organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logo CRYSTALLOGRAPHIC

COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis[3,5-bis­­(tri­fluoro­meth­yl)phen­yl]silane

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England

*Correspondence e-mail: [email protected]

(Received 3 February 2006; accepted 11 May 2006; online 17 May 2006)

The title compound, tetra­kis[3,5-bis­(trifluoro­meth­yl)phen­yl]silane (SiAr′′′4, C32H12F24Si), is a minor product from the reaction of silicon(IV) bromide with lithia­ted 1,3-bis­(trifluoro­meth­yl)benzene (Ar′H). The structure crystallizes with two half-mol­ecules in the asymmetric unit, with each central Si atom positioned on a twofold axis in a pseudo-tetra­hedral environment, with Si—C bond lengths in the range 1.873 (3)–1.879 (3) Å.

Comment

The reactions of silicon(IV) chloride in a 1:2 ratio with lithia­ted trifluoro­methyl-substituted aromatic hydro­carbons are complex and inter­esting (Buijink et al., 1993[Buijink, J.-K., Noltemeyer, M. & Edelmann, F. T. (1993). J. Fluorine Chem. 61, 51-56.]; Braddock-Wilking et al., 1995[Braddock-Wilking, J., Schieser, M., Brammer, L., Huhmann, J. & Shaltout, R. (1995). J. Organomet. Chem. 499, 89-98.]; Batsanov et al., 2003[Batsanov, A. S., Cornet, S. M., Dillon, K. B., Goeta, A. E., Thompson, A. L. & Xue, B. Y. (2003). Dalton Trans. pp. 2496-2502.]). With lithia­ted 1,3,5-tris­(trifluoro­meth­yl)benzene (ArH), the only product identified was Ar2SiF2, which was fully characterized crystallographically (Buijink et al., 1993[Buijink, J.-K., Noltemeyer, M. & Edelmann, F. T. (1993). J. Fluorine Chem. 61, 51-56.]). This result was subsequently confirmed by Batsanov et al. (2003[Batsanov, A. S., Cornet, S. M., Dillon, K. B., Goeta, A. E., Thompson, A. L. & Xue, B. Y. (2003). Dalton Trans. pp. 2496-2502.]). Similarly, HSiCl3 reacts with ArLi to form Ar2SiHF, again involving chlorine–fluorine exchange; this has also been characterized by single-crystal X-ray diffraction (Braddock-Wilking et al., 1995[Braddock-Wilking, J., Schieser, M., Brammer, L., Huhmann, J. & Shaltout, R. (1995). J. Organomet. Chem. 499, 89-98.]). With 1,3-bis­(trifluoro­meth­yl)benzene, Ar′H, the system is more complicated because there are various lithia­tion positions (Bartle et al., 1973[Bartle, K. D., Hallas, G. & Hepworth, J. D. (1973). Org. Magn. Reson. 5, 479-481.]; Batsanov et al., 2002[Batsanov, A. S., Cornet, S. M., Dillon, K. B., Goeta, A. E., Hazendonk, P. & Thompson, A. L. (2002). J. Chem. Soc. Dalton Trans. pp. 4622-4628.], 2003[Batsanov, A. S., Cornet, S. M., Dillon, K. B., Goeta, A. E., Thompson, A. L. & Xue, B. Y. (2003). Dalton Trans. pp. 2496-2502.]; Cornet et al., 2003[Cornet, S. M., Dillon, K. B., Entwistle, C. D., Fox, M. A., Goeta, A. E., Goodwin, H. P., Marder, T. B. & Thompson, A. L. (2003). Dalton Trans. pp. 4395-4405.]). These are ortho to both CF3 groups, giving 2,6-bis­(trifluoro­meth­yl)phenyl (Ar′) derivatives, ortho to one CF3 group and para to the other, yielding 2,4-bis­(trifluoro­meth­yl)phenyl (Ar′′) species, and, much less likely, meta to both CF3 groups, giving 3,5-bis­(trifluoro­meth­yl)phenyl (Ar′′′) derivatives. An analytical gas–liquid chromatography study, following carboxyl­ation of the organolithium compounds and subsequent esterification with diazo­methane, showed ca 60% of the 2,4-isomer, 40% of the 2,6-isomer and less than 1% of a third component, presumed to be the 3,5-isomer (Bartle et al., 1973[Bartle, K. D., Hallas, G. & Hepworth, J. D. (1973). Org. Magn. Reson. 5, 479-481.]). With SiCl4, four of the possible disubstituted products, once F/Cl exchange is taken into account, have been observed spectroscopically, viz. Ar′2SiCl2, Ar′2SiF2, Ar′′2SiCl2 and Ar′′2SiF2; two of these, Ar′2SiF2 and Ar′′2SiCl2, have been characterized by single-crystal X-ray diffraction at 120 K (Batsanov et al., 2003[Batsanov, A. S., Cornet, S. M., Dillon, K. B., Goeta, A. E., Thompson, A. L. & Xue, B. Y. (2003). Dalton Trans. pp. 2496-2502.]). The results suggested that the F/Cl exchange rate decreased in the order Ar > Ar′ > Ar′′ (Batsanov et al., 2003[Batsanov, A. S., Cornet, S. M., Dillon, K. B., Goeta, A. E., Thompson, A. L. & Xue, B. Y. (2003). Dalton Trans. pp. 2496-2502.]). It was therefore of considerable inter­est to extend this work to reactions of silicon(IV) bromide in a 1:2 molar ratio with the lithium derivatives of ArH and Ar′H.

Not surprisingly, the only product observed from SiBr4 and ArLi was Ar2SiF2; Si—Br bonds are weaker than Si—Cl bonds, so facile exchange could reasonably be expected. The 19F NMR data are given in Table 2[link], with literature data for comparison (Batsanov et al., 2003[Batsanov, A. S., Cornet, S. M., Dillon, K. B., Goeta, A. E., Thompson, A. L. & Xue, B. Y. (2003). Dalton Trans. pp. 2496-2502.]). With lithia­ted Ar′H and SiBr4, the products Ar′2SiF2 (Batsanov et al., 2003[Batsanov, A. S., Cornet, S. M., Dillon, K. B., Goeta, A. E., Thompson, A. L. & Xue, B. Y. (2003). Dalton Trans. pp. 2496-2502.]), Ar′′2SiBr2 and Ar′′2SiBrF were identified by 19F NMR solution state spectroscopy (Table 2[link]). The results thus lend support to the idea that halogen exchange is slowest in the Ar′′ species. After the mixture had been left to stand for some time, a few crystals were isolated, and proved to be of the fully substituted silane with no ortho CF3 groups, i.e. tetra­kis[3,5-bis­(trifluoro­meth­yl)phen­yl]silane. Since there is little or no steric hindrance around silicon, further substitution beyond the disubstituted product is clearly more favourable for 3,5-derivatives than for 2,4- or 2,6-compounds. Nevertheless this product is a surprising one, in view of the work of Bartle et al. (1973[Bartle, K. D., Hallas, G. & Hepworth, J. D. (1973). Org. Magn. Reson. 5, 479-481.]).

[Scheme 1]

The compound tetra­kis[3,5-bis­(trifluoro­meth­yl)phen­yl]silane, (I)[link], crystallizes in the monoclinic space group P2/c, with two half mol­ecules in the asymmetric unit and the mol­ecular structure is shown in Fig. 1[link]. Selected bond distances and angles are listed in Table 1[link]. The central Si atom is in a tetra­hedral environment, with bond angles around Si between 106.27 (16) and 110.97 (11)°. The Si—C bond lengths are all very similar, between 1.873 (3) and 1.877 (3) Å. The CF3 groups are all ordered, presumably due to the weak F⋯F inter­actions (Fig. 2[link] and Table 1). While this species has not been reported previously, the structurally similar tetra­kis[3,5-bis­(trifluoro­meth­yl)phen­yl]borate ion has been widely used in recent years, since the first report by Nishida et al. (1984[Nishida, H., Takada, N., Yoshimura, M., Sonoda, T. & Kobayashi, H. (1984). Bull. Chem. Soc. Jpn, 57, 2600-2604.]), as a large lipophilic stable counter-ion for a variety of cationic complexes; it features in 291 structures in the Cambridge Structural Database (November 2004 edition; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). The structures of neutral tris­[3,5-bis­(trifluoro­meth­yl)phen­yl]phosphane (Jessop et al., 2002[Jessop, P. G., Olmstead, M. M., Ablan, C. D., Grabenauer, M., Sheppard, D., Eckert, C. A. & Liotta, C. L. (2002). Inorg. Chem. 41, 3463-3468.]) and -arsane (Dietzel & Jansen, 2004[Dietzel, P. D. C. & Jansen, M. (2004). Z. Naturforsch. Teil B, 59, 345-347.]) have also been described. However, these species were all made directly from 3,5-bis­(trifluoro­meth­yl)phenyl-substituted aromatic starting mat­erials.

[Figure 1]

Figure 1

View of one of the independent molecules of (I)[link] with selected atoms labelled. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code for primed and unlabelled atoms: 1 − x, y, ½ − z.] The other molecule is very similar.
[Figure 2]

Figure 2

Crystal packing in the title compound, viewed down the b axis, showing short inter­molecular F⋯F contacts as dashed lines. H atoms have been omitted for clarity.

Experimental

All manipulations of air- and/or moisture-sensitive compounds were performed either under an inert atmosphere of dry nitro­gen or in vacuo, using standard Schlenk and cannula techniques, or in a nitro­gen-filled glovebox. 19F NMR spectra were recorded on a Varian Unity 300 Fourier transform spectrometer at 282.2 MHz; chemical shifts were measured relative to external CFCl3. A solution of SiBr4 (1.7 ml, 13.5 mmol) in diethyl ether was added dropwise, via a cannula, to a solution of ArLi (8 ml, 27 mmol) in diethyl ether at 195 K [the lithia­ted solutions of both ArH and Ar'H were prepared as described previously by Batsanov et al. (2002[Batsanov, A. S., Cornet, S. M., Dillon, K. B., Goeta, A. E., Hazendonk, P. & Thompson, A. L. (2002). J. Chem. Soc. Dalton Trans. pp. 4622-4628.])]. White fumes were evolved. The mixture was allowed to warm to room temperature and stirred for 5 h, giving a pale-yellow oil. The presence of Ar2SiF2 as the only major silicon-containing component was confirmed by 19F NMR solution state spectroscopy (Table 2[link]). Similarly, a solution of SiBr4 (0.7 ml, 5.6 mmol) in diethyl ether was added slowly, via a cannula, to a solution of lithia­ted Ar′H (4 ml, 11.3 mmol) in diethyl ether at 195 K. The mixture was allowed to reach room temperature and stirred overnight, giving a pale-brown solution. Analysis by 19F NMR spectroscopy indicated three main components (Table 2[link]). When the mixture was allowed to stand for some weeks, a few crystals appeared; these were isolated, and analysed by single-crystal X-ray diffraction. As indicated above, they proved to be of tetra­kis[3,5-bis­(trifluoro­meth­yl)phen­yl]silane.

Crystal data
  • C32H12F24Si

  • Mr = 880.51

  • Monoclinic, P 2/c

  • a = 18.3760 (4) Å

  • b = 9.5325 (2) Å

  • c = 18.7776 (4) Å

  • β = 100.388 (1)°

  • V = 3235.34 (12) Å3

  • Z = 4

  • Dx = 1.808 Mg m−3

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.20 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART-6000 CCD diffractometer

  • ω scans

  • Absorption correction: integration (XPREP in SHELXTL; Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.977

  • 28959 measured reflections

  • 7404 independent reflections

  • 5078 reflections with I > 2σ(I)

  • Rint = 0.040

  • θmax = 27.5°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.158

  • S = 1.02

  • 7404 reflections

  • 515 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0779P)2 + 2.8011P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1

Selected geometric parameters (Å, °)

Si1—C11 1.873 (3)
Si1—C31 1.877 (3)
Si2—C41 1.876 (3)
Si2—C21 1.879 (3)
F12⋯F14i 2.847 (3)
F13⋯F31ii 2.919 (3)
F16⋯F42 2.997 (3)
F16⋯F43 2.848 (3)
F21⋯F44iii 2.861 (3)
F31⋯F41 2.901 (3)
F33⋯F26 2.969 (3)
F33⋯F41 2.852 (3)
C11iv—Si1—C11 106.27 (16)
C11iv—Si1—C31iv 110.63 (11)
C11—Si1—C31iv 110.97 (11)
C11iv—Si1—C31 110.97 (11)
C11—Si1—C31 110.63 (11)
C31iv—Si1—C31 107.40 (16)
C41v—Si2—C41 105.22 (16)
C41v—Si2—C21 111.80 (11)
C41—Si2—C21 110.87 (11)
C41v—Si2—C21v 110.87 (11)
C41—Si2—C21v 111.80 (11)
C21—Si2—C21v 106.39 (16)
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [-x, y, -z+{\script{1\over 2}}];. (iii) -x+1, -y, -z+1; (iv) -x+1, -y+1, -z+1; (v) [x, -y+1, z-{\script{1\over 2}}].

Table 2

19F NMR (p.p.m., Hz) data for reaction products

Group No. of Fs δ 19F 5JFF δ 19Fa 5JFFa
Ar2SiF2          
o-CF3 12 −57.7 t, 12.4 −57.3 t, 12.8
p-CF3 6 −63.8 s −64.2 s
Si—F 2 −125.7 m, NRb −124.5 m, 12.8
Ar′2SiF2          
o-CF3 12 −57.5 t, 12.8 −57.5 t, 12.3
Si—F 2 −125.4 m, 12.8 −125.5 m, 12.5
Ar′′2SiBr2          
o-CF3 6 −57.6 s    
p-CF3 6 −64.5 s    
Ar′′2SiBrF          
o-CF3 6 −59.6 d, 12.8    
p-CF3 6 −64.6 s    
Si—F 1 −158.4 m, 12.8    
Notes: (a) literature data from Batsanov et al. (2003[Batsanov, A. S., Cornet, S. M., Dillon, K. B., Goeta, A. E., Thompson, A. L. & Xue, B. Y. (2003). Dalton Trans. pp. 2496-2502.]); (b) not resolved.

All H atoms were positioned geometrically (C—H = 0.95 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Data collection: SMART-NT (Bruker, 2000[Bruker (2000). SMART-NT (Version 6.1), SAINT-NT (Version 6.1) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART-NT; data reduction: SAINT-NT (Bruker, 2000[Bruker (2000). SMART-NT (Version 6.1), SAINT-NT (Version 6.1) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information



Computing details top

Data collection: SMART-NT (Bruker, 2000); cell refinement: SMART-NT; data reduction: SAINT-NT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Tetrakis[3,5-bis(trifluoromethyl)phenyl]silane top
Crystal data top
C32H12F24Si F(000) = 1736
Mr = 880.51 Dx = 1.808 Mg m3
Monoclinic, P2/c Melting point: not measured K
Hall symbol: -P 2yc Mo Kα radiation, λ = 0.71073 Å
a = 18.3760 (4) Å Cell parameters from 5856 reflections
b = 9.5325 (2) Å θ = 2.4–26.8°
c = 18.7776 (4) Å µ = 0.24 mm1
β = 100.388 (1)° T = 120 K
V = 3235.34 (12) Å3 Block, colourless
Z = 4 0.20 × 0.12 × 0.10 mm
Data collection top
Bruker SMART-6000 CCD

diffractometer
7404 independent reflections
Radiation source: fine-focus sealed tube 5078 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.040
Detector resolution: 8 pixels mm-1 θmax = 27.5°, θmin = 1.1°
ω scans h = 2323
Absorption correction: integration

(XPREP in SHELXTL; Sheldrick, 1997b)
k = 1212
Tmin = 0.957, Tmax = 0.977 l = 2424
28959 measured reflections
Refinement top
Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0779P)2 + 2.8011P]

where P = (Fo2 + 2Fc2)/3
7404 reflections (Δ/σ)max < 0.001
515 parameters Δρmax = 0.62 e Å3
0 restraints Δρmin = 0.37 e Å3
Special details top

Experimental. The data collection nominally covered full sphere of reciprocal Space, by a combination of 5 sets of ω scans each set at different φ and/or 2θ angles and each scan (15 s exposure) covering 0.3° in ω. Crystal to detector distance 5.81 cm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
Si1 0.5000 0.51518 (10) 0.2500 0.0226 (2)
C11 0.50382 (15) 0.3973 (3) 0.33037 (14) 0.0265 (5)
C12 0.55556 (16) 0.2873 (3) 0.33934 (15) 0.0306 (6)
H12 0.5873 0.2748 0.3051 0.037*
C13 0.56073 (16) 0.1963 (3) 0.39802 (15) 0.0324 (6)
C14 0.51587 (17) 0.2136 (3) 0.44805 (15) 0.0328 (6)
H14 0.5202 0.1519 0.4883 0.039*
C15 0.46426 (17) 0.3205 (3) 0.44026 (15) 0.0332 (6)
C16 0.45809 (16) 0.4127 (3) 0.38142 (15) 0.0307 (6)
H16 0.4225 0.4860 0.3763 0.037*
C17 0.61350 (19) 0.0747 (3) 0.40342 (16) 0.0399 (7)
F11 0.67404 (11) 0.1038 (2) 0.37646 (12) 0.0562 (5)
F12 0.58198 (12) 0.03549 (18) 0.36466 (11) 0.0524 (5)
F13 0.63480 (14) 0.0299 (2) 0.47074 (11) 0.0641 (6)
C18 0.4136 (2) 0.3379 (3) 0.49352 (18) 0.0446 (7)
F14 0.44268 (14) 0.2839 (2) 0.55899 (11) 0.0691 (7)
F15 0.34864 (13) 0.2778 (3) 0.47187 (14) 0.0729 (7)
F16 0.40028 (11) 0.4729 (2) 0.50652 (10) 0.0485 (5)
C31 0.41640 (14) 0.6318 (3) 0.23931 (13) 0.0242 (5)
C32 0.41887 (14) 0.7540 (3) 0.28073 (14) 0.0269 (5)
H32 0.4625 0.7763 0.3143 0.032*
C33 0.35807 (15) 0.8435 (3) 0.27335 (14) 0.0281 (5)
C34 0.29410 (15) 0.8129 (3) 0.22503 (15) 0.0295 (6)
H34 0.2528 0.8743 0.2200 0.035*
C35 0.29090 (14) 0.6912 (3) 0.18393 (14) 0.0289 (6)
C36 0.35160 (14) 0.6021 (3) 0.19073 (14) 0.0267 (5)
H36 0.3488 0.5198 0.1618 0.032*
C37 0.36451 (17) 0.9769 (3) 0.31688 (16) 0.0369 (6)
F31 0.40129 (10) 0.95860 (18) 0.38421 (9) 0.0418 (4)
F32 0.40239 (13) 1.07538 (18) 0.28782 (11) 0.0561 (6)
F33 0.29914 (11) 1.0315 (2) 0.32191 (12) 0.0571 (5)
C38 0.22219 (17) 0.6590 (3) 0.13071 (18) 0.0421 (7)
F34 0.21457 (13) 0.7411 (3) 0.07311 (13) 0.0871 (9)
F35 0.16130 (10) 0.6791 (2) 0.15935 (13) 0.0622 (6)
F36 0.21858 (11) 0.5268 (2) 0.10818 (13) 0.0665 (7)
Si2 0.0000 0.85198 (10) 0.2500 0.0226 (2)
C21 0.06268 (14) 0.9701 (3) 0.20832 (14) 0.0263 (5)
C22 0.06995 (15) 0.9610 (3) 0.13596 (14) 0.0274 (5)
H22 0.0441 0.8899 0.1062 0.033*
C23 0.11462 (15) 1.0547 (3) 0.10653 (14) 0.0292 (6)
C24 0.15327 (15) 1.1580 (3) 0.14924 (15) 0.0314 (6)
H24 0.1842 1.2209 0.1291 0.038*
C25 0.14687 (15) 1.1696 (3) 0.22082 (15) 0.0306 (6)
C26 0.10142 (15) 1.0782 (3) 0.25045 (15) 0.0294 (6)
H26 0.0964 1.0887 0.2996 0.035*
C27 0.11787 (18) 1.0511 (3) 0.02752 (16) 0.0382 (7)
F21 0.08780 (13) 0.9363 (2) 0.00568 (10) 0.0557 (5)
F22 0.07939 (13) 1.1592 (2) 0.00753 (10) 0.0579 (5)
F23 0.18555 (11) 1.0634 (3) 0.01409 (11) 0.0633 (6)
C28 0.18495 (18) 1.2886 (3) 0.26534 (17) 0.0392 (7)
F24 0.14555 (13) 1.40746 (18) 0.25369 (11) 0.0576 (6)
F25 0.25153 (11) 1.3164 (2) 0.24927 (12) 0.0593 (6)
F26 0.19520 (11) 1.26399 (19) 0.33628 (9) 0.0465 (4)
C41 0.05500 (15) 0.7325 (3) 0.31883 (13) 0.0257 (5)
C42 0.13058 (14) 0.7488 (3) 0.34453 (13) 0.0281 (5)
H42 0.1561 0.8258 0.3284 0.034*
C43 0.16907 (15) 0.6534 (3) 0.39354 (14) 0.0305 (6)
C44 0.13299 (16) 0.5395 (3) 0.41750 (14) 0.0312 (6)
H44 0.1594 0.4748 0.4511 0.037*
C45 0.05818 (15) 0.5215 (3) 0.39184 (14) 0.0284 (5)
C46 0.01943 (15) 0.6164 (3) 0.34351 (14) 0.0273 (5)
H46 0.0320 0.6029 0.3268 0.033*
C47 0.25038 (17) 0.6700 (4) 0.41920 (16) 0.0394 (7)
F41 0.27414 (10) 0.7993 (2) 0.41015 (11) 0.0542 (5)
F42 0.28932 (11) 0.5855 (2) 0.38304 (12) 0.0609 (6)
F43 0.27010 (10) 0.6407 (2) 0.49010 (10) 0.0556 (5)
C48 0.01947 (17) 0.3948 (3) 0.41478 (16) 0.0373 (7)
F44 0.04750 (12) 0.3538 (2) 0.48211 (11) 0.0567 (6)
F45 0.05241 (11) 0.41571 (19) 0.41221 (11) 0.0502 (5)
F46 0.02479 (12) 0.28522 (19) 0.37153 (12) 0.0571 (5)
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
Si1 0.0238 (5) 0.0191 (4) 0.0240 (5) 0.000 0.0023 (4) 0.000
C11 0.0300 (13) 0.0216 (12) 0.0261 (12) 0.0028 (10) 0.0002 (10) 0.0013 (10)
C12 0.0342 (14) 0.0259 (13) 0.0300 (13) 0.0013 (11) 0.0012 (11) 0.0003 (10)
C13 0.0395 (16) 0.0231 (12) 0.0316 (14) 0.0008 (11) 0.0016 (12) 0.0017 (10)
C14 0.0438 (16) 0.0243 (13) 0.0288 (13) 0.0022 (12) 0.0025 (12) 0.0009 (10)
C15 0.0393 (16) 0.0307 (14) 0.0294 (13) 0.0026 (12) 0.0055 (12) 0.0002 (11)
C16 0.0343 (15) 0.0251 (13) 0.0324 (14) 0.0010 (11) 0.0054 (12) 0.0007 (11)
C17 0.0497 (19) 0.0342 (15) 0.0338 (15) 0.0078 (13) 0.0023 (13) 0.0045 (12)
F11 0.0446 (11) 0.0508 (12) 0.0728 (14) 0.0135 (9) 0.0097 (10) 0.0108 (10)
F12 0.0702 (14) 0.0297 (9) 0.0570 (12) 0.0055 (9) 0.0110 (10) 0.0044 (8)
F13 0.0912 (17) 0.0581 (13) 0.0391 (10) 0.0369 (12) 0.0015 (10) 0.0116 (9)
C18 0.054 (2) 0.0382 (16) 0.0433 (17) 0.0010 (15) 0.0127 (15) 0.0105 (14)
F14 0.0957 (18) 0.0727 (15) 0.0466 (11) 0.0325 (13) 0.0336 (12) 0.0274 (11)
F15 0.0619 (14) 0.0767 (16) 0.0898 (17) 0.0275 (12) 0.0391 (13) 0.0178 (13)
F16 0.0595 (12) 0.0453 (10) 0.0436 (10) 0.0083 (9) 0.0168 (9) 0.0003 (8)
C31 0.0252 (13) 0.0226 (12) 0.0253 (12) 0.0013 (10) 0.0061 (10) 0.0036 (9)
C32 0.0273 (13) 0.0240 (12) 0.0286 (12) 0.0010 (10) 0.0029 (10) 0.0010 (10)
C33 0.0325 (14) 0.0245 (12) 0.0286 (13) 0.0011 (11) 0.0088 (11) 0.0015 (10)
C34 0.0284 (13) 0.0261 (12) 0.0347 (14) 0.0045 (11) 0.0077 (11) 0.0031 (11)
C35 0.0239 (13) 0.0306 (13) 0.0318 (13) 0.0025 (10) 0.0043 (11) 0.0002 (11)
C36 0.0270 (13) 0.0238 (12) 0.0291 (13) 0.0005 (10) 0.0046 (10) 0.0012 (10)
C37 0.0422 (17) 0.0294 (14) 0.0390 (16) 0.0031 (12) 0.0065 (13) 0.0023 (12)
F31 0.0523 (11) 0.0376 (9) 0.0345 (9) 0.0000 (8) 0.0052 (8) 0.0085 (7)
F32 0.0899 (16) 0.0301 (9) 0.0505 (11) 0.0173 (10) 0.0182 (11) 0.0029 (8)
F33 0.0523 (12) 0.0458 (11) 0.0707 (14) 0.0176 (9) 0.0041 (10) 0.0218 (10)
C38 0.0303 (15) 0.0437 (17) 0.0491 (18) 0.0064 (13) 0.0014 (13) 0.0071 (14)
F34 0.0638 (15) 0.124 (2) 0.0598 (14) 0.0178 (15) 0.0259 (12) 0.0330 (15)
F35 0.0242 (9) 0.0650 (13) 0.0958 (17) 0.0018 (9) 0.0061 (10) 0.0259 (12)
F36 0.0408 (11) 0.0643 (13) 0.0837 (15) 0.0096 (10) 0.0173 (10) 0.0399 (12)
Si2 0.0253 (5) 0.0212 (4) 0.0210 (4) 0.000 0.0033 (4) 0.000
C21 0.0250 (13) 0.0247 (12) 0.0290 (13) 0.0038 (10) 0.0046 (10) 0.0030 (10)
C22 0.0278 (13) 0.0264 (12) 0.0274 (12) 0.0003 (10) 0.0034 (10) 0.0001 (10)
C23 0.0297 (14) 0.0271 (13) 0.0303 (13) 0.0012 (11) 0.0044 (11) 0.0009 (10)
C24 0.0285 (14) 0.0273 (13) 0.0388 (15) 0.0006 (11) 0.0070 (12) 0.0033 (11)
C25 0.0314 (14) 0.0243 (13) 0.0348 (14) 0.0017 (11) 0.0023 (11) 0.0014 (11)
C26 0.0309 (14) 0.0259 (13) 0.0317 (14) 0.0009 (11) 0.0059 (11) 0.0003 (10)
C27 0.0433 (17) 0.0391 (16) 0.0336 (15) 0.0081 (13) 0.0103 (13) 0.0016 (12)
F21 0.0835 (15) 0.0508 (11) 0.0351 (10) 0.0203 (11) 0.0170 (10) 0.0103 (8)
F22 0.0821 (15) 0.0550 (12) 0.0359 (10) 0.0079 (11) 0.0083 (10) 0.0104 (9)
F23 0.0449 (12) 0.1063 (18) 0.0417 (11) 0.0164 (12) 0.0161 (9) 0.0057 (11)
C28 0.0448 (17) 0.0297 (14) 0.0427 (17) 0.0048 (13) 0.0066 (14) 0.0036 (12)
F24 0.0805 (15) 0.0269 (9) 0.0592 (12) 0.0046 (9) 0.0041 (11) 0.0078 (8)
F25 0.0559 (13) 0.0569 (12) 0.0673 (13) 0.0292 (10) 0.0169 (10) 0.0174 (10)
F26 0.0570 (11) 0.0397 (10) 0.0393 (10) 0.0081 (9) 0.0009 (8) 0.0093 (8)
C41 0.0301 (13) 0.0250 (12) 0.0221 (11) 0.0009 (10) 0.0048 (10) 0.0009 (9)
C42 0.0279 (13) 0.0311 (13) 0.0247 (12) 0.0008 (11) 0.0035 (10) 0.0012 (10)
C43 0.0291 (14) 0.0348 (14) 0.0268 (13) 0.0007 (11) 0.0028 (11) 0.0015 (11)
C44 0.0348 (15) 0.0293 (13) 0.0282 (13) 0.0053 (11) 0.0022 (11) 0.0026 (11)
C45 0.0321 (14) 0.0250 (12) 0.0272 (13) 0.0004 (11) 0.0031 (11) 0.0005 (10)
C46 0.0265 (13) 0.0266 (12) 0.0277 (12) 0.0003 (10) 0.0022 (10) 0.0001 (10)
C47 0.0313 (15) 0.0528 (18) 0.0327 (15) 0.0047 (14) 0.0024 (12) 0.0040 (13)
F41 0.0339 (10) 0.0646 (13) 0.0612 (12) 0.0148 (9) 0.0006 (9) 0.0076 (10)
F42 0.0369 (11) 0.0805 (15) 0.0651 (13) 0.0157 (10) 0.0088 (10) 0.0065 (11)
F43 0.0354 (10) 0.0860 (15) 0.0400 (10) 0.0051 (10) 0.0078 (8) 0.0137 (10)
C48 0.0412 (17) 0.0293 (14) 0.0391 (16) 0.0026 (12) 0.0009 (13) 0.0060 (12)
F44 0.0675 (13) 0.0451 (11) 0.0503 (11) 0.0140 (10) 0.0087 (10) 0.0236 (9)
F45 0.0430 (11) 0.0400 (10) 0.0689 (13) 0.0049 (8) 0.0138 (9) 0.0151 (9)
F46 0.0692 (14) 0.0311 (9) 0.0734 (14) 0.0123 (9) 0.0190 (11) 0.0125 (9)
Geometric parameters (Å, º) top
Si1—C11i 1.873 (3) Si2—C41ii 1.876 (3)
Si1—C11 1.873 (3) Si2—C41 1.876 (3)
Si1—C31i 1.877 (3) Si2—C21 1.879 (3)
Si1—C31 1.877 (3) Si2—C21ii 1.879 (3)
C11—C16 1.392 (4) C21—C22 1.392 (4)
C11—C12 1.406 (4) C21—C26 1.411 (4)
C12—C13 1.392 (4) C22—C23 1.393 (4)
C12—H12 0.9500 C22—H22 0.9500
C13—C14 1.367 (4) C23—C24 1.383 (4)
C13—C17 1.503 (4) C23—C27 1.496 (4)
C14—C15 1.382 (4) C24—C25 1.375 (4)
C14—H14 0.9500 C24—H24 0.9500
C15—C16 1.400 (4) C25—C26 1.391 (4)
C15—C18 1.493 (4) C25—C28 1.505 (4)
C16—H16 0.9500 C26—H26 0.9500
C17—F13 1.325 (3) C27—F23 1.318 (4)
C17—F11 1.332 (4) C27—F21 1.330 (3)
C17—F12 1.348 (4) C27—F22 1.351 (4)
C18—F15 1.321 (4) C28—F26 1.332 (4)
C18—F16 1.340 (4) C28—F25 1.338 (4)
C18—F14 1.351 (4) C28—F24 1.341 (4)
C31—C36 1.392 (4) C41—C42 1.394 (4)
C31—C32 1.397 (4) C41—C46 1.405 (4)
C32—C33 1.393 (4) C42—C43 1.393 (4)
C32—H32 0.9500 C42—H42 0.9500
C33—C34 1.381 (4) C43—C44 1.388 (4)
C33—C37 1.505 (4) C43—C47 1.493 (4)
C34—C35 1.388 (4) C44—C45 1.383 (4)
C34—H34 0.9500 C44—H44 0.9500
C35—C36 1.390 (4) C45—C46 1.385 (4)
C35—C38 1.494 (4) C45—C48 1.503 (4)
C36—H36 0.9500 C46—H46 0.9500
C37—F33 1.328 (4) C47—F41 1.329 (4)
C37—F31 1.333 (3) C47—F42 1.340 (4)
C37—F32 1.342 (4) C47—F43 1.344 (3)
C38—F34 1.322 (4) C48—F45 1.328 (4)
C38—F36 1.327 (4) C48—F44 1.335 (3)
C38—F35 1.340 (4) C48—F46 1.338 (4)
F12···F14iii 2.847 (3) F21···F44v 2.861 (3)
F13···F31iv 2.919 (3) F31···F41 2.901 (3)
F16···F42 2.997 (3) F33···F26 2.969 (3)
F16···F43 2.848 (3) F33···F41 2.852 (3)
C11i—Si1—C11 106.27 (16) C41ii—Si2—C41 105.22 (16)
C11i—Si1—C31i 110.63 (11) C41ii—Si2—C21 111.80 (11)
C11—Si1—C31i 110.97 (11) C41—Si2—C21 110.87 (11)
C11i—Si1—C31 110.97 (11) C41ii—Si2—C21ii 110.87 (11)
C11—Si1—C31 110.63 (11) C41—Si2—C21ii 111.80 (11)
C31i—Si1—C31 107.40 (16) C21—Si2—C21ii 106.39 (16)
C16—C11—C12 118.4 (2) C22—C21—C26 117.7 (2)
C16—C11—Si1 123.5 (2) C22—C21—Si2 122.9 (2)
C12—C11—Si1 118.1 (2) C26—C21—Si2 119.28 (19)
C13—C12—C11 120.5 (3) C21—C22—C23 121.0 (2)
C13—C12—H12 119.7 C21—C22—H22 119.5
C11—C12—H12 119.7 C23—C22—H22 119.5
C14—C13—C12 120.4 (3) C24—C23—C22 120.3 (2)
C14—C13—C17 120.6 (3) C24—C23—C27 118.9 (2)
C12—C13—C17 119.0 (3) C22—C23—C27 120.7 (2)
C13—C14—C15 120.2 (3) C25—C24—C23 119.9 (3)
C13—C14—H14 119.9 C25—C24—H24 120.0
C15—C14—H14 119.9 C23—C24—H24 120.0
C14—C15—C16 120.2 (3) C24—C25—C26 120.3 (3)
C14—C15—C18 120.6 (3) C24—C25—C28 119.4 (3)
C16—C15—C18 119.2 (3) C26—C25—C28 120.2 (3)
C11—C16—C15 120.3 (3) C25—C26—C21 120.8 (2)
C11—C16—H16 119.8 C25—C26—H26 119.6
C15—C16—H16 119.8 C21—C26—H26 119.6
F13—C17—F11 107.8 (3) F23—C27—F21 108.1 (3)
F13—C17—F12 106.7 (3) F23—C27—F22 105.5 (2)
F11—C17—F12 105.3 (3) F21—C27—F22 105.2 (3)
F13—C17—C13 112.9 (3) F23—C27—C23 113.3 (3)
F11—C17—C13 112.8 (2) F21—C27—C23 113.3 (2)
F12—C17—C13 110.8 (3) F22—C27—C23 110.8 (2)
F15—C18—F16 106.7 (3) F26—C28—F25 106.9 (3)
F15—C18—F14 107.6 (3) F26—C28—F24 106.7 (2)
F16—C18—F14 104.8 (3) F25—C28—F24 106.5 (3)
F15—C18—C15 112.6 (3) F26—C28—C25 113.0 (2)
F16—C18—C15 112.7 (3) F25—C28—C25 112.1 (2)
F14—C18—C15 112.1 (3) F24—C28—C25 111.3 (3)
C36—C31—C32 118.2 (2) C42—C41—C46 117.8 (2)
C36—C31—Si1 122.45 (19) C42—C41—Si2 123.4 (2)
C32—C31—Si1 119.36 (19) C46—C41—Si2 118.7 (2)
C33—C32—C31 120.7 (2) C43—C42—C41 120.8 (2)
C33—C32—H32 119.6 C43—C42—H42 119.6
C31—C32—H32 119.6 C41—C42—H42 119.6
C34—C33—C32 120.6 (2) C44—C43—C42 120.6 (3)
C34—C33—C37 120.7 (2) C44—C43—C47 119.1 (3)
C32—C33—C37 118.7 (2) C42—C43—C47 120.2 (3)
C33—C34—C35 119.2 (2) C45—C44—C43 119.2 (2)
C33—C34—H34 120.4 C45—C44—H44 120.4
C35—C34—H34 120.4 C43—C44—H44 120.4
C34—C35—C36 120.5 (2) C44—C45—C46 120.6 (2)
C34—C35—C38 119.3 (2) C44—C45—C48 119.5 (2)
C36—C35—C38 120.2 (2) C46—C45—C48 119.9 (2)
C35—C36—C31 120.9 (2) C45—C46—C41 121.1 (2)
C35—C36—H36 119.6 C45—C46—H46 119.5
C31—C36—H36 119.6 C41—C46—H46 119.5
F33—C37—F31 107.1 (2) F41—C47—F42 106.0 (3)
F33—C37—F32 107.3 (2) F41—C47—F43 106.4 (3)
F31—C37—F32 105.4 (2) F42—C47—F43 107.7 (2)
F33—C37—C33 112.7 (3) F41—C47—C43 112.9 (3)
F31—C37—C33 112.4 (2) F42—C47—C43 111.6 (3)
F32—C37—C33 111.5 (2) F43—C47—C43 111.9 (2)
F34—C38—F36 108.0 (3) F45—C48—F44 106.8 (3)
F34—C38—F35 105.7 (3) F45—C48—F46 106.0 (2)
F36—C38—F35 105.4 (3) F44—C48—F46 106.8 (2)
F34—C38—C35 112.2 (3) F45—C48—C45 112.8 (2)
F36—C38—C35 113.3 (2) F44—C48—C45 112.6 (2)
F35—C38—C35 111.6 (3) F46—C48—C45 111.3 (2)
C11i—Si1—C11—C16 130.9 (3) C41ii—Si2—C21—C22 4.0 (3)
C31i—Si1—C11—C16 108.8 (2) C41—Si2—C21—C22 113.0 (2)
C31—Si1—C11—C16 10.4 (3) C21ii—Si2—C21—C22 125.2 (2)
C11i—Si1—C11—C12 48.89 (18) C41ii—Si2—C21—C26 172.4 (2)
C31i—Si1—C11—C12 71.4 (2) C41—Si2—C21—C26 70.5 (2)
C31—Si1—C11—C12 169.4 (2) C21ii—Si2—C21—C26 51.23 (18)
C16—C11—C12—C13 0.1 (4) C26—C21—C22—C23 0.7 (4)
Si1—C11—C12—C13 179.9 (2) Si2—C21—C22—C23 177.2 (2)
C11—C12—C13—C14 0.5 (4) C21—C22—C23—C24 0.6 (4)
C11—C12—C13—C17 176.4 (3) C21—C22—C23—C27 175.5 (3)
C12—C13—C14—C15 0.9 (4) C22—C23—C24—C25 0.8 (4)
C17—C13—C14—C15 176.0 (3) C27—C23—C24—C25 175.3 (3)
C13—C14—C15—C16 0.6 (4) C23—C24—C25—C26 0.3 (4)
C13—C14—C15—C18 178.3 (3) C23—C24—C25—C28 175.8 (3)
C12—C11—C16—C15 0.3 (4) C24—C25—C26—C21 1.6 (4)
Si1—C11—C16—C15 179.9 (2) C28—C25—C26—C21 177.1 (3)
C14—C15—C16—C11 0.0 (4) C22—C21—C26—C25 1.8 (4)
C18—C15—C16—C11 179.0 (3) Si2—C21—C26—C25 178.4 (2)
C14—C13—C17—F13 27.5 (4) C24—C23—C27—F23 47.1 (4)
C12—C13—C17—F13 155.6 (3) C22—C23—C27—F23 136.7 (3)
C14—C13—C17—F11 150.0 (3) C24—C23—C27—F21 170.7 (3)
C12—C13—C17—F11 33.1 (4) C22—C23—C27—F21 13.1 (4)
C14—C13—C17—F12 92.2 (3) C24—C23—C27—F22 71.3 (3)
C12—C13—C17—F12 84.7 (3) C22—C23—C27—F22 104.9 (3)
C14—C15—C18—F15 95.9 (4) C24—C25—C28—F26 159.3 (3)
C16—C15—C18—F15 83.0 (3) C26—C25—C28—F26 25.2 (4)
C14—C15—C18—F16 143.4 (3) C24—C25—C28—F25 38.4 (4)
C16—C15—C18—F16 37.7 (4) C26—C25—C28—F25 146.1 (3)
C14—C15—C18—F14 25.5 (4) C24—C25—C28—F24 80.7 (3)
C16—C15—C18—F14 155.6 (3) C26—C25—C28—F24 94.7 (3)
C11i—Si1—C31—C36 18.9 (2) C41ii—Si2—C41—C42 132.2 (2)
C11—Si1—C31—C36 98.8 (2) C21—Si2—C41—C42 11.1 (3)
C31i—Si1—C31—C36 140.0 (2) C21ii—Si2—C41—C42 107.4 (2)
C11i—Si1—C31—C32 160.32 (19) C41ii—Si2—C41—C46 44.69 (17)
C11—Si1—C31—C32 82.0 (2) C21—Si2—C41—C46 165.72 (19)
C31i—Si1—C31—C32 39.28 (17) C21ii—Si2—C41—C46 75.7 (2)
C36—C31—C32—C33 0.1 (4) C46—C41—C42—C43 0.5 (4)
Si1—C31—C32—C33 179.19 (19) Si2—C41—C42—C43 177.4 (2)
C31—C32—C33—C34 0.1 (4) C41—C42—C43—C44 0.4 (4)
C31—C32—C33—C37 177.5 (2) C41—C42—C43—C47 178.4 (2)
C32—C33—C34—C35 0.3 (4) C42—C43—C44—C45 0.3 (4)
C37—C33—C34—C35 177.8 (2) C47—C43—C44—C45 177.8 (3)
C33—C34—C35—C36 0.7 (4) C43—C44—C45—C46 0.7 (4)
C33—C34—C35—C38 179.0 (3) C43—C44—C45—C48 177.1 (3)
C34—C35—C36—C31 0.8 (4) C44—C45—C46—C41 0.6 (4)
C38—C35—C36—C31 179.0 (3) C48—C45—C46—C41 177.3 (2)
C32—C31—C36—C35 0.3 (4) C42—C41—C46—C45 0.1 (4)
Si1—C31—C36—C35 179.6 (2) Si2—C41—C46—C45 177.1 (2)
C34—C33—C37—F33 20.9 (4) C44—C43—C47—F41 161.8 (3)
C32—C33—C37—F33 161.5 (2) C42—C43—C47—F41 20.1 (4)
C34—C33—C37—F31 142.1 (3) C44—C43—C47—F42 79.0 (3)
C32—C33—C37—F31 40.3 (4) C42—C43—C47—F42 99.1 (3)
C34—C33—C37—F32 99.8 (3) C44—C43—C47—F43 41.7 (4)
C32—C33—C37—F32 77.8 (3) C42—C43—C47—F43 140.2 (3)
C34—C35—C38—F34 72.9 (4) C44—C45—C48—F45 154.3 (3)
C36—C35—C38—F34 105.4 (3) C46—C45—C48—F45 27.9 (4)
C34—C35—C38—F36 164.4 (3) C44—C45—C48—F44 33.2 (4)
C36—C35—C38—F36 17.3 (4) C46—C45—C48—F44 148.9 (3)
C34—C35—C38—F35 45.5 (4) C44—C45—C48—F46 86.7 (3)
C36—C35—C38—F35 136.2 (3) C46—C45—C48—F46 91.2 (3)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y, z+1/2; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1; (v) x, y+1, z1/2.
19F NMR (p.p.m., Hz) data for reaction products top
Group No. of Fs δ 19F 5JFF δ 19Fa 5JFFa
Ar2SiF2
o-CF3 12 -57.7 t, 12.4 -57.3 t, 12.8
p-CF3 6 -63.8 s -64.2 s
Si—F 2 -125.7 m, NRb -124.5 m, 12.8
Ar'2SiF2
o-CF3 12 -57.5 t, 12.8 -57.5 t, 12.3
Si—F 2 -125.4 m, 12.8 -125.5 m, 12.5
Ar''2SiBr2
o-CF3 6 -57.6 s
p-CF3 6 -64.5 s
Ar''2SiBrF
o-CF3 6 -59.6 d, 12.8
p-CF3 6 -64.6 s
Si—F 1 -158.4 m, 12.8
Notes: (a) literature data from Batsanov et al. (2003); (b) not resolved.
 

Acknowledgements

The authors thank the EPSRC for a postgraduate fellowship (ALT) and A. Hickman for technical assistance in isolating the crystalline product.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

First citationBartle, K. D., Hallas, G. & Hepworth, J. D. (1973). Org. Magn. Reson. 5, 479–481.  CrossRef CAS Web of Science Google Scholar

First citationBatsanov, A. S., Cornet, S. M., Dillon, K. B., Goeta, A. E., Hazendonk, P. & Thompson, A. L. (2002). J. Chem. Soc. Dalton Trans. pp. 4622–4628.  Web of Science CSD CrossRef Google Scholar

First citationBatsanov, A. S., Cornet, S. M., Dillon, K. B., Goeta, A. E., Thompson, A. L. & Xue, B. Y. (2003). Dalton Trans. pp. 2496–2502.  Web of Science CSD CrossRef Google Scholar

First citationBraddock-Wilking, J., Schieser, M., Brammer, L., Huhmann, J. & Shaltout, R. (1995). J. Organomet. Chem. 499, 89–98.  CSD CrossRef CAS Web of Science Google Scholar

First citationBruker (2000). SMART-NT (Version 6.1), SAINT-NT (Version 6.1) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

First citationBuijink, J.-K., Noltemeyer, M. & Edelmann, F. T. (1993). J. Fluorine Chem. 61, 51–56.  CSD CrossRef CAS Web of Science Google Scholar

First citationCornet, S. M., Dillon, K. B., Entwistle, C. D., Fox, M. A., Goeta, A. E., Goodwin, H. P., Marder, T. B. & Thompson, A. L. (2003). Dalton Trans. pp. 4395–4405.  Web of Science CSD CrossRef Google Scholar

First citationDietzel, P. D. C. & Jansen, M. (2004). Z. Naturforsch. Teil B, 59, 345–347.  CAS Google Scholar

First citationJessop, P. G., Olmstead, M. M., Ablan, C. D., Grabenauer, M., Sheppard, D., Eckert, C. A. & Liotta, C. L. (2002). Inorg. Chem. 41, 3463–3468.  Web of Science CSD CrossRef PubMed CAS Google Scholar

First citationNishida, H., Takada, N., Yoshimura, M., Sonoda, T. & Kobayashi, H. (1984). Bull. Chem. Soc. Jpn, 57, 2600–2604.  CrossRef CAS Web of Science Google Scholar

First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

First citationSheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logo CRYSTALLOGRAPHIC

COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds