Volume 4, Issue 1 pp. 104-109
Full Access

Cross-species amplification of microsatellite loci in aphids: assessment and application

Alex C. C. Wilson

Corresponding Author

Alex C. C. Wilson

Department of Biological Sciences Macquarie University, NSW 2109, Australia,

Center for Insect Science, University of Arizona, Tucson, AZ 85721 USA,

Alex Wilson, Department of Ecology and Evolutionary Biology, Biological Sciences West Building, University of Arizona, Tucson, Arizona 85721, USA. Fax: + 1 520 621 2590; E-mail: [email protected]Search for more papers by this author
Blandine Massonnet

Blandine Massonnet

Institut für Ökologie, Friedrich-Schiller-Universität Jena, Dornburgerstrasse 159, 07743 Jena, Germany,

Zoology Institute, University of Basel, Rheinsprung 9, 4051 Basel, Switzerland,

Search for more papers by this author
Jean-Christophe Simon

Jean-Christophe Simon

UMR ‘Biologie des Organismes et des Populations appliquée à la Protection des Plantes’, INRA, Le Rheu 35623 cedex, France,

Search for more papers by this author
Nathalie Prunier-Leterme

Nathalie Prunier-Leterme

UMR ‘Biologie des Organismes et des Populations appliquée à la Protection des Plantes’, INRA, Le Rheu 35623 cedex, France,

Search for more papers by this author
Lotfali Dolatti

Lotfali Dolatti

Department of Plant Protection, Tabriz University, Tabriz, Iran,

Search for more papers by this author
Kate S. Llewellyn

Kate S. Llewellyn

Plant and Invertebrate Ecology Division, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK,

Search for more papers by this author
Christian C. Figueroa

Christian C. Figueroa

Instituto de Ecología y Evolución, Universidad Austral de Chile, Casilla 567, Valdivia, Chile,

Search for more papers by this author
Claudio C. Ramirez

Claudio C. Ramirez

Centro de Investigación en Biotecnología Silvoagrícola, Instituto de Biología Vegetal y Biotecnología, Universidad de Talca, Casilla 747, Talca, Chile,

Search for more papers by this author
Roger L. Blackman

Roger L. Blackman

Department of Entomology, The Natural History Museum, London SW7 5BD, UK,

Search for more papers by this author
Arnaud Estoup

Arnaud Estoup

Centre de Biologie et de Gestion des Populations, Campus International de Baillarguet, Montferrier/Lez 34988 cedex, France,

Search for more papers by this author
Paul Sunnucks

Paul Sunnucks

Department of Biological Sciences Macquarie University, NSW 2109, Australia,

Department of Genetics, La Trobe University, Bundoora, VIC 3086, Australia

Search for more papers by this author
First published: 27 January 2004
Citations: 100

Abstract

Despite the relative ease of isolating microsatellites, their development still requires substantial inputs of time, money and expertise. For this reason there is considerable interest in using existing microsatellites on species from which markers were not cloned. We tested cross-species amplification of 48 existing aphid loci in species of the following genera: Aphidinae: Aphidini: Aphis and Rhopalosiphum; Aphidinae: Macrosiphini: Acyrthosiphum, Brevicoryne, Diuraphis, Illinoia, Macrosiphoniella, Macrosiphum, Metopeurum, Metapolophium, Myzus, Phorodon, Sitobion and Uroleucon and Neuquenaphidinae: Neuquenaphis. Our results show cross-species application of known microsatellite loci is a highly promising source of codominant markers for population genetic and evolutionary studies in aphids.

Microsatellites have revolutionized aphid population biology (Wilson et al. 2003). They have been widely applied in population genetic studies both at the scale of a country (e.g. Sunnucks et al. 1996; Simon et al. 1999; Wilson et al. 1999, 2002; Llewellyn et al. 2003; Papura et al. 2003) and more recently to study metapopulation structure within fields (e.g. Haack et al. 2000; Massonnet et al. 2002b). In aphids, microsatellites are currently the only codominant genetic markers that are sufficiently polymorphic to identify clones and clonal lineages (e.g. Wilson et al. 2003), the occurrence of sexual reproduction (e.g. Sunnucks et al. 1997; Papura et al. 2003), and evolution by mutation in asexual lineages (e.g. Wilson et al. 1999, 2003). Microsatellites and their flanking sequences, in conjunction with mitochondrial markers, have also been useful in elucidating the mechanisms by which obligately parthenogenetic aphid lineages could arise (Delmotte et al. 2001, 2002, 2003).

Microsatellites have now been isolated from a wide range of aphid species. These include: Sitobion miscanthi (Sunnucks et al. 1996; Wilson et al. 1997; Simon et al. 1999), Sitobion avenae (Simon et al. 1999), Aphis gossypii (Vanlerberghe-Masutti et al. 1999), Pemphigus bursarius (Miller et al. 2000), Pemphigus spyrothecae (Johnson et al. 2000), Myzus persicae (Sloane et al. 2001), Rhopalosiphum padi (Simon et al. 2001), Macrosiphoniella tanacetaria (Massonnet et al. 2001), Metopeurum fuscoviride (Massonnet et al. 2002a), and Dysaphis plantaginea (Harvey et al. 2003). Additionally, we provide previously unpublished primer sequences for another 21 aphid microsatellite loci, 14 of which were isolated from Sitobion miscanthi, three from Sitobion avenae and four from Myzus persicae (Table 1).

Table 1. Characteristics of microsatellite loci isolated from Sitobion miscanthi (Sm), Sitobion avenae (Sav) and Myzus persicae (Mp). Locus name, core repeat in sequenced clone, n genotypes = number of genotypes over which allelic diversity (n alleles) and observed heterozygosity (HO) were calculated, primer names and sequences. Size, is the range of allele sizes of PCR fragments in base pairs observed across the genotypes for which allelic diversity and HO are reported. PCR prg, PCR amplification details for amplification of loci in cloned species, see Appendix S1 for details of S. miscanthi and M. persicae PCR programs. For the S. avenae loci this table lists the annealing temperature of each locus and details of PCR cycling are described in Appendix S1. For loci cloned from Sitobion miscanthi, number of alleles and HO is calculated for a subset of Australian and New Zealand functionally parthenogenetic Sitobion aphids (data largely from Wilson et al. 1999). For loci cloned from Sitobion avenae, number of alleles and HO are calculated for a subset of S. avenae individuals from Western France (data compiled from Simon et al. 1999; Haack et al. 2000; Papura et al. 2003). For loci cloned from Myzus persicae, number of alleles and HO are reported from Wilson et al. (2002). *X-linked locus; †Autosomal locus; ‡Requires 2× as much primer for good amplification
Species Locus Repeat n alleles n genotype H O Primers (5′−3′) Size PCR prg GenBank Accession no.
Sm S9 (AC)11 7 13 0.23 F: GCTCGTGGCTATCGTTTGTG
R: ATCGGTGTGTGTGCGCGTAG
146–162 PMS1 AY349958
Sm S10 (AC)16 9 12 1.00 F: TCTTCTCTATACACCTATAAAC
R: TTATGCTAATCTCACAATAC
86–120 PMS2 * AY349959
Sm S12 (CA)8 impure 1 12 0.00 F: TTCGGTATAATAGTGCGTG
R: GGCGATGCGACTAAAC
87 PMS1 AY349957
Sm S16b (CA)14 12 13 0.69 F: ATAAAACAAAGAGCAATTCC
R: GTAAAAGTAAAGGTTCCACG
166–206 AMS1 AY349960
Sm S17b (CA)11TA(CA)8C(TA)7 8 11 0.55 F: TTCTGGCTTCATTCCGGTCG
R: CGTCGCGTTAGTGAACCGTG
182–227 PMS1 * AY349961
Sm S19 (CA)30 15 13 1.00 F: GCGCATTGTGTAGCGAGC
R: CAAACATGTTATGTCACAATAC
96–179 PMS1 AY349962
Sm S23 (GA)14 7 13 0.69 F: GGTCCGAGAGCATTCATTAGG
R: CGTCGTTGTCATTGTCGTCG
122–156 PMS1 AY349963
Sm S24 (CA)20 9 12 0.83 F: CCCGACCCCGTCCATTCAAA
R: CCTCCACCACTACTTTCACTCC
167–218 AMS1/PMS1 AY349964
Sm S25 impure mixed tri. 2 12 0.17 F: TATAGGCTCGTTCGCCGTTG
R: TTGATTGACACGCCACGACC
129–140 AMS1 AY349965
Sm S30 (CA)13 4 13 0.23 F: CCGACATAAAACACACCCAG
R: GTTTTGCCTCCTCCCCTC
163–175 AMS1/PMS1 AY349966
Sm S35 (TA)5 1 13 0.00 F: CATAGAAGAAAAAAGAGGGTAAGC
R: GGGATAAATAAGAAAAAAAGTCCG
106 PMS1 AY349967
Sm S43ii (CA)11 + (T)10 4 12 0.75 F: GATATTATATTACATGCGCG
R: GGTGGTCGGGTTTACG
225–231 PMS2 * AY349968
Sm S45 (AT)6 6 11 0.09 F: CCATATACACGCAAACAC
R: GCCACCAACCTACCG
134–147 PMS1 AY349969
Sm S49 (CA)26 10 11 0.73 F: CGCATTTAGGAGGTTTCGAC
R: CATGTGCAGTGGAGCAGGAA
91–164 PMS1 * AY349970
Sav S3.R (AT)6∼(CA)14 5 75 0.51 F: CATCCGAGCGGTGGAATG
R: CATTTCGTCATCATTTGCTACATG
337–369 66 °C AY352644
Sav S3.43 (ATT)7∼(TG)10∼(TG)6 4 10 0.74 F: GGCGAGACCCCTTAAAATCC
R: GAGATACTCTTTTCGTCGTTAAACC
185–188 62 °C AY352642
Sav S5.L (TG)10 4 75 0.80 F: GGACGACTCGTTAGTATAGGTGG
R: CTATCTCTACCGTTTCGAATCG
223–229 56 °C AY352643
Mp myz2 impure (GA)30 6 53 0.58 F: TGGCGAGAGAGAAAGACCTGC
R: TCGGAAGACAGAGACATCGAGA
177–207 PMS1 AY429659
Mp myz3 (GA)18 5 53 0.35 F: GGTGTCCTGCGTTATGATTATG
R: ATTCTTTTCCCGGCAGTTTAC
111–125 PMS2 * AY429660
Mp myz9 impure (GA)53 7 53 0.60 F: AACCTCACCTCGTGGAGTTCG
R: CTTGGATGTGTGTGGGGTGC
204–238 AMS1 AY429661
Mp myz25 (AG)24 3 53 0.52 F: AACCCATCTCACTCGTCAGCC
R: GAATCTGGAGAGCGGTTAATGC
119–126 AMS1 * AY429662

Despite the relative ease of cloning microsatellite loci from aphids (cf. e.g. avian species; Zane et al. 2002), microsatellite development still requires a skilled molecular biologist, and a considerable investment of time and resources on the part of the researcher. Thus, using loci already developed in a related species may provide a cost-effective alternative to microsatellite isolation and development in a species of interest. Cross-species amplification is only effective if primer sequences are conserved between species. Generally the number of loci amplifying tends to decrease with increasing divergence between species (Moore et al. 1991; Peakall et al. 1998), although extreme conservation of loci has also been reported (Schlötterer et al. 1991; FitzSimmons et al. 1995; Rico et al. 1996; Scott et al. 2003). For this reason we have investigated, in a range of nontarget species, the potential for cross-species amplification of 48 aphid microsatellite loci, isolated from five target species (Supplementary material Table S1). Three of these target species belong to the tribe Macrosiphini: Myzus persicae (10 loci), Sitobion avenae (four loci) and Sitobion miscanthi (18 loci) and two to the tribe Aphidini: Aphis gossypii (eight loci) and Rhopalosiphum padi (eight loci). The materials and methods used for cross-species amplification tests are detailed in the Appendix S1.

We found that amplification success in species belonging to the same genus as the target species was high, in the order of 80% (e.g. Sitobion, Table 2), whereas amplification success in noncongeners of the same tribe was lower (e.g. for non-Sitobion of the Macrosiphini, 59% of tested loci amplified, Table 2). Surprisingly, of the small total number of loci tested outside the subfamily from which they were isolated, 35% amplified successfully (Tables 2 and 3). These results overall suggest that time and money invested in investigating the cross-species amplification of microsatellite loci in nontarget species may be well spent. However, our more extensive cross-species amplification data (Supplementary material Table S2) indicate that allelic diversity can be very low in nontarget species compared with target species (see especially data for Macrosiphoniella tanacetaria, Metopeurum fuscoviride and Uroleucon tanaceti). In cases where levels of allelic diversity are extremely low, the usefulness of these loci is greatly limited and workers should consider isolating microsatellite loci in their species of interest. Further caution needs to be used in utilizing microsatellite loci in nontarget species by investigating the occurrence of null alleles, as detected for example in S. fragariae samples amplified with microsatellite primers designed from S. miscanthi sequences (Sunnucks et al. 1997).

Table 2. Application of microsatellite loci cloned from Sitobion avenae, Aphis gossypii, Rhopalosiphum padi and Myzus persicae to species in tribes Aphidini and Macrosiphini of subfamily Aphidinae and two species of the subfamily Neuquenaphidinae. See Supplementary material for the source of primer sequences of each of the microsatellite loci listed in this table and assay description. +, amplification; ++, amplification and see Supplementary material Table S2 for details of polymorphism assessment; ?, equivocal; –, failed amplification; (blank cell), untested
Species Locus Aphidinae Neuquenaphidinae
Aphidini Macrosiphini Ne Ns
Ac Ag Rp Ap Dn Mt Md Mf Mp Sav Ut
Sitobion avenae S4.Σ + + ++ ++ + ++ + +
S5.L + ++ + + ?
S3.R + +
S3.43 + + + + +
Aphis gossypii A.go 24 + ++
A.go 53 +
A.go 59 + ++
A.go 66 + + ++ ++ + ++
A.go 69 + + +
A.go 84 +
A.go 89 + + + +
A.go 126 + +
Rhopalosiphum padi R5.10 + + + + + ++ + ++
R2.73 + + +
R3.171 + +
R5.29b + + + + ++ + ++ + +
R1.35 + + + +
R6.3 +
R5.138 + + + + +
R5.50 + + + + +
Myzus persicae M35 + + +
M37 + + +
M40 + + + ++ + ++ + + ++
M49 + + ++
M55 + + ++ +
M62 + + + + + ++ ++
M63 + ++ ++
M77 + + ++ ++
M86 +
M107 +
  • Species key: Ac, Aphis craccivora; Ag, Aphis gossypii; Rp, Rhopalosiphum padi; Ap, Acyrthosiphon pisum; Dn, Diuraphis noxia; Mt, Macrosiphoniella tanacetaria; Md, Metopolophium dirhodum; Mf, Metopeurum fuscoviride; Mp, Myzus persicae; Sav, Sitobion avenae; Ut, Uroleucon tanaceti; Ne, Neuquenaphis edwardsi; Ns, Neuquenaphis staryi.
Table 3. Application of microsatellite loci cloned from Sitobion miscanthi to species in tribes Aphidini and Macrosiphini of subfamily Aphidinae and one species of subfamily Neuquenaphidinae. See Supplementary material for the source of primer sequences of each of the microsatellite loci listed in this table and assay description. +, amplification, ++, amplification and see Supplementary material Table S2 for details of polymorphism assessment; ?, equivocal; –, failed amplification; (blank cell), untested
Locus Aphidinae Neuquenaphidinae
Aphidini Macrosiphini
Ac Ag Rp Ap Bb Dn Ia Mt Ma Me Mr Mf Md Mef Mya Myn Myp Ph Sak Sav Sb Sf Si Sm Snf Sp Srh Sru Sw Sfs Ua Ufu Ufo Ut Ns
Sm10 + ++ ++ + + + ++ + + + + ++ ++ + + ++ + ? + + ?
Sm11 + ++ + ++ ++ + + + + + ? + ++ ++ + + ++ + + + + ++ ++
Sm12 ? + ++ + + ++ +
Sm17 + ? + + + + + + + ++ + ++ + + ++ + + + + + + + ++ ?
S9 ++ ++ + ++
S10 ++ + ++ + ++
S12 + + + + +
S16b + + ++ ++ ++ ++ + ++ ++ ++ + ++ + ++ ++
S17b + + ++ ++ ++ ++ ++ + ++ ++ ++ + ++ + ++
S19 + ++ + ++
S23 + + + ++ ++ ++ ++ + ++ ++ ++ + + + ++ ++
S24 + + + ++ ++ ++ + ++ + + + ++ ++
S25 + ++ ++ ++ + + + +
S30 + + ++ ++ + + + + ++ ++
S35 + ++ + + + ++
S43ii ++ + ++
S45 +
S49 + ++ + ++ + ++
  • Species key: Ac, Aphis craccivora; Ag, Aphis gossypii; Rp, Rhopalosiphum padi; Ap, Acyrthosiphon pisum; Bb, Brevicoryne brassicae; Dn, Diuraphis noxia; Ia, Illinoia azalea; Mt, Macrosiphoniella tanacetaria; Ma, Macrosiphum albifrons; Me, Macrosiphum euphorbiae; Mr, Macrosiphum rosae; Mf, Metopeurum fuscoviride; Md, Metopolophium dirhodum; Mef, Metopolophium festucae; Mya, Myzus antirrhinii; Myn, Myzus nicotianae; Myp, Myzus persicae; Ph, Phorodon humuli; Sak, Sitobion akebiae; Sav, Sitobion avenae; Sb, Sitobion blackmani; Sf, Sitobion fragariae; Si, Sitobion ibariae; Sm, Sitobion miscanthi; Snf, Sitobion near fragariae; Sp, Sitobion pauliani; Srh, Sitobion rhamni; Sru, Sitobion rubiohila; Sw, Sitobion walkeri; Sfs, Sitotbion from smilax; Ua, Uroleucon adenophorae; Ufu, Uroleucon fuchuensis; Ufo, Uroleucon formosanum; Ut, Uroleucon tanaceti; Ns, Neuquenaphis staryi.

Sitobion miscanthi loci, S10, S17b, S49 and S43ii are X-linked in S. miscanthi (Wilson 2000) and locus Sm11 is X-linked in Sitobion near fragariae (Wilson et al. 1997). We have confirmed the X-linkage of loci S10, S17b and S49 in Sitobion near fragariae, loci Sm11, S10, S17b and S49 in S. avenae and locus Sm11 and S17b in R. padi. Loci Sm11, S10 and S17b are X-linked in A. pisum (Caillaud et al. 2002). Finally, locus S17b is also X-linked in M. persicae (Sloane et al. 2001). It is worth noting that whilst the X-linkage of these loci has not been confirmed in species other than those listed above, many of these X-linked loci have been shown to cross-amplify in many species (Table 2). These include: Sm11, which has amplified in 22/33 species including the taxonomically distant species, Neuquenaphis staryi; S10, which has amplified in 5/6 species in which it has been tested; S17b, which has amplified in 15/16 species; and S49, which has amplified in 6/13 species. Overall, X-linked loci amplified in 71% of tests compared with 51% amplification of all loci tested (austosomal, X-linked and those of unknown location). The X-chromosomes are the largest chromosome pair in most aphid species, accounting for over 25% of the genome (e.g. Wilson et al. 1997). These data suggest that X-linked loci may be more conserved in aphids than autosomal loci. Finally, because X-linkage of loci is easily determined in cyclically parthenogenetic aphids, we encourage researchers to investigate the chromosomal location of their markers using the simple diagnostic test described in Wilson et al. (1997).

Acknowledgements

Cloning of microsatellite loci from Sitobion miscanthi was supported by Macquarie University and Australian Research Council funds. During writing ACCW was supported by National Science Foundation funding to R. K. Grosberg. The work of BM was supported by Swiss National Fund grant number 3100.053852.98 to Wolfgang W. Weisser. The work of LD was supported by Iranian AREEO funds. KSL was funded by a BBSRC ROPA. The work of CCR was supported by FONDECYT-100775 and Gob. Reg. VI–VII. FONDECYT grant number 3020051 to CCF and National Geographic Society grant number 7637–02 to Hermann M. Niemeyer funded the studies on N. staryi.

    Supplementary material

    The following material is available from http://www.blackwellpublishing.com/products/journals/suppmat/MEN/MEN584/MEN584sm.htm

    Appendix S1. Supplementary information.

    Table S1. Source of microsatellite primer sequences for each of the loci used in the cross-species amplification study.

    Table S2. Detailed cross-species amplification data for fourteen non-target species.

      The full text of this article hosted at iucr.org is unavailable due to technical difficulties.