Stable models of elliptical galaxies
Corresponding Author
G. Rein
Faculty of Mathematics and Physics, University of Bayreuth, 95440 Bayreuth, Germany
★ E-mail: [email protected]Search for more papers by this authorY. Guo
Lefschetz Center for Dynamical Systems, Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
Search for more papers by this authorCorresponding Author
G. Rein
Faculty of Mathematics and Physics, University of Bayreuth, 95440 Bayreuth, Germany
★ E-mail: [email protected]Search for more papers by this authorY. Guo
Lefschetz Center for Dynamical Systems, Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
Search for more papers by this authorABSTRACT
We construct stable axially symmetric models of elliptical galaxies. For these models the particle density on phase space is a function of the particle energy and the third component of the angular momentum and is decreasing in the former. They are obtained as minimizers of suitably defined energy–Casimir functionals, and this implies their non-linear dynamical stability against axisymmetric perturbations. Since our analysis proceeds from a rigorous but purely mathematical point of view, it should be interesting to determine if any of our models match observational data in astrophysics. The main purpose of this paper is to initiate some exchange of information between the astrophysics and the mathematics communities.
REFERENCES
- Aly J. J., 1989, MNRAS, 241, 15
- Batsleer P., Dejonghe H., 1993, A&A, 271, 104
- Batt J., Faltenbacher W., Horst H., 1986, Arch. Rat. Mech. Anal., 93, 159
- Binney J., Tremaine S., 1987, Galactic Dynamics. Princeton Univ. Press, Princeton , NJ
- Bishop J. L., 1986, ApJ, 305, 14
- Braasch P., Rein G., Vukadinović J., 1999, SIAM J. Appl. Math., 59, 831
-
Evans L., 1998, Partial Differential Equations.
American Mathematical Society
,
Providence
,
RI
10.1090/gsm/019 Google Scholar
- Dejonghe H., De Zeeuw T., 1988, ApJ, 333, 90
- De Zeeuw T., 1985, MNRAS, 216, 273
- De Zeeuw T., Lynden-Bell, D., 1985, MNRAS, 215, 713
- Fridman A. M., Polyachenko V. L., 1984, Physics of Gravitating Systems I. Springer, New York
- Gidas B., Ni W.-M., Nirenberg L., 1979, Commun. Math. Phys., 68, 209
- Guo Y., 1999, Arch. Rat. Mech. Anal., 150, 209
-
Guo Y., 2000, Contemp. Math., 263, 85
10.1090/conm/263/04193 Google Scholar
- Guo Y., Rein G., 1999a, Arch. Rat. Mech. Anal., 147, 225
- Guo Y., Rein G., 1999b, Indiana Univ. Math. J., 48, 1237
- Guo Y., Rein G., 2001, Commun. Math. Phys., 219, 607
- Guo Y., Strauss W., 1995a, Ann. Inst. Henri Poincaré, 12, 339
- Guo Y., Strauss W., 1995b, Commun. Pure Appl. Math., 48, 861
-
Holm D. D.,
Marsden J. E.,
Ratiu T.,
Weinstein A., 1985, Phys. Rep., 123 (1 & 2), 1
10.1016/0370-1573(85)90028-6 Google Scholar
- Kandrup H. E., 1990, ApJ, 351, 104
-
Lichtenstein L., 1933, Gleichgewichtsfiguren Rotierender Flüssigkeiten. Springer-Verlag,
Berlin
10.1007/978-3-642-94542-7 Google Scholar
- Lieb E. H., Loss M., 1996, Analysis. American Mathematical Society, Providence , RI
- Lynden-Bell D., 1967, MNRAS, 136, 101
- Pfaffelmoser K., 1992, J. Diff. Eqns., 95, 281
- Prendergast K., Tomer E., 1970, AJ, 75 (6), 674
- Rein G., 1994, Math. Meth. Appl. Sci., 17, 1129
- Rein G., 1997, Banach Center Publ., 41 (Part I), 179
- Rein G., 1999, Commun. Math. Phys., 205, 229
- Rein G., 2000, Nonlinear Anal., 41, 313
- Rein G., 2002a, SIAM J. Math. Anal., 33, 896
- Rein G., 2002b, Arch. Rat. Mech. Anal., 161, 27
- Rein G., 2003, Arch. Rat. Mech. Anal., 168, 115
- Rein G., Rendall A. D., 2000, Math. Proc. Camb. Phil. Soc., 128, 363
- Schaeffer J., 1991, Commun. Part. Diff. Eqns., 16, 1313
- Schaeffer J., 2002, Arch. Rat. Mech. Anal., submitted
- Toomre A., 1982, ApJ, 259, 535
- Tremaine S., Henon M., Lynden-Bell D., 1986, MNRAS, 219, 285
- Wan Y.-H., 1999, Arch. Rat. Mech. Anal., 147, 245
- Wilson C. P., 1975, AJ, 80, 175
- Wolansky G., 1999, Ann. Inst. Henri Poincaré, 16, 15