Performance determinants of fixed gear cycling during criteriums
Corresponding Author
Nicolas Babault
Center for Performance Expertise, CAPS, U1093 INSERM, University of Bourgogne-Franche-Comté, Dijon Cedex, France
Correspondence: Nicolas Babault, Faculté des Sciences du Sport, Université de Bourgogne, BP 27877, 21078 Dijon Cedex, France. E-mail: [email protected]Search for more papers by this authorCarole Cometti
Center for Performance Expertise, CAPS, U1093 INSERM, University of Bourgogne-Franche-Comté, Dijon Cedex, France
Search for more papers by this authorChristos Païzis
Center for Performance Expertise, CAPS, U1093 INSERM, University of Bourgogne-Franche-Comté, Dijon Cedex, France
Search for more papers by this authorCorresponding Author
Nicolas Babault
Center for Performance Expertise, CAPS, U1093 INSERM, University of Bourgogne-Franche-Comté, Dijon Cedex, France
Correspondence: Nicolas Babault, Faculté des Sciences du Sport, Université de Bourgogne, BP 27877, 21078 Dijon Cedex, France. E-mail: [email protected]Search for more papers by this authorCarole Cometti
Center for Performance Expertise, CAPS, U1093 INSERM, University of Bourgogne-Franche-Comté, Dijon Cedex, France
Search for more papers by this authorChristos Païzis
Center for Performance Expertise, CAPS, U1093 INSERM, University of Bourgogne-Franche-Comté, Dijon Cedex, France
Search for more papers by this authorAbstract
Nowadays, fixed gear competitions on outdoor circuits such as criteriums are regularly organized worldwide. To date, no study has investigated this alternative form of cycling. The purpose of the present study was to examine fixed gear performance indexes and to characterize physiological determinants of fixed gear cyclists. This study was carried out in two parts. Part 1 (n = 36) examined correlations between performance indexes obtained during a real fixed gear criterium (time trial, fastest laps, averaged lap time during races, fatigue indexes) and during a sprint track time trial. Part 2 (n = 9) examined correlations between the recorded performance indexes and some aerobic and anaerobic performance outputs (VO2max, maximal aerobic power, knee extensor and knee flexor maximal voluntary torque, vertical jump height and performance during a modified Wingate test). Results from Part 1 indicated significant correlations between fixed gear final performance (i.e. average lap time during the finals) and single lap time (time trial, fastest lap during races and sprint track time trial). In addition, results from Part 2 revealed significant correlations between fixed gear performance and aerobic indicators (VO2max and maximal aerobic power). However, no significant relationship was obtained between fixed gear cycling and anaerobic qualities such as strength. Similarly to traditional cycling disciplines, we concluded that fixed gear cycling is mainly limited by aerobic capacity, particularly criteriums final performance. However, specific skills including technical competency should be considered.
References
- Babault, N., Pousson, M., Ballay, Y., & Van Hoecke, J. (2001). Activation of human quadriceps femoris during isometric, concentric, and eccentric contractions. Journal of Applied Physiology (Bethesda, MD : 1985), 91(6), 2628–2634. Retrieved from http://europepmc.org/abstract/med/11717228
- Baron, R. (2001). Aerobic and anaerobic power characteristics of off-road cyclists. Medicine and Science in Sports and Exercise, 33(8), 1387–1393. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11474343doi: 10.1097/00005768-200108000-00022
- Bentley, D. J., McNaughton, L. R., Thompson, D., Vleck, V. E., & Batterham, A. M. (2001). Peak power output, the lactate threshold, and time trial performance in cyclists. Medicine and Science in Sports and Exercise, 33(12), 2077–2081. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11740302doi: 10.1097/00005768-200112000-00016
- Bieuzen, F., Vercruyssen, F., Hausswirth, C., & Brisswalter, J. (2007). Relationship between strength level and pedal rate. International Journal of Sports Medicine, 28(7), 585–589. http://doi.org/10.1055/s-2007-964859
- Black, M. I., Durant, J., Jones, A. M., & Vanhatalo, A. (2014). Critical power derived from a 3-min all-out test predicts 16.1-km road time-trial performance. European Journal of Sport Science, 14(3), 217–223. http://doi.org/10.1080/17461391.2013.810306
- Bossi, A. H., O'Grady, C., Ebreo, R., Passfield, L., & Hopker, J. G. (2017). Pacing strategy and tactical positioning during cyclo-cross races. International Journal of Sports Physiology and Performance, 1–23. http://doi.org/10.1123/ijspp.2017-0183
10.1123/ijspp.2017?0183 Google Scholar
- Corbett, J. (2009). An analysis of the pacing strategies adopted by elite athletes during track cycling. International Journal of Sports Physiology and Performance, 4(2), 195–205. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19567923doi: 10.1123/ijspp.4.2.195
- Craig, N. P., & Norton, K. I. (2001). Characteristics of track cycling. Sports Medicine (Auckland, NZ), 31(7), 457–468. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11428683doi: 10.2165/00007256-200131070-00001
- Dantas, J. L., Pereira, G., & Nakamura, F. Y. (2015). Five-kilometers time trial: Preliminary validation of a short test for cycling performance evaluation. Asian Journal of Sports Medicine, 6(3), e23802. http://doi.org/10.5812/asjsm.23802
- Garrandes, F., Colson, S. S., Pensini, M., & Legros, P. (2007). Time course of mechanical and neuromuscular characteristics of cyclists and triathletes during a fatiguing exercise. International Journal of Sports Medicine, 28(2), 148–156. http://doi.org/10.1055/s-2006-924206
- Garrandes, F., Colson, S. S., Pensini, M., Seynnes, O., & Legros, P. (2007). Neuromuscular fatigue profile in endurance-trained and power-trained athletes. Medicine and Science in Sports and Exercise, 39(1), 149–158. http://doi.org/10.1249/01.mss.0000240322.00782.c9
- Gregor, R. J., Broker, J. P., & Ryan, M. M. (1991). The biomechanics of cycling. Exercise and Sport Sciences Reviews, 19, 127–169. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1936084doi: 10.1249/00003677-199101000-00004
- Impellizzeri, F. M., & Marcora, S. M. (2007). The physiology of mountain biking. Sports Medicine (Auckland, NZ), 37(1), 59–71. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17190536doi: 10.2165/00007256-200737010-00005
- Inoue, A., Sá Filho, A. S., Mello, F. C. M., & Santos, T. M. (2012). Relationship between anaerobic cycling tests and mountain bike cross-country performance. Journal of Strength and Conditioning Research, 26(6), 1589–1593. http://doi.org/10.1519/JSC.0b013e318234eb89
- Katona, P., Pilissy, T., Tihanyi, A., & Laczkó, J. (2014). The combined effect of cycling cadence and crank resistance on hamstrings and quadriceps muscle activities during cycling. Acta Physiologica Hungarica, 101(4), 505–516. http://doi.org/10.1556/APhysiol.101.2014.4.12
- Kounalakis, S. N., & Geladas, N. D. (2012). Cardiovascular drift and cerebral and muscle tissue oxygenation during prolonged cycling at different pedalling cadences. Applied Physiology, Nutrition, and Metabolism, 37(3), 407–417. http://doi.org/10.1139/h2012-011
- Louis, J., Billaut, F., Bernad, T., Vettoretti, F., Hausswirth, C., & Brisswalter, J. (2012). Physiological demands of a simulated BMX competition. International Journal of Sports Medicine, 34(6), 491–496. http://doi.org/10.1055/s-0032-1327657
- Martin, K., Staiano, W., Menaspà, P., Hennessey, T., Marcora, S., Keegan, R., … Rattray, B. (2016). Superior inhibitory control and resistance to mental fatigue in professional road cyclists. PLoS One, 11(7), e0159907. http://doi.org/10.1371/journal.pone.0159907
- Mastroianni, G. R., Zupan, M. F., Chuba, D. M., Berger, R. C., & Wile, A. L. (2000). Voluntary pacing and energy cost of off-road cycling and running. Applied Ergonomics, 31(5), 479–485. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11059461doi: 10.1016/S0003-6870(00)00017-X
- Michaut, A., Babault, N., & Pousson, M. (2004). Specific effects of eccentric training on muscular fatigability. International Journal of Sports Medicine, 25(4). http://doi.org/10.1055/s-2004-819940
- Miller, M. C., Macdermid, P. W., Fink, P. W., & Stannard, S. R. (2017). Performance and physiological effects of different descending strategies for cross-country mountain biking. European Journal of Sport Science, 17(3), 279–285. http://doi.org/10.1080/17461391.2016.1237550
- Paton, C. D., Hopkins, W. G., & Cook, C. (2009). Effects of low- vs. high-cadence interval training on cycling performance. Journal of Strength and Conditioning Research, 23(6), 1758–1763. http://doi.org/10.1519/JSC.0b013e3181b3f1d3
- Peñailillo, L., Blazevich, A. J., & Nosaka, K. (2017). Factors contributing to lower metabolic demand of eccentric compared with concentric cycling. Journal of Applied Physiology, 123(4), 884–893. http://doi.org/10.1152/japplphysiol.00536.2016
- Peterman, J. E., Lim, A. C., Ignatz, R. I., Edwards, A. G., & Byrnes, W. C. (2015). Field-measured drag area is a key correlate of level cycling time trial performance. PeerJ, 3, e1144. http://doi.org/10.7717/peerj.1144
- Skorski, S., & Abbiss, C. R. (2017). The manipulation of pace within endurance sport. Frontiers in Physiology, 8, 102. http://doi.org/10.3389/fphys.2017.00102
- Spence, A. J., Thurman, A. S., Maher, M. J., & Wilson, A. M. (2012). Speed, pacing strategy and aerodynamic drafting in thoroughbred horse racing. Biology Letters, 8(4), 678–681. http://doi.org/10.1098/rsbl.2011.1120
- Stone, M. H., Sands, W. A., Carlock, J., Callan, S., Dickie, D., Daigle, K., … Hartman, M. (2004). The importance of isometric maximum strength and peak rate-of-force development in sprint cycling. Journal of Strength and Conditioning Research, 18(4), 878–884. http://doi.org/10.1519/14874.1
- Støren, Ø., Ulevåg, K., Larsen, M. H., Støa, E. M., & Helgerud, J. (2013). Physiological determinants of the cycling time trial. Journal of Strength and Conditioning Research, 27(9), 2366–2373. http://doi.org/10.1519/JSC.0b013e31827f5427
- Viana, B. F., Pires, F. O., Inoue, A., & Santos, T. M. (2018). Pacing strategy during simulated mountain bike racing. International Journal of Sports Physiology and Performance, 1–6. http://doi.org/10.1123/ijspp.2016-0692
10.1123/ijspp.2016?0692 Google Scholar
- Watanabe, K., Sato, T., Mukaimoto, T., Takashima, W., Yamagishi, M., & Nishiyama, T. (2016). Electromyographic analysis of thigh muscles during track cycling on a velodrome. Journal of Sports Sciences, 34(15), 1413–1422. http://doi.org/10.1080/02640414.2015.1114135
- Whitty, A. G., Murphy, A. J., Coutts, A. J., & Watsford, M. L. (2016). The effect of low- vs high-cadence interval training on the freely chosen cadence and performance in endurance-trained cyclists. Applied Physiology, Nutrition, and Metabolism, 41(6), 666–673. http://doi.org/10.1139/apnm-2015-0562
- Wilberg, R. B., & Pratt, J. (1988). A survey of the race profiles of cyclists in the pursuit and kilo track events. Canadian Journal of Sport Sciences, 13(4), 208–213. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3219668