addenda and errata\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logo STRUCTURAL

CHEMISTRY
ISSN: 2053-2296

Tricoccin R2. Erratum

CROSSMARK_Color_square_no_text.svg

aDepartment of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, bLaboratory Voor Kristallografie, Nieuwe Achtergracht 166, 1018 WU, Amsterdam, The Netherlands, and cInstitute of Organic Chemistry, University of Kiel, D-2300 Kiel, Olshausenstrasse, Be 40-60, Germany

*Correspondence e-mail: [email protected]

(Received 6 December 2000; accepted 18 December 2000)

The crystal structure of the title compound, C25H26O7, was published with erroneous positions for a C atom and the O atom in ring F [Sekar et al. (1996[Sekar, K., Parthasarathy, S., Schenk, H., Epe, B. & Mondon, A. (1996). Acta Cryst. C52, 92-94.]). Acta Cryst. (1996), C52, 92–94]. This has now been corrected and leads to a more sensible bond length and angle geometry.

1. Comment

During a comparative study of the molecular structure of Tricoccin R6 (Abdul Ajees et al., 2001[Abdul Ajees, A., Sekar, K., Parthasarathy, S., Schenk, H., Epe, B. & Mondon, A. (2001). Acta Cryst. E57 o116-117.]) with that of the related compound Tricoccin R2[link] (Sekar et al., 1996[Sekar, K., Parthasarathy, S., Schenk, H., Epe, B. & Mondon, A. (1996). Acta Cryst. C52, 92-94.]) it was found that

[Scheme 1]
the geometry of the mol­ecules in the two structures agreed well except in the region of ring F of Tricoccin R2[link]. This could be traced to a wrong assignment of two of the atoms in ring F of Tricoccin R2[link]. That is, the neighbours of atoms C21 and C22 in ring F of Tricoccin R2 are to be taken as O and C atoms, respectively, instead of C and O as in the original report. The structure of Tricoccin R2[link] thus modified was refined and converged to a lower R value and the final difference Fourier was better. There is now better agreement of the geometry of ring F of Tricoccin R2[link] with that of Tricoccin R6.
[Figure 1]

Figure 1

The molecular structure of the title compound with 30% probability displacement ellipsoids

2. Experimental

2.1.1. Crystal data
  • C25H26O7

  • Mr = 438.46

  • Monoclinic, C2

  • a = 22.939 (1) Å

  • b = 6.574 (2) Å

  • c = 16.481 (2) Å

  • β = 114.67 (1)°

  • V = 2258.5 (7) Å3

  • Z = 4

  • Dx = 1.289 Mg m−3

  • Cu Kα radiation

  • Cell parameters from 25 reflections

  • θ = 20–30°

  • μ = 0.78 mm−1

  • T = 293 (2) K

  • Needle, colourless

  • 0.30 × 0.25 × 0.20 mm

2.1.2. Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • ω/2θ scans

  • Absorption correction: empirical ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])Tmin = 0.961, Tmax = 0.991

  • 2312 measured reflections

  • 2230 independent reflections

  • 2054 reflections with I > 2σ(I)

  • Rint = 0.027

  • θmax = 70.3°

  • h = −25 → 27

  • k = 0 → 8

  • l = −19 → 0

  • 2 standard reflections frequency: 120 min intensity decay: <1%

2.1.3. Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.103

  • S = 1.07

  • 2230 reflections

  • 293 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0588P)2 + 0.6138P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.12 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0018 (2)

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Flack parameter = 0.1 (3)

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: SDP (Frenz, 1978[Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP. Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld & G. C. Bassi, pp. 64-71. Delft University Press.]); data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Release 97-2. Uni­versity of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Release 97-2. Uni­versity of Göttingen, Germany.]).

Supporting information



Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: SDP (Frenz, 1978); data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

(I) top
Crystal data top
C25H26O7 F(000) = 928
Mr = 438.46 Dx = 1.289 Mg m3
Monoclinic, C2 Cu Kα radiation, λ = 1.54180 Å
a = 22.939 (1) Å Cell parameters from 25 reflections
b = 6.574 (2) Å θ = 20–30°
c = 16.481 (2) Å µ = 0.78 mm1
β = 114.67 (1)° T = 293 K
V = 2258.5 (7) Å3 Needle, colourless
Z = 4 0.30 × 0.25 × 0.20 mm
Data collection top
Enraf-Nonius CAD-4

diffractometer
2054 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.027
Graphite monochromator θmax = 70.3°, θmin = 3.0°
ω/2θ scans h = 2527
Absorption correction: empirical (using intensity measurements) ψ scan k = 08
Tmin = 0.961, Tmax = 0.991 l = 190
2312 measured reflections 2 standard reflections every 120 min
2230 independent reflections intensity decay: <1%
Refinement top
Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0588P)2 + 0.6138P]

where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.103 (Δ/σ)max < 0.001
S = 1.07 Δρmax = 0.27 e Å3
2230 reflections Δρmin = 0.12 e Å3
293 parameters Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraint Extinction coefficient: 0.0018 (2)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983)
Secondary atom site location: difference Fourier map Absolute structure parameter: 0.1 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
x y z Uiso*/Ueq
C1 0.5001 (2) 0.3359 (8) 0.1535 (2) 0.0884 (13)
H1 0.4821 0.4590 0.1589 0.106*
C2 0.5380 (3) 0.3143 (15) 0.1124 (3) 0.138 (3)
H2 0.5515 0.4171 0.0854 0.165*
C3 0.55499 (19) 0.0986 (16) 0.1168 (2) 0.136 (3)
C4 0.51095 (12) 0.0319 (5) 0.35079 (16) 0.0495 (6)
C5 0.51555 (12) 0.1521 (4) 0.29493 (16) 0.0451 (6)
H5 0.4918 0.2628 0.3072 0.054*
C6 0.58606 (12) 0.2103 (6) 0.34162 (16) 0.0543 (7)
H6A 0.5919 0.3549 0.3360 0.065*
H6B 0.6114 0.1356 0.3170 0.065*
C7 0.60510 (12) 0.1507 (5) 0.44081 (16) 0.0506 (7)
C8 0.66748 (11) 0.2699 (4) 0.58414 (15) 0.0432 (6)
C9 0.69709 (11) 0.0774 (4) 0.56993 (15) 0.0453 (6)
H9 0.6873 0.0349 0.6013 0.054*
C10 0.48957 (12) 0.1400 (5) 0.19060 (16) 0.0529 (7)
C11 0.76878 (11) 0.0952 (5) 0.60159 (16) 0.0517 (7)
H11A 0.7789 0.2061 0.5709 0.062*
H11B 0.7859 0.0296 0.5888 0.062*
C12 0.79923 (11) 0.1359 (5) 0.70458 (16) 0.0516 (7)
H12A 0.7954 0.0136 0.7349 0.062*
H12B 0.8446 0.1639 0.7240 0.062*
C13 0.76875 (11) 0.3117 (5) 0.73265 (16) 0.0465 (6)
C14 0.70042 (11) 0.3743 (4) 0.67166 (16) 0.0431 (6)
C15 0.66908 (13) 0.4280 (4) 0.73307 (17) 0.0493 (6)
O16 0.71301 (9) 0.4229 (4) 0.82068 (12) 0.0587 (5)
C17 0.77399 (12) 0.3345 (5) 0.82997 (16) 0.0507 (6)
H17 0.8085 0.4311 0.8623 0.061*
C18 0.75748 (14) 0.5110 (5) 0.6846 (2) 0.0596 (7)
H18A 0.7700 0.5225 0.6354 0.072*
H18B 0.7630 0.6341 0.7195 0.072*
C19 0.42104 (14) 0.0723 (7) 0.14383 (18) 0.0683 (9)
H19A 0.4078 0.0792 0.0804 0.102*
H19B 0.3943 0.1595 0.1605 0.102*
H19C 0.4172 0.0652 0.1606 0.102*
C20 0.78499 (13) 0.1459 (5) 0.88397 (16) 0.0528 (7)
C21 0.74541 (17) 0.0300 (6) 0.8694 (2) 0.0687 (8)
H21 0.7064 0.0541 0.8211 0.082*
C22 0.83659 (18) 0.1101 (6) 0.9619 (2) 0.0756 (10)
H22 0.8707 0.2000 0.9880 0.091*
O24 0.83239 (17) 0.0739 (5) 0.99729 (18) 0.0999 (10)
C23 0.7759 (2) 0.1549 (7) 0.9400 (3) 0.0874 (12)
H23 0.7601 0.2800 0.9479 0.105*
O25 0.61416 (9) 0.4682 (4) 0.71455 (14) 0.0655 (6)
O26 0.66502 (8) 0.0429 (4) 0.47372 (11) 0.0558 (5)
O27 0.55533 (8) 0.0248 (4) 0.44137 (11) 0.0595 (6)
C28 0.44694 (13) 0.0560 (6) 0.3563 (2) 0.0662 (8)
H28A 0.4516 0.1489 0.4036 0.099*
H28B 0.4158 0.1082 0.3007 0.099*
H28C 0.4330 0.0738 0.3682 0.099*
C29 0.5324 (2) 0.2330 (6) 0.3265 (3) 0.0832 (11)
H29A 0.5747 0.2179 0.3286 0.125*
H29B 0.5031 0.2720 0.2673 0.125*
H29C 0.5330 0.3359 0.3681 0.125*
C30 0.61627 (12) 0.3144 (5) 0.50991 (16) 0.0512 (7)
H30 0.5909 0.4297 0.5017 0.061*
O31 0.52773 (10) 0.0018 (5) 0.16438 (13) 0.0861 (9)
O32 0.58593 (15) 0.0036 (14) 0.08401 (18) 0.219 (4)
Atomic displacement parameters (Å2) top
U11 U22 U33 U12 U13 U23
C1 0.098 (3) 0.100 (3) 0.0397 (16) 0.021 (2) 0.0024 (17) 0.0130 (19)
C2 0.090 (3) 0.257 (9) 0.047 (2) 0.057 (5) 0.009 (2) 0.037 (4)
C3 0.056 (2) 0.315 (11) 0.0362 (17) 0.033 (4) 0.0190 (14) 0.017 (4)
C4 0.0511 (13) 0.0536 (16) 0.0412 (12) 0.0019 (13) 0.0167 (11) 0.0039 (12)
C5 0.0413 (12) 0.0560 (16) 0.0351 (12) 0.0055 (12) 0.0130 (10) 0.0039 (11)
C6 0.0451 (13) 0.076 (2) 0.0357 (12) 0.0020 (14) 0.0111 (10) 0.0050 (13)
C7 0.0429 (12) 0.0677 (19) 0.0373 (12) 0.0046 (13) 0.0130 (10) 0.0030 (13)
C8 0.0417 (11) 0.0492 (15) 0.0380 (12) 0.0029 (11) 0.0160 (10) 0.0047 (11)
C9 0.0441 (12) 0.0532 (16) 0.0335 (11) 0.0063 (12) 0.0110 (10) 0.0024 (11)
C10 0.0482 (13) 0.071 (2) 0.0347 (12) 0.0096 (14) 0.0128 (10) 0.0019 (13)
C11 0.0433 (12) 0.0691 (19) 0.0422 (12) 0.0093 (13) 0.0174 (10) 0.0024 (13)
C12 0.0365 (11) 0.0706 (19) 0.0441 (12) 0.0059 (13) 0.0132 (10) 0.0039 (14)
C13 0.0392 (11) 0.0554 (16) 0.0398 (12) 0.0049 (11) 0.0114 (10) 0.0011 (12)
C14 0.0412 (11) 0.0427 (14) 0.0424 (12) 0.0001 (10) 0.0144 (10) 0.0031 (11)
C15 0.0547 (14) 0.0418 (14) 0.0486 (13) 0.0029 (12) 0.0186 (11) 0.0009 (12)
O16 0.0614 (11) 0.0674 (14) 0.0441 (9) 0.0082 (10) 0.0188 (8) 0.0053 (10)
C17 0.0443 (12) 0.0588 (17) 0.0410 (13) 0.0051 (12) 0.0098 (10) 0.0067 (12)
C18 0.0637 (16) 0.0551 (18) 0.0582 (16) 0.0135 (15) 0.0235 (13) 0.0033 (14)
C19 0.0568 (15) 0.095 (3) 0.0409 (13) 0.0041 (17) 0.0088 (11) 0.0081 (16)
C20 0.0542 (14) 0.0654 (18) 0.0383 (12) 0.0036 (14) 0.0188 (11) 0.0014 (13)
C21 0.0706 (18) 0.073 (2) 0.0688 (19) 0.0051 (18) 0.0352 (16) 0.0017 (18)
C22 0.082 (2) 0.079 (3) 0.0464 (16) 0.007 (2) 0.0073 (15) 0.0028 (17)
O24 0.135 (2) 0.091 (2) 0.0618 (14) 0.025 (2) 0.0296 (15) 0.0204 (15)
C23 0.131 (4) 0.067 (2) 0.091 (3) 0.007 (2) 0.072 (3) 0.014 (2)
O25 0.0542 (11) 0.0703 (14) 0.0711 (13) 0.0134 (11) 0.0251 (9) 0.0040 (12)
O26 0.0495 (9) 0.0735 (14) 0.0363 (8) 0.0124 (10) 0.0099 (7) 0.0062 (9)
O27 0.0553 (10) 0.0818 (15) 0.0365 (8) 0.0099 (11) 0.0144 (8) 0.0048 (10)
C28 0.0594 (16) 0.082 (2) 0.0561 (16) 0.0122 (17) 0.0236 (13) 0.0050 (18)
C29 0.111 (3) 0.062 (2) 0.078 (2) 0.028 (2) 0.041 (2) 0.0074 (19)
C30 0.0467 (13) 0.0605 (18) 0.0420 (13) 0.0115 (13) 0.0142 (10) 0.0068 (13)
O31 0.0720 (13) 0.142 (3) 0.0431 (10) 0.0408 (16) 0.0228 (10) 0.0083 (14)
O32 0.100 (2) 0.500 (12) 0.0690 (16) 0.110 (5) 0.0482 (16) 0.015 (4)
Geometric parameters (Å, º) top
C1—C2 1.312 (7) C9—C11 1.508 (3)
C1—C10 1.488 (5) C10—O31 1.462 (4)
C2—C3 1.464 (11) C10—C19 1.501 (4)
C3—O32 1.228 (7) C11—C12 1.566 (3)
C3—O31 1.360 (7) C12—C13 1.520 (4)
C4—O27 1.461 (3) C13—C18 1.497 (4)
C4—C28 1.517 (4) C13—C14 1.523 (3)
C4—C29 1.522 (5) C13—C17 1.565 (3)
C4—C5 1.550 (4) C14—C15 1.508 (4)
C5—C6 1.522 (4) C14—C18 1.527 (4)
C5—C10 1.569 (3) C15—O25 1.195 (3)
C6—C7 1.556 (3) C15—O16 1.374 (3)
C7—O27 1.413 (3) O16—C17 1.463 (3)
C7—O26 1.437 (3) C17—C20 1.485 (4)
C7—C30 1.509 (4) C20—C22 1.355 (4)
C8—C30 1.328 (3) C20—C21 1.427 (5)
C8—C14 1.487 (3) C21—C23 1.355 (5)
C8—C9 1.500 (4) C22—O24 1.364 (5)
C9—O26 1.461 (3) O24—C23 1.354 (6)
C2—C1—C10 112.0 (5) C9—C11—C12 108.48 (19)
C1—C2—C3 107.4 (5) C13—C12—C11 114.0 (2)
O32—C3—O31 119.7 (9) C18—C13—C12 120.3 (2)
O32—C3—C2 131.4 (8) C18—C13—C14 60.76 (18)
O31—C3—C2 108.8 (4) C12—C13—C14 118.8 (2)
O27—C4—C28 104.1 (2) C18—C13—C17 112.4 (2)
O27—C4—C29 109.1 (3) C12—C13—C17 122.5 (2)
C28—C4—C29 110.7 (3) C14—C13—C17 105.6 (2)
O27—C4—C5 102.5 (2) C8—C14—C15 124.6 (2)
C28—C4—C5 115.1 (2) C8—C14—C13 118.8 (2)
C29—C4—C5 114.3 (2) C15—C14—C13 105.5 (2)
C6—C5—C4 102.5 (2) C8—C14—C18 117.7 (2)
C6—C5—C10 113.8 (2) C15—C14—C18 112.9 (2)
C4—C5—C10 121.5 (2) C13—C14—C18 58.75 (18)
C5—C6—C7 103.9 (2) O25—C15—O16 120.4 (2)
O27—C7—O26 110.9 (3) O25—C15—C14 128.9 (2)
O27—C7—C30 107.2 (2) O16—C15—C14 110.7 (2)
O26—C7—C30 103.5 (2) C15—O16—C17 111.70 (19)
O27—C7—C6 106.3 (2) O16—C17—C20 108.1 (2)
O26—C7—C6 109.0 (2) O16—C17—C13 105.65 (19)
C30—C7—C6 119.9 (3) C20—C17—C13 117.1 (2)
C30—C8—C14 133.5 (3) C13—C18—C14 60.49 (17)
C30—C8—C9 109.0 (2) C22—C20—C21 105.1 (3)
C14—C8—C9 117.4 (2) C22—C20—C17 125.1 (3)
O26—C9—C8 104.17 (19) C21—C20—C17 129.7 (3)
O26—C9—C11 111.71 (19) C23—C21—C20 106.4 (3)
C8—C9—C11 112.3 (2) C20—C22—O24 111.7 (4)
O31—C10—C1 102.1 (3) C23—O24—C22 105.6 (3)
O31—C10—C19 106.7 (3) O24—C23—C21 111.2 (4)
C1—C10—C19 111.2 (3) C7—O26—C9 107.59 (18)
O31—C10—C5 110.9 (2) C7—O27—C4 111.29 (18)
C1—C10—C5 110.7 (3) C8—C30—C7 110.1 (3)
C19—C10—C5 114.5 (2) C3—O31—C10 109.7 (5)
 

References

First citationAbdul Ajees, A., Sekar, K., Parthasarathy, S., Schenk, H., Epe, B. & Mondon, A. (2001). Acta Cryst. E57 o116–117.  CrossRef IUCr Journals Google Scholar

First citationEnraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.  Google Scholar

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar

First citationFrenz, B. A. (1978). The Enraf–Nonius CAD-4 SDP. Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld & G. C. Bassi, pp. 64–71. Delft University Press.  Google Scholar

First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar

First citationSekar, K., Parthasarathy, S., Schenk, H., Epe, B. & Mondon, A. (1996). Acta Cryst. C52, 92–94.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. Release 97–2. Uni­versity of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logo STRUCTURAL

CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds