sack, S. (1980b). Z. Anorg. Allg. Chem. 470, 113–117. CrossRef CAS Google Scholar
Herrmann, M. & Kemmler–Sack, S. (1981). Z. Anorg. Allg. Chem. 476, 115–125. CrossRef CAS Google Scholar
Kanamori, J. (1959). J. Phys. Chem. Solids, 10, 87–98. CrossRef CAS Web of Science Google Scholar
Kemmler-Sack, S. & Herrmann, M. (1980). Z. Anorg. Allg. Chem. 480, 171–180 Google Scholar
Kim, C., Kim, H.-S. & Park, J.-G. (2021). J. Phys. Condens. Matter, 34, 023001. CrossRef Google Scholar
Kim, C., Kim, S., Park, P., Kim, T., Jeong, J., Ohira-Kawamura, S., Murai, N., Nakajima,
K., Chernyshev, A. L., Mourigal, M., Kim, S. & Park, J. (2023). Nat. Phys. 19, 1624–1629. CrossRef CAS Google Scholar
Kojima, Y., Watanabe, M., Kurita, N., Tanaka, H., Matsuo, A., Kindo, K. & Avdeev,
M. (2018). Phys. Rev. B, 98, 174406. CrossRef Google Scholar
Larson, A. C. & Von Dreele, R. B. (2004). GSAS, Technical Report LAUR 86-748. Los
Alamos National Laboratory, NM, USA. Google Scholar
Liu, H. & Khaliullin, G. (2018). Phys. Rev. B, 97, 014407. CrossRef Google Scholar
Longo, J. M., Katz, L. & Ward, R. (1965). Inorg. Chem. 4, 235–241. CrossRef CAS Google Scholar
Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nguyen, L. T. & Cava, R. J. (2021). Chem. Rev. 121, 2935–2965. CrossRef CAS PubMed Google Scholar
Ravel, B. & Newville, M. (2005). J. Synchrotron Rad. 12, 537–541. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rawl, R., Ge, L., Agrawal, H., Kamiya, Y., Dela Cruz, C. R., Butch, N. P., Sun, X.
F., Lee, M., Choi, E. S., Oitmaa, J., Batista, C. D., Mourigal, M., Zhou, H. D. &
Ma, J. (2017). Phys. Rev. B, 95, 060412. CrossRef Google Scholar
Rawl, R., Ge, L., Lu, Z., Evenson, Z., Dela Cruz, C. R., Huang, Q., Lee, M., Choi,
E. S., Mourigal, M., Zhou, H. D. & Ma, J. (2019). Phys. Rev. Mater. 3, 054412. CrossRef Google Scholar
Rawl, R., Lee, M., Choi, E. S., Li, G., Chen, K. W., Baumbach, R., de la Cruz, C.
R., Ma, J. & Zhou, H. D. (2017). Phys. Rev. B, 95, 174438. CrossRef Google Scholar
Rother, H. J. & Kemmler-Sack, S. (1980). Z. Anorg. Allg. Chem. 465, 179–182. CrossRef CAS Google Scholar
Saito, M., Watanabe, M., Kurita, N., Matsuo, A., Kindo, K., Avdeev, M., Jeschke, H.
O. & Tanaka, H. (2019). Phys. Rev. B, 100, 064417. CrossRef Google Scholar
Savary, L. & Balents, L. (2017). Rep. Prog. Phys. 80, 016502. CrossRef PubMed Google Scholar
Toby, B. H. (2001). J. Appl. Cryst. 34, 210–213. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yu, B. C., Yang, J. Y., Gawryluk, D. J., Xu, Y., Zhan, Q. F., Shiroka, T. & Shang,
T. (2023). Phys. Rev. Mater. 7, 074403. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
