metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logo STRUCTURAL

CHEMISTRY
ISSN: 2053-2296

(4,4,12,12-Tetra­methyl-5,8,11-tri­aza­penta-2,14-dione 2-oxime 14-oximato-κ5N)copper(II) perchlorate: a copper(II) compound with a pentadentate tri­amine–oxime–oximate ligand

CROSSMARK_Color_square_no_text.svg

aSchool of Chemical and Physical Sciences, Victoria University of Wellington, Box 600, Wellington, New Zealand, and bDepartment of Chemistry, University of Newcastle, Newcastle on Tyne NE1 7RU, England

*Correspondence e-mail: [email protected]

(Received 23 February 2004; accepted 13 April 2004; online 22 May 2004)

The title compound, [Cu(C16H34N5O2)]ClO4, has discrete square-pyramidal (tri­amine–oxime–oximato)copper(II) cations and perchlorate anions. The cations have very approxi­mate mirror symmetry, with the oxime [Cu—N = 2.066 (2) Å], oximate [Cu—N = 2.087 (2) Å] and amine N atoms [Cu—N = 2.138 (2) and 2.095 (2) Å] in the tetrahedrally twisted basal plane, and the `central' amine N atom coordinated axially [Cu—N = 2.183 (2) Å]. The oxime and oximate groups are linked by an O—H⋯O hydrogen bond, forming a pseudo-cyclic pentadentate ligand, with an O⋯O distance of 2.395 (3) Å.

Comment

The structure of the title copper(II) compound, (I[link]), with a pentadentate tri­amino–oxime–oximate ligand, is reported. The ligand is the mono-deprotonated dioxime of the tri­amine–diketone 4,4,12,12-tetra­methyl-5,8,11-tri­aza­penta-2,14-dione, which is formed (as the di­hydro­perchlorate salt) by reaction of 3-aza­pentane-1,5-di­amine di­hydro­perchlorate with acetone (see scheme[link]) (Morgan et al., 1982[Morgan, K. R., Gainsford, G. J. & Curtis, N. F. (1982). Aust. J. Chem. 35, 1105-1117.]).

Compound (I[link]) has discrete cations, with CuII in a square-pyramidal coordination (Fig. 1[link]), and perchlorate anions. Oxime atom N2, oximate atom N14, and secondary amine atoms N5 and N11, are coordinated in the tetrahedrally twisted basal plane, with the bond to the axially coordinated secondary amine atom N8 being significantly longer. Displacements from the mean-square plane defined by atoms N2, N5, N11 and N14 are: N2 0.154, N5 −0.158, N11 0.158, N14 −0.154, Cu 0.100, N8 2.213, O2 0.793 and O14 0.082 Å (s.u. 0.003 Å), and the trans angles are N2—Cu—N11 = 175.75 (8)° and N14—Cu—N5 = 165.87 (8)°. The five-membered chelate rings both have asymmetrical gauche conformations [displacements of atoms from the Cu/N5/N8 plane: C6 0.145 and C7 0.697 Å; from the Cu/N8/N11 plane: C9 0.035 and C10 0.683 Å], while the six-membered chelate rings have `half-chair' conformations, with methyl substituents C41 and C121 axially oriented [displacements from the Cu/N2/N5 plane: C2 0.052, C3 0.445, C4 0.948, C41 −2.323 and C42 1.050 Å; from the Cu/N11/N14 plane: C12 0.984, C121 2.355, C122 1.039, C13 0.590 and C14 0.263 Å].

[Scheme 1]

Atom O2 of the oxime and O14 of the oximate group are linked by a short hydrogen bond (Table 2[link]), as is common for oxime–oximate compounds, forming a pseudo-macrocyclic ligand. The cations are linked into a one-dimensional chain, with base vector 001, by weak intramolecular hydrogen bonding. The perchlorate ion shows rotational disorder which was not modelled.

The structures of a number of copper(II) compounds with tetradentate di­aza–oxime–oximate ligands with short O—H⋯O hydrogen-bonded 14- to 16-membered pseudo-cyclic structures have been reported. These generally have square-pyramidal coordination, with water (Nunes et al., 1999[Nunes, F. S., Murta, P. D. M. L. & Da Cunha, C. J. (1999). J. Coord. Chem. 47, 251-267.]; Anderson & Packard, 1979[Anderson, O. P. & Packard, A. B. (1979). Inorg. Chem. 18, 1940-1947.]; Lee et al., 1990[Lee, T. J., Chang, Y., Chung, C. S. & Wang, Y. M. (1990). Acta Cryst. C46, 2360-2363.]; Pal et al., 1986[Pal, J., Murmann, R. K., Schlemper, E. O., Kay Fair, C. & Hussain, M. S. (1986). Inorg. Chim. Acta, 115, 153-161.]; Kiani et al., 2002[Kiani, S., Staples, R. J. & Packard, A. B. (2002). Acta Cryst. C58, m593-m596.]) or an anion (Tahirov et al., 1993,[Tahirov, T. H., Lu, T.-H., Luh, H. & Chung, C.-S. (1993). Acta Cryst. C49, 801-803.] 1995[Tahirov, T. H., Lu, T.-H., Luh, H., Lai, C.-Y. & Chung, C.-S. (1995). Acta Cryst. C51, 846-849.]; Jiang et al., 1993[Jiang, Z., Bai, L., Liao, D., Huang, J., Wang, G., Wang, H. & Yao, X. (1993). Polyhedron, 12, 523-525.]; Nunes et al., 1999[Nunes, F. S., Murta, P. D. M. L. & Da Cunha, C. J. (1999). J. Coord. Chem. 47, 251-267.]; Gavel & Schlemper, 1979[Gavel, D. P. & Schlemper, E. O. (1979). Inorg. Chem. 18, 283-286.]; Lee et al., 1991[Lee, T. J., Lee, T. Y., Chung, C. S. & Wang, Y. M. (1991). Acta Cryst. C47, 711-714.]; Liss et al., 1975[Liss, I. B. & Schlemper, E. O. (1975). Inorg. Chem. 14, 3035-3039.]; Schlemper et al., 1981[Schlemper, E. O., Hussain, M. S. & Murmann, R. K. (1981). Acta Cryst. B37, 234-237.]) coordinated axially, or have dinuclear (Tahirov et al., 1993[Tahirov, T. H., Lu, T.-H., Luh, H. & Chung, C.-S. (1993). Acta Cryst. C49, 801-803.]; Fraser et al., 1972[Fraser, J. W., Hedwig, G. R., Powell, H. K. J. & Robinson, W. T. (1972). Aust. J. Chem. 25, 747-759.]; Timmons et al., 1981[Timmons, J. H., Martin, J. W. L., Martell, A. E., Rudolf, P., Clearfield, A. & Buckley, R. C. (1981). Inorg. Chem. 20, 3056-3060.]; Kiani et al., 2002[Kiani, S., Staples, R. J. & Packard, A. B. (2002). Acta Cryst. C58, m593-m596.]; Pal et al., 1986[Pal, J., Murmann, R. K., Schlemper, E. O., Kay Fair, C. & Hussain, M. S. (1986). Inorg. Chim. Acta, 115, 153-161.]; Fun et al., 1993[Fun, H.-K., Lee, T. J., Tahirov, T., Lu, H., Luh, T. H. & Chung, C. S. (1993). J. Chin. Chem. Soc. (Taipei), 40, 429-435.]) or chain polymeric structures (Bertrand et al., 1977[Bertrand, J. A., Smith, J. H. & Van Derveer, D. G. (1977). Inorg. Chem. 16, 1484-1488.]) with an oximate O atom bridging to the axial site. The work presented here is the first report of a tri­aza–oxime–oximate compound in which the pentadentate ligand donor atoms occupy all five coordination sites about the copper(II).

[Figure 1]

Figure 1

The cation of (I[link]), drawn with displacement ellipsoids at the 50% probability level. H atoms bonded to C atoms have been omitted for clarity, and H atoms bonded to N or O atoms are shown as circles of arbitrary radii.

Experimental

The starting material, 4,4,12,12-tetra­methyl-5,8,11-tri­aza­penta-2,14-dione di­hydro­perchlorate, was prepared by reaction of 3-aza­pentane-1,5-di­amine (diethyl­enetri­amine) di­hydro­perchlorate with acetone (Morgan et al., 1982[Morgan, K. R., Gainsford, G. J. & Curtis, N. F. (1982). Aust. J. Chem. 35, 1105-1117.]). The title compound was prepared by reaction of the starting material with [Cu(H2O)6](ClO4)2, hydroxylamine hydro­chloride and triethyl­amine in a 1:1:2:5 molar ratio in methanol. The green product which crystallized on addition of propan-2-ol was recrystallized by dissolving in methanol, adding propan-2-ol until just turbid, and allowing the solvent to evaporate.

Crystal data
  • [Cu(C16H34N5O2)]ClO4

  • Mr = 491.47

  • Monoclinic, P21/c

  • a = 10.8307 (7) Å

  • b = 23.9974 (15) Å

  • c = 8.6318 (6) Å

  • β = 90.058 (2)°

  • V = 2243.5 (3) Å3

  • Z = 4

  • Dx = 1.455 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 9707 reflections

  • θ = 2.1–28.4°

  • μ = 1.13 mm−1

  • T = 160 (2) K

  • Plate, green

  • 0.62 × 0.28 × 0.10 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • ω rotation scans with narrow frame

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.540, Tmax = 0.895

  • 12 927 measured reflections

  • 4845 independent reflections

  • 4392 reflections with I > 2σ(I)

  • Rint = 0.035

  • θmax = 28.4°

  • h = −10 → 14

  • k = −26 → 30

  • l = −11 → 11

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.100

  • S = 1.12

  • 4845 reflections

  • 271 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0379P)2 + 3.1169P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1

Selected geometric parameters (Å, °)

Cu1—N2 2.067 (2) 
Cu1—N14 2.088 (2)
Cu1—N11 2.096 (2)
Cu1—N5 2.138 (2)
Cu1—N8 2.182 (2)
N2—C2 1.285 (3)
N2—O2 1.420 (3)
C14—N14 1.292 (3)
N14—O14 1.426 (3)
N2—Cu1—N14 93.32 (9)
N2—Cu1—N11 175.79 (8)
N14—Cu1—N11 89.90 (8)
N2—Cu1—N5 89.33 (8)
N14—Cu1—N5 165.85 (8)
N11—Cu1—N5 88.20 (8)
N2—Cu1—N8 93.82 (8)
N14—Cu1—N8 110.13 (8)
N11—Cu1—N8 82.52 (8)
N5—Cu1—N8 83.53 (7)
C2—N2—O2 113.4 (2)
C2—N2—Cu1 130.4 (2)
O2—N2—Cu1 113.9 (2)
N2—C2—C3 122.7 (2)
C1—C2—C3 118.1 (2)
C2—C3—C4 121.8 (2)
C14—C13—C12 122.3 (2)
N14—C14—C15 118.9 (3)
N14—C14—C13 122.8 (2)
C15—C14—C13 118.2 (2)
C14—N14—O14 113.6 (2)
C14—N14—Cu1 129.3 (2)
O14—N14—Cu1 117.1 (2)

Table 2

Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O14 1.14 (4) 1.27 (4) 2.395 (3) 171 (4)
O2—H2⋯N14 1.14 (4) 2.16 (4) 3.044 (3) 132 (3)
N5—H5⋯O5 0.93 2.34 3.257 (4) 167
N8—H8⋯O14i 0.93 2.12 3.009 (3) 160
N11—H11⋯O4 0.93 2.58 3.437 (4) 154
Symmetry code: (i) [x,{\script{1\over 2}}-y,{\script{1\over 2}}+z].

For atom H2, the positional coordinates were refined, with Uiso = 1.5Ueq(O2). All other H atoms were treated as riding atoms, with N—H distances of 0.93 Å and C—H distances of 0.98 or 0.99 Å, and with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(C).

Data collection: SMART (Siemens, 1995[Siemens (1995). SMART and SAINT. Versions 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: local programs; data reduction: SAINT (Siemens, 1995[Siemens (1995). SMART and SAINT. Versions 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information



Comment top

The structure of the title copper(II) compound with a pentadentate triamino-oximo-oximato ligand, (I), is reported. The ligand is the mono-deprotonated dioxime of the triamine-diketone 4,4,12,12-tetramethyl-5,8,11-triazapenta-2,14-dione, which is formed (as the dihydroperchlorate salt) by reaction of 3-azapentane-1,5-diamine dihydroperchlorate with acetone (see scheme) (Morgan et al., 1982). \sch

Compound (I) has discrete cations, with CuII in a square-pyramidal coordination (Fig. 1), and perchlorate anions. The oximo atom N2, oximato atom N14, and secondary amine atoms N5 and N11, are coordinated in the tetrahedrally twisted basal plane, with the bond to the axially coordinated secondary amine atom N8 being significantly longer. Displacements from the mean square plane defined by atoms N2, N5, N11 and N14 are: N2 0.154, N5 − 0.158, N11 0.158, N14 − 0.154, Cu 0.100, N8 2.213, O2 0.793 and O14 0.082 Å (s.u. 0.003 Å), and trans-angles are N2—Cu—N11 175.75 (8)° and N14—Cu—N5 165.87 (8)°. The five-membered chelate rings both have asymmetrical gauche conformations [displacements of atoms from the Cu/N5/N8 plane: C6 0.145 and C7 0.697 Å; from the Cu/N8/N11 plane: C9 0.035 and C10 0.683 Å], while the six-membered chelate rings have `half-chair' conformations, with the methyl substituents C41 and C121 axially oriented [displacements from the Cu/N2/N5 plane: C2 0.052, C3 0.445, C4 0.948, C41 − 2.323 and C42 1.050 Å; from the Cu/N11/N14 plane: C12 0.984, C121 2.355, C122 1.039, C13 0.590 and C14 0.263 Å].

The atoms O2 of the oximo and O14 of the oximato group are linked by a short hydrogen bond (Table 2), as is common for oximo-oximato compounds, to form a pseudo-macrocyclic ligand. The cations are linked into a one-dimensional chain, with base vector 001, by weak intramolecular hydrogen bonding. The perchlorate ion shows rotational disorder which was not modelled.

Structures of a number of copper(II) compounds with tetradentate diaza-oximo-oximato ligands with short O—H···O hydrogen-bonded 14- to 16-membered pseudo-cyclic structures have been reported. These generally have square-pyramidal coordination, with water (Nunes et al., 1999; Anderson & Packard, 1979; Schlemper et al., 1981; Lee et al., 1990; Pal et al., 1986) or an anion (Tahirov et al., 1995; Jiang et al., 1993; Nunes et al., 1999; Gavel & Schlemper, 1979; Lee et al., 1991) coordinated axially, or have dinuclear (Tahirov et al., 1993; Fraser et al., 1972) or chain polymeric structures (Bertrand et al., 1977) with µ-oximato-O bridging to the axial site. The work presented here is the first report of a triaza-oximo-oximato compound in which the pentadentate ligand donor atoms occupy all five coordination sites about the copper(II).

Experimental top

(4,4,12,12-Tetramethyl-5,8,11-triazapenta-2,14-dione dihydroperchlorate was prepared by reaction of 3-azapentane-1,5-diamine (diethylenetriamine) dihydroperchlorate with acetone (Morgan et al., 1982). The title compound was prepared by reaction of this, [Cu(H2O)6](ClO4)2, hydroxylamine hydrochloride and triethylamine in a 1:1:2:5 molar ratio in methanol. The green product which crystallized on addition of propan-2-ol was recrystallized from methanol/propan-2-ol.

Refinement top

For atom H2, the positional coordinates were refined, with Uiso = 1.5Ueq(O2). All other H atoms were treated as riding atoms, with N—H distances of 0.93 Å and C—H distances of 0.98 or 0.99 Å, and with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(C). Please check added text.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: local programs; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The cation of (I), drawn with displacement ellipsoids at the 50% probability level. H atoms bonded to C atoms have been omitted for clarity and H atoms bonded to N or O atoms are shown as circles of arbitrary radii.
(4,4,12,12-Tetramethyl-5,8,11-triazapenta-2,14-dione 2-oxime 14-oximato-κ5N)copper(II) perchlorate top
Crystal data top
[Cu(C16H34N5O2)]ClO4 F(000) = 1036
Mr = 491.47 Dx = 1.455 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9707 reflections
a = 10.8307 (7) Å θ = 2.1–28.4°
b = 23.9974 (15) Å µ = 1.13 mm1
c = 8.6318 (6) Å T = 160 K
β = 90.058 (2)° Plate, green
V = 2243.5 (3) Å3 0.62 × 0.28 × 0.10 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector

diffractometer
4845 independent reflections
Radiation source: fine-focus sealed tube 4392 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.035
ω rotation with narrow frames scans θmax = 28.4°, θmin = 1.7°
Absorption correction: multi-scan

(Blessing, 1995)
h = 1014
Tmin = 0.540, Tmax = 0.895 k = 2630
12927 measured reflections l = 1111
Refinement top
Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100 H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0379P)2 + 3.1169P]

where P = (Fo2 + 2Fc2)/3
4845 reflections (Δ/σ)max = 0.001
271 parameters Δρmax = 0.64 e Å3
0 restraints Δρmin = 0.70 e Å3
Crystal data top
[Cu(C16H34N5O2)]ClO4 V = 2243.5 (3) Å3
Mr = 491.47 Z = 4
Monoclinic, P21/c Mo Kα radiation
a = 10.8307 (7) Å µ = 1.13 mm1
b = 23.9974 (15) Å T = 160 K
c = 8.6318 (6) Å 0.62 × 0.28 × 0.10 mm
β = 90.058 (2)°
Data collection top
Siemens SMART CCD area-detector

diffractometer
4845 independent reflections
Absorption correction: multi-scan

(Blessing, 1995)
4392 reflections with I > 2σ(I)
Tmin = 0.540, Tmax = 0.895 Rint = 0.035
12927 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040 0 restraints
wR(F2) = 0.100 H atoms treated by a mixture of independent and constrained refinement
S = 1.12 Δρmax = 0.64 e Å3
4845 reflections Δρmin = 0.70 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 16 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R-factor(obs.) and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

H(2) located from difference syntheses and the position refined, other H atoms are riding in calculated positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
Cu1 0.26542 (2) 0.346322 (12) 0.81688 (3) 0.01749 (9)
N2 0.4077 (2) 0.28900 (9) 0.8262 (2) 0.0238 (4)
O2 0.37197 (19) 0.23610 (8) 0.8847 (2) 0.0346 (4)
H2 0.275 (3) 0.2292 (15) 0.838 (4) 0.052*
C1 0.6098 (3) 0.24921 (13) 0.8809 (4) 0.0403 (7)
H1A 0.6958 0.2620 0.8798 0.060*
H1B 0.6011 0.2168 0.8128 0.060*
H1C 0.5866 0.2388 0.9868 0.060*
C2 0.5252 (2) 0.29625 (11) 0.8237 (3) 0.0260 (5)
C3 0.5853 (2) 0.35189 (11) 0.7758 (3) 0.0264 (5)
H3A 0.6483 0.3430 0.6965 0.032*
H3B 0.6304 0.3660 0.8676 0.032*
C4 0.5073 (2) 0.40154 (10) 0.7113 (3) 0.0199 (5)
C41 0.4550 (2) 0.38715 (11) 0.5513 (3) 0.0255 (5)
H4A 0.5231 0.3821 0.4779 0.038*
H4B 0.4016 0.4175 0.5156 0.038*
H4C 0.4069 0.3526 0.5579 0.038*
C42 0.5873 (2) 0.45630 (11) 0.6981 (3) 0.0281 (5)
H4D 0.6510 0.4512 0.6188 0.042*
H4E 0.6266 0.4641 0.7980 0.042*
H4F 0.5339 0.4876 0.6692 0.042*
N5 0.39863 (17) 0.41209 (8) 0.8164 (2) 0.0183 (4)
H5 0.3582 0.4428 0.7749 0.022*
C6 0.4288 (2) 0.42768 (11) 0.9806 (3) 0.0237 (5)
H6A 0.3852 0.4626 1.0074 0.028*
H6B 0.5186 0.4347 0.9895 0.028*
C7 0.3911 (2) 0.38126 (11) 1.0982 (3) 0.0250 (5)
H7A 0.4504 0.3500 1.0914 0.030*
H7B 0.3947 0.3964 1.2048 0.030*
N8 0.26537 (19) 0.36052 (9) 1.0665 (2) 0.0226 (4)
H8 0.2503 0.3276 1.1199 0.027*
C9 0.1673 (2) 0.40327 (12) 1.1010 (3) 0.0285 (6)
H9A 0.2049 0.4408 1.1050 0.034*
H9B 0.1298 0.3954 1.2032 0.034*
C10 0.0682 (2) 0.40182 (12) 0.9764 (3) 0.0269 (5)
H10A 0.0221 0.3663 0.9823 0.032*
H10B 0.0091 0.4327 0.9926 0.032*
N11 0.12680 (17) 0.40724 (9) 0.8219 (2) 0.0196 (4)
H11 0.1661 0.4417 0.8198 0.024*
C12 0.0397 (2) 0.40594 (11) 0.6866 (3) 0.0241 (5)
C121 0.1177 (2) 0.40810 (13) 0.5394 (3) 0.0325 (6)
H12A 0.0634 0.4110 0.4489 0.049*
H12B 0.1674 0.3741 0.5316 0.049*
H12C 0.1724 0.4406 0.5433 0.049*
C122 0.0472 (2) 0.45843 (12) 0.6906 (3) 0.0320 (6)
H12D 0.0980 0.4593 0.5966 0.048*
H1DE 0.0031 0.4923 0.6959 0.048*
H1DF 0.1008 0.4564 0.7818 0.048*
C13 0.0378 (2) 0.35071 (12) 0.6889 (3) 0.0297 (6)
H13A 0.0991 0.3546 0.7732 0.036*
H14B 0.0850 0.3496 0.5907 0.036*
C14 0.0225 (2) 0.29281 (12) 0.7086 (3) 0.0301 (6)
C15 0.0560 (3) 0.24084 (15) 0.6724 (5) 0.0522 (9)
H15A 0.0257 0.2233 0.5772 0.078*
H15B 0.1424 0.2519 0.6585 0.078*
H15C 0.0497 0.2144 0.7585 0.078*
N14 0.13391 (19) 0.28621 (9) 0.7588 (2) 0.0244 (4)
O14 0.16859 (18) 0.22928 (8) 0.7772 (2) 0.0332 (4)
Cl1 0.24086 (5) 0.57184 (3) 0.78760 (7) 0.02500 (14)
O3 0.1308 (2) 0.59374 (10) 0.7192 (3) 0.0506 (6)
O4 0.2130 (2) 0.53993 (12) 0.9258 (3) 0.0582 (7)
O5 0.2965 (4) 0.53074 (15) 0.6855 (4) 0.0956 (13)
O6 0.3219 (3) 0.61731 (13) 0.8189 (5) 0.0952 (13)
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
Cu1 0.01918 (15) 0.01854 (16) 0.01474 (14) 0.00032 (11) 0.00124 (10) 0.00069 (10)
N2 0.0294 (10) 0.0197 (10) 0.0224 (10) 0.0034 (8) 0.0008 (8) 0.0003 (8)
O2 0.0387 (11) 0.0239 (10) 0.0413 (11) 0.0000 (8) 0.0028 (9) 0.0111 (8)
C1 0.0339 (15) 0.0363 (16) 0.0507 (18) 0.0111 (13) 0.0039 (13) 0.0069 (14)
C2 0.0280 (12) 0.0275 (13) 0.0227 (11) 0.0079 (10) 0.0008 (9) 0.0017 (10)
C3 0.0198 (11) 0.0309 (14) 0.0285 (12) 0.0048 (10) 0.0010 (9) 0.0023 (10)
C4 0.0177 (10) 0.0247 (12) 0.0172 (10) 0.0002 (9) 0.0030 (8) 0.0013 (9)
C41 0.0255 (12) 0.0344 (14) 0.0168 (11) 0.0013 (10) 0.0047 (9) 0.0005 (10)
C42 0.0254 (12) 0.0334 (14) 0.0254 (12) 0.0056 (11) 0.0053 (10) 0.0007 (11)
N5 0.0182 (9) 0.0228 (10) 0.0139 (8) 0.0003 (7) 0.0013 (7) 0.0003 (7)
C6 0.0267 (12) 0.0264 (13) 0.0181 (11) 0.0037 (10) 0.0013 (9) 0.0049 (9)
C7 0.0291 (12) 0.0311 (14) 0.0147 (10) 0.0003 (10) 0.0017 (9) 0.0013 (9)
N8 0.0270 (10) 0.0259 (11) 0.0150 (9) 0.0018 (8) 0.0024 (8) 0.0021 (8)
C9 0.0293 (13) 0.0379 (15) 0.0182 (11) 0.0019 (11) 0.0072 (10) 0.0051 (10)
C10 0.0249 (12) 0.0347 (15) 0.0213 (11) 0.0008 (10) 0.0084 (9) 0.0021 (10)
N11 0.0184 (9) 0.0232 (10) 0.0172 (9) 0.0001 (8) 0.0015 (7) 0.0003 (8)
C12 0.0194 (11) 0.0321 (14) 0.0210 (11) 0.0020 (10) 0.0001 (9) 0.0021 (10)
C121 0.0255 (12) 0.0510 (18) 0.0209 (12) 0.0069 (12) 0.0005 (10) 0.0068 (11)
C122 0.0236 (12) 0.0378 (16) 0.0346 (14) 0.0065 (11) 0.0008 (10) 0.0037 (12)
C13 0.0201 (11) 0.0388 (16) 0.0304 (13) 0.0011 (11) 0.0024 (10) 0.0060 (11)
C14 0.0264 (12) 0.0340 (15) 0.0299 (13) 0.0049 (11) 0.0025 (10) 0.0097 (11)
C15 0.0358 (16) 0.0418 (19) 0.079 (3) 0.0086 (14) 0.0065 (16) 0.0214 (18)
N14 0.0263 (10) 0.0222 (11) 0.0249 (10) 0.0010 (8) 0.0031 (8) 0.0046 (8)
O14 0.0359 (10) 0.0207 (10) 0.0430 (11) 0.0020 (8) 0.0031 (9) 0.0059 (8)
Cl1 0.0210 (3) 0.0289 (3) 0.0250 (3) 0.0016 (2) 0.0004 (2) 0.0049 (2)
O3 0.0359 (12) 0.0545 (15) 0.0613 (15) 0.0046 (10) 0.0212 (11) 0.0138 (12)
O4 0.0479 (13) 0.0808 (19) 0.0460 (13) 0.0167 (13) 0.0181 (11) 0.0349 (13)
O5 0.137 (3) 0.098 (3) 0.0518 (17) 0.078 (2) 0.0264 (18) 0.0059 (16)
O6 0.079 (2) 0.068 (2) 0.138 (3) 0.0430 (17) 0.067 (2) 0.045 (2)
Geometric parameters (Å, º) top
Cu1—N2 2.067 (2) N8—C9 1.507 (3)
Cu1—N14 2.088 (2) N8—H8 0.9300
Cu1—N11 2.096 (2) C9—C10 1.519 (4)
Cu1—N5 2.138 (2) C9—H9A 0.9900
Cu1—N8 2.1816 (19) C9—H9B 0.9900
N2—C2 1.285 (3) C10—N11 1.483 (3)
N2—O2 1.420 (3) C10—H10A 0.9900
O2—H2 1.14 (4) C10—H10B 0.9900
C1—C2 1.535 (4) N11—C12 1.500 (3)
C1—H1A 0.9800 N11—H11 0.9300
C1—H1B 0.9800 C12—C121 1.527 (3)
C1—H1C 0.9800 C12—C13 1.569 (4)
C2—C3 1.542 (4) C12—C122 1.573 (4)
C3—C4 1.563 (3) C121—H12A 0.9800
C3—H3A 0.9900 C121—H12B 0.9800
C3—H3B 0.9900 C121—H12C 0.9800
C4—N5 1.508 (3) C122—H12D 0.9800
C4—C41 1.532 (3) C122—H1DE 0.9800
C4—C42 1.578 (3) C122—H1DF 0.9800
C41—H4A 0.9800 C13—C14 1.545 (4)
C41—H4B 0.9800 C13—H13A 0.9900
C41—H4C 0.9800 C13—H14B 0.9900
C42—H4D 0.9800 C14—N14 1.292 (3)
C42—H4E 0.9800 C14—C15 1.541 (4)
C42—H4F 0.9800 C15—H15A 0.9800
N5—C6 1.501 (3) C15—H15B 0.9800
N5—H5 0.9300 C15—H15C 0.9800
C6—C7 1.561 (3) N14—O14 1.426 (3)
C6—H6A 0.9900 O14—H2 1.27 (4)
C6—H6B 0.9900 Cl1—O6 1.426 (3)
C7—N8 1.475 (3) Cl1—O3 1.429 (2)
C7—H7A 0.9900 Cl1—O4 1.449 (2)
C7—H7B 0.9900 Cl1—O5 1.454 (3)
N2—Cu1—N14 93.32 (9) C7—N8—Cu1 103.58 (13)
N2—Cu1—N11 175.79 (8) C9—N8—Cu1 107.60 (14)
N14—Cu1—N11 89.90 (8) C7—N8—H8 110.9
N2—Cu1—N5 89.33 (8) C9—N8—H8 110.9
N14—Cu1—N5 165.85 (8) Cu1—N8—H8 110.9
N11—Cu1—N5 88.20 (8) N8—C9—C10 110.0 (2)
N2—Cu1—N8 93.82 (8) N8—C9—H9A 109.7
N14—Cu1—N8 110.13 (8) C10—C9—H9A 109.7
N11—Cu1—N8 82.52 (8) N8—C9—H9B 109.7
N5—Cu1—N8 83.53 (7) C10—C9—H9B 109.7
C2—N2—O2 113.4 (2) H9A—C9—H9B 108.2
C2—N2—Cu1 130.37 (18) N11—C10—C9 109.4 (2)
O2—N2—Cu1 113.90 (15) N11—C10—H10A 109.8
N2—O2—H2 104.9 (19) C9—C10—H10A 109.8
C2—C1—H1A 109.5 N11—C10—H10B 109.8
C2—C1—H1B 109.5 C9—C10—H10B 109.8
H1A—C1—H1B 109.5 H10A—C10—H10B 108.2
C2—C1—H1C 109.5 C10—N11—C12 115.38 (18)
H1A—C1—H1C 109.5 C10—N11—Cu1 105.33 (15)
H1B—C1—H1C 109.5 C12—N11—Cu1 114.78 (15)
N2—C2—C1 119.1 (2) C10—N11—H11 106.9
N2—C2—C3 122.7 (2) C12—N11—H11 106.9
C1—C2—C3 118.1 (2) Cu1—N11—H11 106.9
C2—C3—C4 121.8 (2) N11—C12—C121 107.40 (19)
C2—C3—H3A 106.9 N11—C12—C13 110.1 (2)
C4—C3—H3A 106.9 C121—C12—C13 109.6 (2)
C2—C3—H3B 106.9 N11—C12—C122 110.0 (2)
C4—C3—H3B 106.9 C121—C12—C122 108.8 (2)
H3A—C3—H3B 106.7 C13—C12—C122 110.8 (2)
N5—C4—C41 107.01 (18) C12—C121—H12A 109.5
N5—C4—C3 109.59 (19) C12—C121—H12B 109.5
C41—C4—C3 110.4 (2) H12A—C121—H12B 109.5
N5—C4—C42 109.42 (19) C12—C121—H12C 109.5
C41—C4—C42 108.95 (19) H12A—C121—H12C 109.5
C3—C4—C42 111.35 (19) H12B—C121—H12C 109.5
C4—C41—H4A 109.5 C12—C122—H12D 109.5
C4—C41—H4B 109.5 C12—C122—H1DE 109.5
H4A—C41—H4B 109.5 H12D—C122—H1DE 109.5
C4—C41—H4C 109.5 C12—C122—H1DF 109.5
H4A—C41—H4C 109.5 H12D—C122—H1DF 109.5
H4B—C41—H4C 109.5 H1DE—C122—H1DF 109.5
C4—C42—H4D 109.5 C14—C13—C12 122.3 (2)
C4—C42—H4E 109.5 C14—C13—H13A 106.7
H4D—C42—H4E 109.5 C12—C13—H13A 106.7
C4—C42—H4F 109.5 C14—C13—H14B 106.7
H4D—C42—H4F 109.5 C12—C13—H14B 106.7
H4E—C42—H4F 109.5 H13A—C13—H14B 106.6
C6—N5—C4 116.16 (18) N14—C14—C15 118.9 (3)
C6—N5—Cu1 109.17 (14) N14—C14—C13 122.8 (2)
C4—N5—Cu1 113.83 (14) C15—C14—C13 118.2 (2)
C6—N5—H5 105.6 C14—C15—H15A 109.5
C4—N5—H5 105.6 C14—C15—H15B 109.5
Cu1—N5—H5 105.6 H15A—C15—H15B 109.5
N5—C6—C7 112.28 (19) C14—C15—H15C 109.5
N5—C6—H6A 109.1 H15A—C15—H15C 109.5
C7—C6—H6A 109.1 H15B—C15—H15C 109.5
N5—C6—H6B 109.1 C14—N14—O14 113.6 (2)
C7—C6—H6B 109.1 C14—N14—Cu1 129.26 (19)
H6A—C6—H6B 107.9 O14—N14—Cu1 117.11 (15)
N8—C7—C6 111.22 (19) N14—O14—H2 106.7 (17)
N8—C7—H7A 109.4 O6—Cl1—O3 108.03 (17)
C6—C7—H7A 109.4 O6—Cl1—O4 112.1 (2)
N8—C7—H7B 109.4 O3—Cl1—O4 111.10 (15)
C6—C7—H7B 109.4 O6—Cl1—O5 112.3 (3)
H7A—C7—H7B 108.0 O3—Cl1—O5 110.19 (19)
C7—N8—C9 112.6 (2) O4—Cl1—O5 103.13 (18)
Hydrogen-bond geometry (Å, º) top
D—H···A D—H H···A D···A D—H···A
O2—H2···O14 1.14 (4) 1.27 (4) 2.395 (3) 171 (4)
O2—H2···N14 1.14 (4) 2.16 (4) 3.044 (3) 132 (3)
N5—H5···O5 0.93 2.34 3.257 (4) 167
N8—H8···O14i 0.93 2.12 3.009 (3) 160
N11—H11···O4 0.93 2.58 3.437 (4) 154
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula [Cu(C16H34N5O2)]ClO4
Mr 491.47
Crystal system, space group Monoclinic, P21/c
Temperature (K) 160
a, b, c (Å) 10.8307 (7), 23.9974 (15), 8.6318 (6)
β (°) 90.058 (2)
V3) 2243.5 (3)
Z 4
Radiation type Mo Kα
µ (mm1) 1.13
Crystal size (mm) 0.62 × 0.28 × 0.10
Data collection
Diffractometer Siemens SMART CCD area-detector

diffractometer
Absorption correction Multi-scan

(Blessing, 1995)
Tmin, Tmax 0.540, 0.895
No. of measured, independent and

observed [I > 2σ(I)] reflections
12927, 4845, 4392
Rint 0.035
(sin θ/λ)max1) 0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.100, 1.12
No. of reflections 4845
No. of parameters 271
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3) 0.64, 0.70

Computer programs: SMART (Siemens, 1995), local programs, SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Cu1—N2 2.067 (2) N2—C2 1.285 (3)
Cu1—N14 2.088 (2) N2—O2 1.420 (3)
Cu1—N11 2.096 (2) C14—N14 1.292 (3)
Cu1—N5 2.138 (2) N14—O14 1.426 (3)
Cu1—N8 2.1816 (19)
N2—Cu1—N14 93.32 (9) O2—N2—Cu1 113.90 (15)
N2—Cu1—N11 175.79 (8) N2—C2—C3 122.7 (2)
N14—Cu1—N11 89.90 (8) C1—C2—C3 118.1 (2)
N2—Cu1—N5 89.33 (8) C2—C3—C4 121.8 (2)
N14—Cu1—N5 165.85 (8) C14—C13—C12 122.3 (2)
N11—Cu1—N5 88.20 (8) N14—C14—C15 118.9 (3)
N2—Cu1—N8 93.82 (8) N14—C14—C13 122.8 (2)
N14—Cu1—N8 110.13 (8) C15—C14—C13 118.2 (2)
N11—Cu1—N8 82.52 (8) C14—N14—O14 113.6 (2)
N5—Cu1—N8 83.53 (7) C14—N14—Cu1 129.26 (19)
C2—N2—O2 113.4 (2) O14—N14—Cu1 117.11 (15)
C2—N2—Cu1 130.37 (18)
Hydrogen-bond geometry (Å, º) top
D—H···A D—H H···A D···A D—H···A
O2—H2···O14 1.14 (4) 1.27 (4) 2.395 (3) 171 (4)
O2—H2···N14 1.14 (4) 2.16 (4) 3.044 (3) 132 (3)
N5—H5···O5 0.93 2.34 3.257 (4) 167
N8—H8···O14i 0.93 2.12 3.009 (3) 160
N11—H11···O4 0.93 2.58 3.437 (4) 154
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Professor W. Clegg, University of Newcastle, for the use of the diffractometer.

References

First citationAnderson, O. P. & Packard, A. B. (1979). Inorg. Chem. 18, 1940–1947.  CSD CrossRef CAS Web of Science Google Scholar

First citationBertrand, J. A., Smith, J. H. & Van Derveer, D. G. (1977). Inorg. Chem. 16, 1484–1488.  CSD CrossRef CAS Web of Science Google Scholar

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar

First citationFraser, J. W., Hedwig, G. R., Powell, H. K. J. & Robinson, W. T. (1972). Aust. J. Chem. 25, 747–759.  CrossRef CAS Google Scholar

First citationFun, H.-K., Lee, T. J., Tahirov, T., Lu, H., Luh, T. H. & Chung, C. S. (1993). J. Chin. Chem. Soc. (Taipei), 40, 429–435.  CAS Google Scholar

First citationGavel, D. P. & Schlemper, E. O. (1979). Inorg. Chem. 18, 283–286.  CSD CrossRef CAS Web of Science Google Scholar

First citationJiang, Z., Bai, L., Liao, D., Huang, J., Wang, G., Wang, H. & Yao, X. (1993). Polyhedron, 12, 523–525.  CSD CrossRef CAS Web of Science Google Scholar

First citationKiani, S., Staples, R. J. & Packard, A. B. (2002). Acta Cryst. C58, m593–m596.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

First citationLee, T. J., Chang, Y., Chung, C. S. & Wang, Y. M. (1990). Acta Cryst. C46, 2360–2363.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

First citationLee, T. J., Lee, T. Y., Chung, C. S. & Wang, Y. M. (1991). Acta Cryst. C47, 711–714.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

First citationLiss, I. B. & Schlemper, E. O. (1975). Inorg. Chem. 14, 3035–3039.  CSD CrossRef CAS Web of Science Google Scholar

First citationMorgan, K. R., Gainsford, G. J. & Curtis, N. F. (1982). Aust. J. Chem. 35, 1105–1117.  CSD CrossRef CAS Google Scholar

First citationNunes, F. S., Murta, P. D. M. L. & Da Cunha, C. J. (1999). J. Coord. Chem. 47, 251–267.  Web of Science CrossRef CAS Google Scholar

First citationPal, J., Murmann, R. K., Schlemper, E. O., Kay Fair, C. & Hussain, M. S. (1986). Inorg. Chim. Acta, 115, 153–161.  CSD CrossRef CAS Web of Science Google Scholar

First citationSchlemper, E. O., Hussain, M. S. & Murmann, R. K. (1981). Acta Cryst. B37, 234–237.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

First citationSiemens (1995). SMART and SAINT. Versions 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

First citationTahirov, T. H., Lu, T.-H., Luh, H. & Chung, C.-S. (1993). Acta Cryst. C49, 801–803.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

First citationTahirov, T. H., Lu, T.-H., Luh, H., Lai, C.-Y. & Chung, C.-S. (1995). Acta Cryst. C51, 846–849.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

First citationTimmons, J. H., Martin, J. W. L., Martell, A. E., Rudolf, P., Clearfield, A. & Buckley, R. C. (1981). Inorg. Chem. 20, 3056–3060.  CSD CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logo STRUCTURAL

CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds