The ecology and pathology of Epstein-Barr virus
CHRISTOPHER W SCHMIDT
Queensland Institute of Medical Research, The Bancroft Centre, Brisbane, Queensland, Australia
Search for more papers by this authorIHOR S MISKO
Queensland Institute of Medical Research, The Bancroft Centre, Brisbane, Queensland, Australia
Search for more papers by this authorCHRISTOPHER W SCHMIDT
Queensland Institute of Medical Research, The Bancroft Centre, Brisbane, Queensland, Australia
Search for more papers by this authorIHOR S MISKO
Queensland Institute of Medical Research, The Bancroft Centre, Brisbane, Queensland, Australia
Search for more papers by this authorSummary
Epstein-Barr virus achieves its ubiquitous and uniform epidemiological distribution by a dual strategy of latency to guarantee lifelong persistence and intermittent replication to guarantee transmission. These two functions appear to dictate residence in different cell types: latency in B lymphocytes and replication in epithelial cells. Both of these cell compartments are potential sites for FBV-associated malignancies.
References
- 1 Masucci MG, Ernberg I. Epstein-Barr virus: Adaption to a life within the immune system. Trends Microbiol. 1994; 2: 25–30.
- 2 Karlin S, Mocarski ES, Schachtel GA. Molecular evolution of herpesviruses: Genomic and protein sequence comparisons. J. Virol. 1994; 68: 1886–902.
- 3 Zerbini M, Ernberg I. Can Epstein-Barr virus infect and transform all the B-lymphocytes of human cord blood J. Gen. Virol. 1983; 64: 539–47.
- 4 Young L, Alfieri C, Hennessy K et al. Expression of Epstein-Barr virus transformation-associated genes in tissues of patients with EBV lymphoproliferative disease. N. Engl. J. Med. 1989; 321: 1080–5.
- 5 Thomas JA, Crawford DH. Epstein-Barr virus associated B-cell lymphomas in AIDS and after organ transplantation. Lancet 1989; 1: 1075–6.
- 6 Sinclair J, Sissons JGP. Human cytomegalovirus — pathogenesis and models of latency. Sem. in Virology 1994; 5: 249–58.
- 7 Rooney CM, Smith CA, Ng CYC et al. Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoprolifcration. Lancet 1995; 345: 9–13.
- 8 Davison AJ. Herpesvirus genes. Rev. Med. Virol. 1993; 3: 237–44.
- 9 Ward PL, Roizman B. Herpes simplex genes: The blueprint of a successful human pathogen. Trends Genet. 1994; 10: 267–74.
- 10 Heller M, Henderson A, Kieff E. Repeat array in Epstein-Barr virus DNA is related to cell DNA sequences interspersed on human chromosomes. Proc. Natl. Acad. Sci. USA 1982; 79: 5916–20.
- 11 Baer R, Bankier AT, Biggin MD et al. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 1984; 310: 207–11.
- 12 Farrell PJ. Epstein-Barr virus (B95-8 Strain. In: SJ O'Brien, (ed.) Genetic Map. Cold Spring Harbor: Cold Spring Harbor Press, 1990; 102–14.
- 13 Kaschka-Dierich C, Adams A, Lindahl T et al. Intracellular forms of Epstein-Barr virus DNA in human tumour cells in vivo. Nature 1976; 260: 302—6.
- 14 Kripalani-Joshi S, Law HY. Identification of integrated Epstein-Barr virus in nasopharyngeal carcinoma using pulse field gel electrophoresis. Int. J. Cancer 1994; 56: 187–92.
- 15 Cheung RK, Miyazaki I, Dosch HM. Unexpected patterns of Epstein-Barr virus gene expression during early stages of B cell transformation. Int. Immunol. 1993; 5: 707–16.
- 16 Clemens MJ. The small RNAs of Epstein-Barr virus. Mol. Biol. Rep. 1993; 17: 81–92.
- 17 Epstein M, Achong B, Barr Y. Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet 1964; 1: 702–3.
- 18
Henle W,
Henle G.
Seroepidemiology of the virus. In: MA Epstein,
BG Achong, (eds)
The Epstein-Barr Virus. Berlin: Springer-Verlag. 1979; 61–78.
10.1007/978-3-642-67236-1_4 Google Scholar
- 19 zur Hausen H, Schulte-Holthausen H, Klein G. EB-virus DNA in biopsies of Burkitt tumours and anaplastic carcinomas of the nasopharynx. Nature 1970; 228: 1056–7.
- 20 Reedman BM, Klein G. Cellular localization of an Epstein-Barr virus (EBV)-associated complement-fixing antigen in producer and non-producer lymphoblastoid cell lines. Int. J. Cancer 1973; 11: 499–520.
- 21 Lindahl T, Klein G, Reedman BM, Johansson B, Singh S. Relationship between Epstein-Barr virus (EBV) DNA and the EBV-determined nuclear antigen (EBNA) in Burkitt lymphoma biopsies and other lymphoproliferative malignancies. Int. J. Cancer 1974; 13: 764–72.
- 22 Lenoir GM. Role of the virus, chromosomal translocations and cellular oncogcncs in the aetiology of Burkitt's lymphoma. In: MA Epstein, BG Achong, (eds) The Epstein-Barr Virus: Recent Advances. London: Heinemann. 1986; 183–205.
- 23 Henle G, Henle W. Immunofluorescence in cells derived from Burkitt's lymphoma. J. Bacteriol. 1966; 91: 1248–56.
- 24 Henle G, Henle W, Klein G. Demonstration of two distinct components in the early antigen complex of Epstein-Barr virus-infected cells. Int J Cancer 1971; 8: 272–82.
- 25 de Thé G, Geser A, Day NE et al. Epidemiological evidence for causal relationship between Epstein-Barr virus and Burkitt's lymphoma from Ugandan prospective study. Nature 1978; 274: 756–61.
- 26 Pope JH. Establishment of cell lines from peripheral leucocytes in infectious mononucleosis. Nature 1967; 216: 810–1.
- 27 Henle G, Henle W, Diehl V. Relation of Burkitt tumor associated herpes-type virus to infectious mononucleosis. Proc. Natl. Acad. Sci. USA 1968; 59: 94–101.
- 28 Niederman JC, McCollum RW, Henle G, Henle W. Infectious mononucleosis. J. Am. Med. Assoc. 1968; 203: 139–43.
- 29 de Thé G. Demographic studies implicating the virus in the causation of Burkitt's lymphoma; Prospects for Nasopharyngeal Carcinoma. In: MA Epstein, BG Achong, (eds) The Epstein-Barr Virus. Berlin: Springer-Verlag. 1979; 417–37.
- 30 Straus SE, Fleisher GR. Infectious mononucleosis: Epidemiology and pathogenesis. In: D Schlossberg, (ed.) Infectious Mononucleosis. New York : Springer Verlag. 1989; 8–28.
- 31 Epstein MA, Achong BG. Pathogenesis of infectious mononucleosis. Lancet 1977; 2: 1270–3.
- 32 Chervenick PA. Infectious mononucleosis: The classic clinical syndrome. In: D Schlossberg, (ed.) Infectious Mononucleosis. New York: Springer Verlag. 1989; 29–39.
- 33 Biggar RJ, Henle G, Bocker J, Lennette ET, Fleisher G, Henle W. Primary Epstein-Barr virus infections in African infants- II. Clinical and serological observations during seroconversion. Int. J. Cancer 1978; 22: 244–50.
- 34 Moore GE, Gerner RE, Franklin HA. Culture of normal human leukocytes. J. Am. Med. Assoc. 1967; 199: 519–24.
- 35 Yac QY, Rickinson AB, Epstein MA. Re-examination of the Epstein-Barr virus carrier state in healthy seropositive individuals. Int. J. Cancer 1985; 35: 35–42.
- 36 Chang RS, Golden HD. Transformation of human leukocytes by throat washing from infectious mononucleosis patients. Nature 1971; 234: 359–60.
- 37 Gerber P, Lucas S, Nonoyama M, Perlin E, Goldstein LI. Oral excretion of Epstein-Barr virus by healthy subjects and patients with infectious mononucleosis. Lancet 1972; 2: 988–9.
- 38 Miller G, Niederman JC, Andrews LL. Prolonged oropharyngeal excretion of Epstein-Barr virus after infectious mononucleosis. N. Engl. J. Med. 1973; 288: 229–32.
- 39 Strauch B, Andrews LL, Siegel N, Miller G. Oropharyngeal excretion of Epstein-Barr virus by renal transplant recipients and other patients treated with immunosuppressive drugs. Lancet 1974; 1: 234–7.
- 40 Chang RS, Lewis JP, Reynolds RD, Sullivan MJ, Neuman J. Oropharyngeal excretion of Epstein-Barr virus by patients with lymphoproliferative disorders and by recipients of renal homografts. Ann. Intern. Med. 1978; 88: 34–40.
- 41 Sumaya CV, Boswell RN, Ench Y et al. Enhanced serological and virological findings of Epstein-Barr virus in patients with AIDS and AIDS-related complex. J. Infect. Dis. 1986; 154: 864–70.
- 42 Morgan DG, Niederman JC, Miller G, Smith HW, Dowaliby JM. Site of Epstein-Barr virus replication in theoropharynx. Lancet 1979; 2: 1154–7.
- 43 Sixbey JW, Nedrud JG, Raab-Traub N, Hanes RA, Pagano JS. Epstein-Barr virus replication in oropharyngeal epithelial cells. N. Engl. J. Med. 1984; 310: 1225–30.
- 44 Wolf H, Haus M, Wilmes E. Persistence of Epstein-Barr virus in the parotid gland. J. Virol. 1984; 51: 795–8.
- 45 Venables PJ, Teo CG, Baboonian C, Griffin BE, Hughes RA. Persistence of Epstein-Barr virus in salivary gland biopsies from healthy individuals and patients with Sjögren's syndrome. Clin. Exp. Immunol. 1989; 75: 359–64.
- 46 Mariette X, Gozlan J, Clerc D, Bisson M, Morinet F. Detection of Epstein-Barr virus DNA by in situ hybridization and polymerase chain reaction in salivary gland biopsy specimens from patients with Sjögren's syndrome. Am. J. Med. 1991; 90: 286–94.
- 47 Niedobitek G, Young LS. Epstein-Barr virus persistence and virus-associated tumours. Lancet 1994; 343: 333–5.
- 48 Turner AR, MacDonald RN, Cooper BA. Transmission of infectious mononucleosis by transfusion of pre-illness plasma. Ann. Intern. Med. 1972; 77: 751–3.
- 49 Svedmyr E, Ernberg I, Seeley, J. Weiland, O, Masucci G, Tsukuda K. Virologic, immunologic, and clinical observations on a patient during the incubation, acute, and convalescent phases of infectious. Clin. Immunol. Immunopathol. 1984; 30: 437–50.
- 50 Pearson G. The humoral response. In: D Schlossberg, (ed.) Infectious Mononucleosis. New York: Springer Verlag. 1989; 89–99.
- 51 Thorley-Lawson DA, Poodry CA. Identification and isolation of the main component (gp350-gp220) of Epstein-Barr virus responsible for generating neutralizing antibodies in vivo. J. Virol. 1982; 43: 730—6.
- 52 Henle G, Henle W, Horwitz CA. Antibodies to Epstein-Barr virus-associated nuclear antigen in infectious mononucleosis. J. Infect. Dis. 1974; 130: 231–9.
- 53 Henle W, Henle G, Andersson J et al. Antibody responses to Epstein-Barr virus-determined nuclear antigen (EBNA)-1 and EBNA-2 in acute and chronic Epstein-Barr virus infection. Proc. Natl Acad. Sci. USA 1987; 84: 570–4.
- 54 Ho JHC. Nasopharyngeal carcinoma (NPC). Adv. Cancer Res. 1972; 16: 57–92.
- 55 de Thé G, Zeng Y. Population screening for EBV markers: Toward improvement of nasopharyngeal carcinoma control. In: MA Epstein, BG Achong, (eds) The Epstein-Barr Virus: Recent Advances. London: Heinemann 1986; 237–49.
- 56 Lu SJ, Day NE, Degos L et al. Linkage of a nasopharyngeal carcinoma susceptibility locus to the HLA region. Nature 1990; 346: 470–1.
- 57 Liebowitz D. Nasopharyngeal Carcinoma: The Epstein-Barr virus association. Semin. Oncol. 1994; 21: 376–81.
- 58 Hubert A, Jcannel D, Tuppin P, de Thé G. Anthropology and epidemiology: A plundisciplinary approach of environmental factors of nasopharyngeal carcinoma. In: T Tursz, JS Pagano, DV Ablashi, G Thé, G Lenoir, GR Pearson, (eds) The Epstein-Bart Virus and Associated Diseases. Montrouge: John Libbey Eurotext, 1993; 775–8.
- 59 Old LJ, Boyse EA, Oettgen HF et al. Precipitating antibody in human serum to an antigen present in cultured Burkitt's Lymphoma cell. Proc. Natl Acad. Sci. USA 1966; 56: 1699–704.
- 60 Henle G, Henle W. Epstein-Barr virus-specific IgA serum antibodies as an outstanding feature of nasopharyngeal carcinoma. Int. J. Cancer 1976; 17: 1–7.
- 61 Zeng Y, Wolf H, Takada K, Arrand JR, de Thé G. Detection of EBV specific IgA antibodies to EA, MA and EBNA-1 recombinant proteins in NPC patients and controls. In: DV Ablashi, A Faggioni, GRF Krueger, JS Pagano. GR Pearson, (eds) The Epstein-Barr Virus and Associated Diseases. Clifton: Humana Press, 1989; 309–13.
- 62 Desgranges C, de Thé G, Ho JH, Ellouz R. Neutralizing EBV-specific IgA in throat washings of nasopharvngeal carcinoma (NPC) patients. Int. J. Cancer 1977; 19: 627–33.
- 63 Joab I, Nicolas JC, Schwaab, G et al Detection of anti-Epstein–Barr-virus transactivator (ZEBRA) antibodies in sera from patients with nasopharyngeal carcinoma. Int. J. Cancer 1991; 48: 647–9.
- 64 Yao QY, Rowe M, Morgan AJ et al. Salivary and serum IgA antibodies to the Epstein-Barr virus glyeoprotein gp340: Incidence and potential for virus neutralization. Int. J. Cancer 1991; 48: 45–50.
- 65 Cheng YC, Chen JY, Glaser R, Henle W. Frequency and levels of antibodies to Epstein-Barr virus-specific DNase are elevated in patients with nasopharyngeal carcinoma. Proc. Natl Acad Sci. USA 1980; 77: 6162–5.
- 66 Littler E, Newman W, Arrand JR. Immunological response of nasopharyngeal carcinoma patients to the Epstein-Barr-virus-coded thymidine kinase expressed in Escherichia coli. Int. J. Cancer. 1990; 45: 1028—32.
- 67 Liu MY, Chou WH, Nutter L, Hsu MM, Chen JY, Yang CS. Antibody against Epstein-Barr virus DNA polymerase activity in sera of patients with nasopharyngeal carcinoma. J. Med. Virol. 1989; 28: 101–5.
- 68 Ginsburg M. Antibodies against the large subunit of the FBV-encoded ribonucleotide reductase in patients with nasopharyngeal carcinoma. Int. J. Cancer 1990; 45: 1048–53.
- 69 de Vathaire F, Sancho-Gamier H, de Thé H et al. Prognostic value of EBV markers in the clinical management of nasopharyngeal carcinoma (NPC): A multicenter follow-up study. Int. J. Cancer. 1988; 42: 176–81.
- 70 Cochet C, Martel-Renoir D, Grunewald V, Bosq, J. Cochet, G, Schwaab G. Expression of the Epstein-Barr virus immediate early gene, BZLFl, in nasopharyngeal carcinoma tumor cells. Virology 1993; 197: 358–65.
- 71 Wolf H, Hausen, H, and Becker V. EB viral genomes in epithelial nasopharyngeal carcinoma cells. Nature New Biol. 1973; 244: 245–7.
- 72 Huang DP, Ho JHC, Henle W, Henle G. Demonstration of Epstein-Barr virus-associated nuclear antigen in nasopharyngeal carcinoma cells from fresh biopsies. Int. J. Cancer 1974; 14: 580–8.
- 73 Klein G, Giovanella BC, Lindahl T, Fialkow PJ, Singh S, Steihlin JS. Direct evidence for the presence of Epstein-Barr virus DNA and nuclear antigen in malignant epithelial cells from patients with poorly differentiated carcinoma of the nasopharynx. Proc. Natl Acad. Sci. USA 1974; 71: 4737–41.
- 74 Wu TC, Mann RB, Epstein JI et al. Abundant expression of EBER1 small nuclear RNA in nasopharyngeal carcinoma. A morphologically distinctive target for detection of Epstein-Barr virus in formalin-fixed paraffin-embedded carcinoma. Am. J. Pathol. 1991; 138: 1461–9.
- 75 Niedobitek G, Hansmann, ML Herbst et al. Epstein-Barr virus and carcinomas: Undifferentiated carcinomas but not squamous cell carcinomas of the nasopharynx are regularly associated with the virus. J. Pathol. 1991; 165: 17–24.
- 76 Raab-Traub N, Flynn K, Pearson G et al. The differentiated form of nasopharyngeal carcinoma contains Epstein-Barr virus DNA. Int. J. Cancer 1987; 39: 25–9.
- 77 Desgranges C, Wolf H, de Thé G et al. Nasopharyngeal carcinoma. X. Presence of Epstein-Barr genomes in separated epithelial cells of tumours in patients from Singapore. Tunisia and Kenya. Int. J. Cancer 1975; 16: 7–15.
- 78 Raab-Traub N, Flynn K. The structure of the termini of the Epstein-Barr virus as a marker of clonal cellular proliferation. Cell 1986; 47: 883–9.
- 79 Effert P, McCoy R, Abdel-Hamid M, Flynn K, Zhang Q, Busson P. Alterations of the p53 gene in nasopharyngeal carcinoma. J. Virol. 1992; 66: 3768–75.
- 80 Pallesen G, Hamilton-Dutoit SJ, Zhou X. The association of Epstein-Barr virus (EBV) with T-cell lymphoprolifera-tions and Hodgkin's disease: Two new developments in the EBV field. Adv. Cancer Res. 1993; 62: 179–239.
- 81 Imai S, Koizumi S, Sugiura M et al. Gastric carcinoma: Monoclonal epithelial malignant cells expressing Epstein-Barr virus latent infection protein. Proc Natl Acad Sci. USA 1944; 91: 9131–5.
- 82 Tien HF, Su IJ, Chuang SM et al. Cytogenetic characterization of Epstein-Barr virus-associated T-cell malignancies. Cancer Genet. Cytogenet. 1993; 69: 25–30.
- 83 Minarovits J, Hu LF, Imai S et al. Clonality, expression and methylation patterns of the Epstein-Barr virus genomes in lethal midline granulomas classified as peripheral angiocentric T-cell lymphomas. J. Gen. Virol. 1994; 75: 77–84.
- 84 Gledhill S, Gallagher A, Jones DB et al. Viral involvement in Hodgkin's disease: Detection of clonal type A Epstein-Barr virus genomes in tumour samples. Br. J. Cancer 1991; 64: 227–32.
- 85 Craig FE, Clare CN, Sklar JL, Banks PM. T-cell lymphoma and the virus-associated hemophagocytic syndrome. Am. J. Clin. Pathol. 1992; 97: 189–94.
- 86 Allday MJ, Crawford DH. Role of epithelium in EBV persistence and pathogenesis of B-cell. Lancet 1988; 1: 855–7.
- 87 Wright DH. Histogenesis of Burkitt's Lymphoma: A B-cell tumour of mucosa-associated lymphoid tissue. In: GM Lenoir, GT O'Conor, CLM Olweny, (eds) Burkitt's Lymphoma: A Human Cancer Model. Lyon: IARC Scientific Publications No. 60 1985; 37–45.
- 88 O'Grady J, Stewart S, Elton RA, Krajewski AS. Epstein-Barr virus in Hodgkin's disease and site of origin of tumour. Lancet 1994; 343: 265–6.
- 89 Ooka T, de Turenne-Tessier M, Stolzenberg MC. Relationship between antibody production to Epstein-Barr virus (EBV) early antigens and various EBV-related diseases. Springer Semin. Immunopathol. 1991; 13: 233–47.
- 90 Mueller N, Evans A, Harris NL et al. Hodgkin's disease and Epstein-Barr virus. Altered antibody pattern before diagnosis. N. Engl. J. Med 1989; 320: 689–95.
- 91 Merino F, Henle W, Ramirez-Duque P. Chronic active Epstcin-Barr virus infection in patients with Chédiak-Higashi syndrome. J. Clin. Immunol. 1986; 6: 299–305.
- 92 Fox RI, Luppi M, Kang H, Pisa P. Reactivation of Epstein-Barr virus in Sjögren's syndrome. Springer Semin. Immunopathol. 1991; 13: 217–31.
- 93 Joncas J, Lapointe N, Gervais F, Leyritz M. Unusual prevalence of Epstein-Barr virus early antigen (EBV-EA) antibodies in ataxia telangiectasia. J. Immunol. 1977; 119: 1857–9.
- 94 Thomas JA, Allday MJ, Crawford DH. Epstein-Barr virus-associated lymphoproliferative disorders in immunocom-promised individuals. Adv. Cancer Res. 1991; 57: 329–80.
- 95 Berkel AI, Henle W, Henle G, Klein G, Ersoy F, Sanal O. Epstein-Barr virus-related antibody patterns in ataxia-telangiectasia. Clin. Exp. Immunol. 1979; 35: 196–201.
- 96 Berkel AI, Henle W, Henle G et al. Immune response to Epstein-Barr virus (EBV) in ataxia-telangiectasia: EBV-specific antibody patterns and their relation to cell-mediated immunity. Kroc. Found. Ser. 1985; 19: 287–300.
- 97 Hanto DW, Frizzera G, Gajl-Peczalska KJ, Simmons RL. Epstein-Barr virus, immunodeficiency, and B cell lympho-proliferation. Transplant. 1985; 39: 461–72.
- 98 Hamilton-Dutoit SJ, Sandvej K, Raphael M et al. AIDS-related lymphomas: Correlation of tumour morphology and site with Epstein-Barr virus gene expression. In: T Tursz, JS Pagano, DV Ablashi, G Thé, G Lenoir, GR Pearson, (eds) The Epstein-Barr Virus and Associated Diseases. Mon-trouge : John Libbey Eurotext, 643–7.
- 99 Audouin J, Diebold J, Pallesen G. Frequent expression of Epstein-Barr virus latent membrane protein-1 in tumour cells of Hodgkin's disease in HIV-positive patients. J. Pathol. 1992; 167: 381–4.
- 100 Uecini S, Monardo F, Stoppacciaro A et al. High frequency of Epstein-Barr virus genome detection in Hodgkin's disease of HIV-positive patients. Int. J. Cancer 1990; 46: 581–5.
- 101 Greenspan JS, Greenspan D, Lennette ET et al. Replication of Epstein-Barr virus within the epithelial cells of oral hairy leukoplakia, an AIDS-associated lesion. N. Engl. J. Med. 1985; 313: 1564–71.
- 102
Gatti RA,
Good RA.
Occurrence of malignancy in immunodeficiency diseases. A literature review.
Cancer
1971; 28: 89–98.
10.1002/1097-0142(197107)28:1<89::AID-CNCR2820280117>3.0.CO;2-Q CAS PubMed Web of Science® Google Scholar
- 103 Notarangelo LD, Duse M, Ugazio AG. Immunodeficiency with hyper-IgM (HIM). Immunodef. Rev 1992; 3: 1010–122.
- 104 Kikuta H, Taguchi, Y Tomizawa et al. Epstein-Barr virus genome-positive T lymphocytes in a boy with chronic active EBV Infection associated with Kawasaki-like disease. Nature 1988; 333: 455–7.
- 105 Yoneda N, Tatsumi E, Kawanishi M et al. Detection of Epstein-Barr virus genome in benign polydonal proliferative T-cells of a young male patient. Blood 1990; 76: 172–7.
- 106 Mori M, Kurozumi H, Akagi K, Tanaka Y, Imai S, Osato T. Monoclonal proliferation of T-cells containing Epstein-Barr Virus in fatal mononuclcosis. J. Engl. J. Med. 1992; 27–58.
- 107 Tao Q, Srivastava G, Loke SL, Liang RHS, Liu YT, Ho FCS. Epstein-Barr virus (EBV)-related lymphoproliferative disorder with subsequent EBV negative T-cell lympho Int. J. Cancer 1994; 58: 33—9.
- 108 Sixbey JW, Shirley P, Chesney PJ, Buntin DM, Resnick L. Detection of a second widespread strain of Epstein-Barr virus. Lancet 1989; 2: 761–5.
- 109 Young LS, Yao, QY Rooney, CM et al. New type B isolates of Epstein-Barr virus from Burkitt's lymphoma and from normal individuals in endemic areas. J. Gen. Virol. 1987; 68: 2853–62.
- 110 Adldinger HK, Delius H, Freese UK, Clarke J, Bornkamm GW. A putative transforming gene of Jijoye virus differs from that of Epstein-Barr virus prototypes. Virology 1985; 141: 221–34.
- 111 Sample J, Young L, Martin B, Chatman T, Kieff E, Rickinson A. Epstein-Barr virus types 1 and 2 differ in their EBNA-3A, EBNA-3B, and EBNA-3C genes. J. Virol. 1990; 64: 4084–92.
- 112 Lees JF, Anand JE, Pepper SD, Stewart JP, Mackett M, Arrand JR. The Epstein-Barr virus candidate vaccine antigen gp340/220 is highly conserved between virus types A and B. Virology 1993; 195: 578–86.
- 113 Arrand JR, Young LS, Tugwood JD. Two families of sequences in the small RNA-encoding region of Epstein-Barr virus (EBV) correlate with EBV types A and B. J. Virol. 1989; 63: 983–6.
- 114 Kieff E, Hoyer B, Bachenheimer S, Roizman B. Genetic relatedness of type 1 and type 2 herpes simplex viruses. J. Virol. 1972; 9: 738–45.
- 115 Sculley TB, Apolloni A, Hurren L, Moss DJ, Cooper DA. Coinfection with A and B-type Epstein-Barr virus in human immunodeficiency virus-positive subjects. J. Infect. Dis. 1990; 162: 643–8.
- 116 Rickinson AB, Young LS, Rowe M. Influence of the Epstein-Barr virus nuclear antigen EBNA 2 on the growth phenotype of virus-transformed B cells. J. Virol. 1987; 61: 1310–17.
- 117 Gentry GA, Lowe M, Alford G, Nevins R. Sequence analyses of herpesviral enzymes suggest an ancient origin for human sexual behavior. Proc. Natl Acad. Sci. USA 1988. 85: 2658—61.
- 118 Chandler SH, Handsfield HH, McDougall JK. Isolation of multiple strains of cytomegalovirus from women attending a clinic for sexually transmitted disease. J. Infect. Dis. 1987; 155: 655–60.
- 119 Kyaw-Tanner MT, Esmore D, Burrows SR, Benson EM, Sculley TB. Epstein-Barr virus-specific cytotoxic T cell response in cardiac transplant recipients. Transplant. 1994; 57: 1611–17.
- 120 Chen XY, Pepper SD, Arrand JR. Prevalence of the A and B types of Epstein-Barr virus DNA in nasopharyngeal carcinoma biopsies from southem China. J. Gen. Virol. 1992; 73: 463–6.
- 121 Bouzid M, Belkaid ML, Colonna P, Bouguermouh AM, Ooka T. Co-existenee of the A and B types of Epstein-Barr virus DNA in lymph node biopsies from Algerian patients with Hodgkin's disease and non-Hodgkin's lymphoma. Leukemia 1993; 7: 1451–5.
- 122 Miyashita T, Kawaguchi H, Asada M, Mizutani S, Ibuka T. Epstein-Barr virus type B in patient with T-cell lymphoma. Lancet 1991; 337: 1045–6.
- 123 Borisch B, Hennig I, Laeng RH, Waelti ER, Kraft R, Laissue J. Association of the subtype 2 of the Epstein-Barr virus with T-cell non-Hodgkin's lymphoma of the midline granuloma type. Blood 1993; 82: 858–64.
- 124 Zimber U, Adldinger HK, Lenoir GM et al. Geographical prevalence of two types of Epstein-Barr virus. Virology 1986; 154: 56–66.
- 125 Lung ML, Chang RS, Huang ML et al. Epstein-Barr virus genotypes associated with nasopharyngeal carcinoma in southern China. Virology 1990; 177: 44–53.
- 126 Trivedi P, Hu LF, Chen F et al. Epstein-Barr virus (EBV)-encoded membrane protein LMPl from a nasopharyngeal carcinoma is non-immunogenic in a murine model system, in contrast to a B cell-derived homologue. Eur. J. Cancer 1994; 30: 84–8.
- 127 de Campos-Lima PO, Gavioli R, Zhang QJ et al. HLA-A11 epitope loss isolates of Epstein-Barr virus from a highly Al1+ population. Science 1993; 260: 98–100.
- 128 Knecht H, Bachmann E, Brousset P et al. Deletions within the LMPl oncogene of Epstein-Barr virus are clustered in Hodgkin's disease and identical to those observed in nasopharyngeal carcinoma. Blood 1993; 82: 2937–42.
- 129 Walling DM, Perkins AG, Webster-Cyriaque J, Resnick L, Raab-Traub N. The Epstein-Barr virus EBNA-2 gene in oral hairy leukoplakia: strain variation, genetic recombination, and transcriptional expression J. Virol. 1994; 68: 7918—26.
- 130 Gratama JW, Oosterveer MA, Weimar W et al. Detection of multiple ‘Ebnotypes’ in individual Epstein-Barr virus carriers following lymphocyte transformation by virus derived from peripheral blood and oropharynx. J. Gen. Virol. 1994; 75: 85–94.
- 131 Yao QY, Rowe M, Martin B, Young LS, Rickinson AB. The Epstein-Barr virus carrier state: dominance of a single growth-transforming isolate in the blood and in the oropharynx of healthy virus carriers. J. Gen. Virol. 1991; 72: 1579–90.
- 132 Sixbey JW, Shirley P, Sloas M, Raab-Traub N, Israele V. A transformation-incompetent, nuclear antigen 2-deleted Epstein-Barr virus associated with replicative infection. J. Infect. Dis. 1991; 163: 1008–15.
- 133 Walling DM, Edmiston SN, Sixbey JW, Abdel-Hamid M, Resniek L, Raab-Traub N. Coinfection with multiple strains of the Epstein-Barr virus in human immunodeficieney virus-associated hairy leukoplakia. Proc. Natl Acad. Sci. USA 1992; 89: 6560–4.
- 134 Walling DM, Raab-Traub N. Epstein-Barr virus intrastrain recombination in oral hairy leukoplakia. J. Virol. 1994; 68: 7909–17.
- 135 Sixbey JW, Shirley P, Israele V. Detection of a transformation-incompetent Epstein-Barr virus genotype in a seronegative host. In: DV Ablashi, A Faggioni, GRF Krueger, JS Pagano, GR Pearson, (eds) The Epstein-Barr Virus and Associaled Diseases. Clifton ; Humana Press, 1989; 131–5.
- 136 Bruggeman CA. Cytomegalovirus and latency: An overview Virchows Arch B. Cell Pathol. Mol. Pathol. 1993; 64: 325—33.
- 137 Pope JH, Home MK, Scott W. Transformation of fetal human leucocytes in vitro by filtrates of a human leukemic cell line containing herpes-like virus. Int. J. Cancer 1968; 3: 857–44.
- 138 Counter CM, Botelho FM, Wang P, Harley CB, Bacchetti S. Stabilization of short telomeres and telomerase activity accompany immortalization of Epstein-Barr virus-transformed human B lymphocytes. J. Virol. 1994; 68: 3410–14.
- 139 Sugden B. Latent Infection of B lymphocytes by Epstein-Barr virus. Semin. Virol. 1994; 5: 197–205.
- 140 Stevens JG, Wagner EK, Devi-Rao GB, Cook ML, Feld-man LT. RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science 1987; 235: 1056–9.
- 141 Croen KD, Ostrove JM, Dragovic LJ, Smialek JE, Straus SE. Latent herpes simplex virus in human trigeminal ganglia. Detection of an immediate early gene anti-sense transcript by in situ hybridization. N. Engl. J. Med. 1987; 317: 1427–32.
- 142 Rødahl E, Stevens JG. Differential accumulation of herpes simplex virus type 1 latency-associated transcripts in sensory and autonomic ganglia. Virology 1992; 189: 385–8.
- 143 Stevens JG. Overview of herpesvirus latency. Semin. Virol. 1994; 5: 191–6.
- 144 Toorkey CB, Carrigan DR. Immunohistochemical detection of an immediate early antigen of human cytomegalo-virus in normal tissues. J. Infect. Dis. 1989; 160: 741–51.
- 145 Yuhasz SA, Dissette VB, Cook ML, Stevens JG. Murine cytomegalovirus is present in both chronic active and latent states in persistently infected mice. Virology 1994; 202: 272–80.
- 146 Croen KD, Ostrove JM, Dragovic LJ, Straus SE. Patterns of gene expression and sites of latency in human nerve ganglia are different for varicella-zoster and herpes simplex viruses. Proc. Natl Acad. Sci. USA 1988; 85: 9773–7.
- 147 Meier JL, Holman RP, Croen KD, Smiaiek JE, Straus SE. Varicella-zoster virus transcription in human trigeminal ganglia. Virology 1993; 193: 193–200.
- 148 Rowe M, Lear AL, Croom-Carter D, Davies AH, Rickinson AB. Three pathways of Epstein-Barr virus gene activation from EBNA1-positive latency in B lymphocytes. J. Virol. 1992; 66: 122–31.
- 149 Kerr BM, Lear AL, Rowe M. Three transcriptionally distinct forms of Epstein-Barr virus latency in somatic cell hybrids: Cell phenotype dependence of virus promoter usage. Virology 1992; 187: 189–201.
- 150 Rowe M, Rowe DT, Gregory CD. Differences in B cell growth phenotype reflect novel patterns of Epstein-Barr virus latent gene expression in Burkitt's lymphoma cells. EMBO J. 1987; 6: 2743–51.
- 151 Sample J, Henson EB, Sample C. The Epstein-Barr virus nuclear protein 1 promoter active in type I latency is auto-regulated. J. Virol. 1992; 66: 4654–61.
- 152 Yates J, Warren N, Reisman D, Sugden B. A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc. Natl Acad. Sci. USA 1984; 81: 3806–10.
- 153 Brooks LA, Lear AL, Young LS, Rickinson AB. Transcripts from the Epstein-Barr virus Bam HI A fragment are detectable in all three forms of virus latency. J. Virol. 1993; 67: 3182–90.
- 154 Robertson ES, Tomkinson B, Kieff E. An Epstein-Barr virus with a 58-kilobase-pair deletion that includes BARF0 transforms B lymphocytes in vitro. J. Virol. 1994; 68: 1449—58.
- 155 Karran L, Gao Y, Smith PR, Griffin BE. Expression of a family of complementary-strand transcripts in Epstein-Barr virus-infected cells. Proc. Natl Acad. Sci. USA 1992; 89: 8058–62.
- 156 Hitt MM, Allday MJ, Hara T et al. EBV gene expression in an NPC-rclated tumour. EMBO J. 1989; 8: 2639–51.
- 157 Perng GC, Dunkel EC, Geary PA et al. The latency-associated transcript gene of herpes simplex virus type 1 (HSV-1) is required for efficient in vivo spontaneous reactivation of HSV-1 from latency. J. Virol. 1994; 68: 8045–55.
- 158 Rymo L. Identification of transcribed regions of Epstein-Barr virus DNA in Burkitt lymphoma-derived cells. J. Virol. 1979; 32: 8–18.
- 159 Howe JG, Shu MD. Epstein-Barr virus small RNA (EBER) genes: Unique transcription units that combine RNA polymerase II and III promoter elements. Cell 1989; 57: 825–34.
- 160 Lerner MR, Andrews NC, Miller G, Slcitz JA. Two small RNAs encoded by Epstein-Barr virus and complexed with protein are precipitated by antibodies from patients with systemic lupus erythematosus. Proc. Natl Acad. Sci. USA 1981; 78: 805–9.
- 161 Toczyski DP, Matera AG, Ward DC, Steitz JA. The Epstein-Barr virus (EBV) small RNA EBER1 binds and relocalizes ribosomal protein L22 in EBV-infected human B lymphocytes. Proc. Natl Acad. Sci. USA 1994; 91: 3463–7.
- 162 Bhat RA, Thimmappaya B. Two small RNAs encoded by Epstein-Barr virus can functionally substitute for the virus-associated RNAs in the lytic growth of adenovirus. Proc. Natl Acad. Sci. USA 1983; 80: 4789–93.
- 163 Clarke PA, Schwemmle M, Schickinger J, Hilse K, Clemens MJ. Binding of Epstein-Barr virus small RNA EBER-1 to the double-stranded RNA-activated protein kinase DAI. Nuc. Acids Res. 1991; 19: 243–8.
- 164 Swaminathan S, Tomkinson B, Kieff E. Recombinant Epstein-Barr virus with small RNA (EBER) genes deleted transforms lymphocytes and replicates in vitro. Proc. Natl Acad. Sci USA 1991; 88: 1546—50.
- 165 Swaminathan S, Huneycutt BS, Reiss CS, Kieff E. Epstein-Barr virus-encoded small RNAs (EBERs) do not modulate interferon effects in infected lymphocytes. J. Virol. 1992; 66: 5133–6.
- 166 Fahraeus R, Fu HL, Ernberg I et al. Expression of Epstein-Barr virus-encoded proteins in nasopharyngeal carcinoma. Int. J. Cancer 1988; 42: 329–38.
- 167 Brooks L, Yao QY, Rickinson AB, Young LS. Epstein-Barr virus latent gene transcription in nasopharyngeal carcinoma cells: coexpression of EBNAI, LMPl, and LMP2 transcripts. J. Virol. 1992; 66: 2689–97.
- 168 Busson P, McCoy R, Sadler R, Gilligan K, Tursz T, Raab-Traub N. Consistent transcription of the Epstein-Barr virus LMP2 gene in nasopharyngeal carcinoma. J. Virol. 1992; 66: 3257–62.
- 169 Khan G, Gupta RK, Coates PJ, Slavin G. Epstein-Barr virus infection and bcl-2 proto-oncogene expression. Separate events in the pathogenesis of Hodgkin's disease Am. J. Pathol. 1993; 143: 1270–4.
- 170 Raab-Traub N, Rajadurai P, Flynn K, Lanier AP. Epstein-Barr virus infection in carcinoma of the salivary gland. J. Virol. 1991; 65: 7032–6.
- 171 Gilligan KJ, Rajadurai P, Lin JC et al. Expression of the Epstein-Barr virus Bam HI A fragment in nasopharyngeal carcinoma: Evidence fora viral protein expressed in vivo. J. Virol. 1991; 65: 6252—9.
- 172 Deacon EM, Pallesen G, Niedobitek G et al. Epstein-Barr virus and Hodgkin's disease: Transcriptional analysis of virus latency in the malignant cells. J. Exp. Med. 1993; 177: 339–49.
- 173 Kaye KM, Izumi KM, Kieff E. Epstein-Burr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc. Natl Acad. Sci. USA 1993; 90: 9150–4.
- 174 Kaye KM, Izumi KM, Mosialos G, Kieff E. The Epsein-Barr virus LMPl cytoplasmic carboxy terminus Is essential for B-lymphocyte transformation; Fibroblast cocultivation complements a critical function within the terminal 155 residues. J. Virol. 1995; 69: 675–83.
- 175 Wang D, Lebowitz D, Kieff E. An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 1985; 43: 831–40.
- 176 Wang D, Liebowitz D, Wang F et al. 1988. Epstein-Barr virus latent infection membrane protein alters the human B-lymphocyte phenotype: Deletion of the amino terminus abolishes activity. J. Virol. 62: 4173–84.
- 177 Wang F, Gregory CD, Rowe M. Epstein-Barr virus nuclear antigen 2 specifically induces expression of the B-cell activation antigen CD23. Proc. Natl Acad. Sci. USA 1987; 84: 3452–6.
- 178 Wang D, Liebowitz D, Kieff E. The truncated form of the Epstein-Barr virus latent-infection membrane protein expressed in virus replication does not transform rodent fibroblasts. J. Virol. 1988; 62: 2337–46.
- 179 Henderson S, Rowe M, Gregory C et al. Induction of bcl-2 expression by Epstein-Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell 1991; 65: 1107–15.
- 180 Martin JM, Veis D, Korsmeyer SJ, Sugden B. Latent membrane protein of Epstein-Barr virus induces cellular pheno-types independently of expression of Bcl-2. J. Virol. 1993; 67: 5269–78.
- 181 Rowe M, Peng-Pilon M, Huen DS et al. Upregulation of bcl-2 by the Epstein-Barr virus latent membrane protein LMPl: A B-cell-specific response that is delayed relative to NF-κ B activation and to induction of cell surface markers. J. Virol. 1994; 68: 5602–12.
- 182 Hammarskjold M-L, Simurda MC. Epstein-Barr virus latent membrane protein transactivates the human immunodeficiency virus type 1 long terminal repeat through induction of NF-κ B activity. J. Virol. 1992; 66: 6496–501.
- 183 Laherty CD, Hu HM, Opipari AW, Wang F, Dixit VM. The Epstein-Barr Virus LMPl gene product induces A20 zinc finger protein expression by activating nuclear factor κ B. J. Biol. Chem. 1992; 267: 24157–60.
- 184 Peng M, Lundgren E. Transient expression of the Epstein-Barr virus LMPl gene in human primary B cells induces cellular activation and DNA synthesis. Oncogene 1992; 7: 1775–82.
- 185 Niedobitek G, Agathanggelou A, Rowe M et al. Heterogeneous expression of Epstein-Barr virus latent proteins in endemic Burkitt's lymphoma. Blood 1995; 86: 659–65.
- 186 Hu LF, Minarovits J, Cao SL et al. Variable expression of latent membrane protein in nasopharyngeal carcinoma can be related to methylation status of the Epstein-Barr virus BNLF-1 5′-nanking region. J. Virol. 1991; 65: 1558–67.
- 187 Paine E, Scheinman RL, Baldwin AS, Raab-Traub N. Expression of LMP1 in epithelial cells leads to the activation of a select subset of NF-κB/REl family proteins. J. Virol. 1995; 69: 4572–6.
- 188 Burkhardt AL, Bolen JB, Kieff E, Longnecker R. An Epstein-Barr virus transformation-associated membrane protein interacts with src family tyrosine kinases. J. Virol. 1992; 66: 5161–7.
- 189 Longnecker R, Miller CL, Miao XQ, Marchini A, Kieff E. The only domain which distinguishes Epstein-Barr virus latent membrane protein 2A (LMP2A) from LMP2B is dispensable for lymphocyte infection and growth transformation in vitro: LMP2A is therefore nonessential. J. Virol. 1992; 66: 6461–9.
- 190 Longnecker R, Miller CL, Tomkinson B, Miao XQ, Kieff E. Deletion of DNA encoding the first five transmembrane domains of Epstein-Barr virus latent membrane proteins 2A and 2B. J. Virol. 1993; 67: 5068–74.
- 191 Longnecker R, Miller CL, Miao XQ, Tomkinson B, Kieff E. The last seven transmembrane and carboxy-terminal cyto-plasmic domains of Epstein-Barr virus latent membrane protein 2 (L MP2) are dispensable for lymphocyte infection and growth transformation in vitro. J. Virol. 67: 200–613.
- 192 Qu L, Rowe DT. Epstein-Barr virus latent gene expression in uncultured peripheral blood lymphocytes. J. Virol. 1992; 66: 3712–24.
- 193 Miller CL, Longnecker R, Kieff E. Epstein-Barr virus latent membrane protein 2A blocks calcium mobilization in B lymphocytes. J. Virol. 1993; 67: 3087–94.
- 194 Sample J, Hummel M, Braun D, Birkenbach M, Kieff E. Nucleotide sequences of mRNAs encoding Epstein-Barr virus nuclear proteins: A probable transcriptional initiation site. Proc. Natl Acad. Sci. USA 1986; 83: 5096–100.
- 195 Tierney RJ, Steven N, Young LS, Rickinson AB. Epstein-Barr virus latency in blood mononuclear cells: Analysis of viral gene transcription during primary infection and in the carrier. J. Virol. 1994; 68: 7374–85.
- 196 Masucci MG, Contreras-Salazar B, Ragnar E et al. 5-Azacytidine up regulates the expression of Epstein-Barr virus nuclear antigen 2 (EBNA-2) through EBNA-6 and latent membrane protein in the Burkitt's lymphoma line Rael. J. Virol. 1989; 63: 3135–41.
- 197 Jansson, A. Masucci, M. Rymo, L. Methylation of discrete sites within the enhancer region regulates the activity of the Epstein-Barr virus Bam HI W promoter in Burkitt lymphoma lines. J. Virol. 1992; 66: 62–9.
- 198 Hammerschmidt W, Sugden B. Genetic analysis of immortalizing functions of Epstein-Barr virus in human B lymphocytes. Nature 1989; 340: 393–7.
- 199 Cohen JL, Wang F, Mannick J, Kieff E. Epstein-Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc. Natl Acad. Sci. USA 1989; 86: 9558–62.
- 200 Kempkes B, Spitkovsky D, Jansen-Durr P et al. B-cell proliferation and induction of early G1-regulating proteins by Epstein-Barr virus mutants conditional for EBNA2. EMBO J. 1995; 14: 88–96.
- 201 Wang F, Gregory C, Sample C et al. Epstein-Barr virus latent membrane protein (LMPl) and nuclear proteins 2 and 3C are effectors of phenotypic changes in B lymphocytes: EBNA-2 and LMPl cooperatively induce CD23. J. Virol. 1990; 64: 2309–18.
- 202 Knutson JC. The level of c-fgr RNA is increased by EBNA-2, an Epstein-Barr virus gene required for B-cell immortalization. J. Virol. 1990; 64: 2530–6.
- 203 Cordier-Bussat M, Billaud M, Calender A, Lenoir GM. Epstein-Barr virus (EBV) nuclear-antigen-2-induced up-regulation of CD21 and CD23 molecules is dependent on a permissive cellular context. Int. J. Cancer 1993; 53: 153–60.
- 204 Murray RJ, Young LS, Calender A et al. Different patterns of Epstein-Barr virus gene expression and of cytotoxic T-cell recognition in B-cell lines infected with transforming (B95.8)or nontransforming(P3HR1) virus strains. J. Virol. 1988; 62: 894–901.
- 205 Sung NS, Kenney S, Gutsch D, Pagano JS. EBNA-2 transctivates a lymphoid-specific enhancer in the Bam HI C promoter of Epstein-Barr virus. J. Virol. 1991; 65: 2164–9.
- 206 Wang F, Tsang SF, Kurilla MG, Cohen JI, Kieff E. Epstein-Barr virus nuclear antigen 2 transactivates latent membrane protein LMPl. J. Virol. 1990; 64: 3407–16.
- 207 Zimber-Strobl U, Suentzenich KO, Laux G et al. Epstein-Barr virus nuclear antigen 2 activates transcription of the terminal protein gene. J. Virol. 1991; 65: 415–23.
- 208 Henkel T, Ling, PD, Hay ward, SD, Peterson MG. Mediation of Epstein-Barr virus EBNA2 transactivation by recombination signal-binding protein J κ Science 1994; 265: 92—5.
- 209 Reisman D, Sugden B. Trans-activation of an Epstein-Barr viral transcriptional enhancer by the Epstein-Barr viral nuclear antigen 1. Mol. Cell. Biol. 1986; 6: 3838–46.
- 210 Wysokenski DA, Yates JL. Multiple EBNA1-binding sites are required to form an EBNA1-dependent enhancer and to activate a minimal replicative origin within oriP of Epstein-Barr virus. J. Virol. 1989; 63: 2657–66.
- 211 Mannick JB, Cohen JI, Birkenbach M, Marchini A, Kieff E. The Epstein-Barr virus nuelear protein encoded by the leader of the EBNA RNAs is important in B-lymphoeyte transformation J. Virol. 1991; 65: 6826—37.
- 212 Tomkinson B, Robertson E, Kieff E. Epstein-Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation. J. Virol. 1993; 67: 2014–25.
- 213 Tomkinson B, Kieff E. Use of second-site homologous recombination to demonstrate that Epstein-Barr virus nuclear protein 3B is not important for lymphocyte infection or growth transformation in vitro. J. Virol. 1992; 66: 2893—903.
- 214 Tomkinson B, Kieff E. Second-site homologous recombination in Epstein-Barr virus: Insertion of type 1 EBNA 3 genes in place of type 2 has no effect on in vitro infection. J. Virol. 1992; 66: 780–9.
- 215 Szekely L, Selivanova G, Magnusson KP, Klein G, Wiman KG. EBNA-5, an Epstein-Barr virus-encoded nuclear antigen, binds to the retinoblastoma and p53 proteins. Proc Natl Acad Sci. USA 1993; 90: 5455–9.
- 216 Nevins JR. E2F: A link between the Rb tumor suppressor protein and viral oncoproteins. Science 1992; 258: 424–9.
- 217 Masucci MG, Gavioli R, de Campos-Lima PO, Zhang QJ, Trivedi P. Transformation-associated Epstein-Barr virus antigens as targets for immune attack. Ann. N. Y. Acad. Sci. 1993; 690: 86–100.
- 218 Moss DJ, Sculley TB, Pope JH. Induction of Epstein-Barr virus nuclear antigens. J. Virol. 1986; 58: 988–90.
- 219 Allday MJ, Crawford DH, Griffin BE. Epstein-Barr virus latent gene expression during the initiation of B cell immortalization. J. Gen. Virol. 1989; 70: 1755–64.
- 220 Rooney C, Howe JG, Speek SH, Miller G. Influence of Burkitt's lymphoma and primary B cells on latent gene expression by the nonimmortalizing P3J-HR-1 strain of Epstein-Barr virus J. Virol. 1989; 63: 1531—9.
- 221 Alfieri C, Birkenbaeh M, Kieff E. Early events in Epstein-Barr virus infection of human B lymphocytes. Virology 1991; 181: 595–608.
- 222 Woisetschlaeger M, Jin XW, Yandava CN. Furmanski LA, Strominger JL, Speck SH, Role for the Epstein-Barr virus nuclear antigen 2 in viral promoter switching during initial stages of infection. Proc. Natl Acad. Sci. USA 1991; 88: 3942–6.
- 223 Miyazaki I, Cheung RK, Dosch HM. Viral interleukin 10 is critical for the induction of B cell growth transformation by Epstein-Barr virus. J. Exp. Med. 1993; 178: 439–47.
- 224 Swaminathan S, Hesselton R, Sullivan J, Kieff E. Epstein-Barr virus recombinants with specifically mutated BCRF1 genes. J. Virol. 1993; 67: 7406–13.
- 225 Moore KW, Vieira P, Fiorentino DF, Trounstine ML, Khan TA, Mosmann TR. Homoiogy of cytokine synthesis inhibitory factor (IL-10) to the Epstein-Barr virus gene BCRF1. Science, 248: 1230–4.
- 226 Vieira P, de Waal-Malefyt R, Dang M-N et al. Isolation and expression of human cylokine synthesis inhibitory factor (CSIF/ILl0) cDNA clones: Homology to Epstein-Barr virus open reading frame BCRF1. Proc. Natl Acad. Sci. USA 1991; 88: 1172–6.
- 227 Kocache MM, Pearson GR. Protein kinase activity associated with a cell cycle regulated, membrane-bound Epstein-Barr virus induced early antigen. Intervirol. 1990; 31: 1–13.
- 228 Austin PJ, Remington E, Yandava CN, Strominger JL, Speck SH. Complex transcription of the Epstein-Barr virus Bam HI fragment H rightward open reading frame 1 (BHRFl) in latently and lytically infected B lymphocytes. Proc. Natl Acad Sci USA 1988; 85: 3678–82.
- 229 Lee MA, Yates JL. BHRFl of Epstein-Barr virus, which is homologous to human proto-oncogene bcl2, is not essential for transformation of B cells or for virus replication in vitro. J. Virol. 1992; 66: 1899—90.
- 230 Marchini, V Tomkinson, B, Cohen JI, Kieff E. BHRF1, the Epstein-Barr virus gene with homology to Bcl2, is dispensable for B-lymphoeyte transformation and virus replication J. Virol. 1991; 65: 5991—6000.
- 231 Henderson S, Huen D, Rowe M, Dawson C, Johnson G, Rickinson A. Epstein-Barr virus-coded BHRFl protein, a viral homologue of Bcl-2, protects human B cells from programmed cell death. Proc. Natl. Acad. Sci. USA 1993; 90: 8479–83.
- 232 Dawson CW, Eliopoulos AG, Dawson J, Young LS. BHRFl, a viral homologue of the Bcl-2 oncogene. disturbs epithelial cell differentiation. Oncogene 1995; 10: 69–77.
- 233 Miyashita EM, Yang B, Lam KM, Crawford DH, Thorley-Lawson DA. A novel form of Epstein-Barr virus lateney in normal B cells in vivo. Cell 1995; 80: 593—601.
- 234 Herbst H, Dallenbach F, Hummel M et al. Epstein-Barr virus latent membrane protein expression in Hodgkin and Reed-Sternberg cells. Proc Natl. Acad. Sci. USA 1991; 88: 4766–70.
- 235 Herbst H, Steinbrecher E, Niedobitek G et al. Distribution and phenotype of Epstein-Barr virus-harboring cells in Hodgkin's disease. Blood 1992; 80: 484–91.
- 236 Niedobitek G, Herbst H, Young LS et al. Patterns of Epstein-Barr virus infeetion in non-neoplastic lymphoid tissue. Blood 1992; 79: 2520–6.
- 237 Thomas JA, Hotchin NA, Allday MJ et al. Immunohistology of Epstein-Barr virus-associated antigens in B cell disorders from immunocompromised individuals Transptant. 1990; 49: 944—53.
- 238 Lemon SM, Hutt LM, Shaw JE, Li JL, Pagano JS. Replication of EBV in epithelial cells during infectious. Nature 1977; 268: 268–70.
- 239 Sinclair AJ, Farrell PJ. Epstein-Barr virus transcription factors. Cell Growth Differ 1992; 3: 557—63.
- 240 Takada K, Ono Y. Synchronous and sequential activation of latently infected Epstein-Barr virus genomes. J Virol. 1989; 63: 445–9.
- 241 Biggin M, Bodescot M, Perricaudet M, Farrell P. Epstein-Barr virus gene expression in P3HR l-superinfected R cells. J. Virol. 1987; 61: 3120–32.
- 242 Flemington E, Speck SH. Autoregulation of Epstein-Barr virus putative lytic switch gene BZLFl J. Virol. 1990; 64: 1227—32.
- 243 Kenney S, Kamine J, Holley-Guthrie E, Lin JC, Mar EC, Pagano J. The Epstein-Barr virus (EBV) BZLFl immediateearly gene product differentially affects latent versus productive EBV promoters. J. Virol. 1989; 63: 1729–36.
- 244 Pallesen G, Hamilton-Dutoit SJ, Rowe M, Young LS. Expression of Epstein-Barr virus latent gene products in tumour cells of Hodgkin's disease. Lancet 1991; 337: 320–2.
- 245 Brousset P, Knecht H, Rubin B et al. Demonstration of Epstein-Barr virus replication in Reed-Stemberg cells of Hodgkin's disease. Blood 1993; 82: 872–6.
- 246 Katz BZ, Raab-Traub N, Miller G. Latent and replicating forms of Epstein-Barr virus DNA in lymphomas and lymphoproliferative diseases. J. Infect. Dis. 1989; 160: 589–98.
- 247 Becker J, Leser U, Marsehall M et al. Expression of proteins encoded by Epstein-Barr virus trans-activator genes depends on the differentiation of epithelial cells in oral hairy leukoplakia. Proc. Natl Acad Sci. USA 1991; 88: 8332–6.
- 248 Young LS, Lau R, Rowe M et al. Differentiation-associated expression of the Epstein-Barr virus BZLFl transactivator protein in oral hairy leukoplakia. J. Virol 1991; 65: 2868–74.
- 249 Baylis SA, Young LS, Purifoy DJ, Littler E. Immunological studies on the Epstein-Barr virus encoded alkaline deoxyribonuctease found in virus-producing lymphoblastoid cells. J. Gen. Virol. 1991; 72: 399–404.
- 250 Wolf H, Bogedain C, Schwarzmann F. Epstein-Barr virus and its interaction with the host. Intervirol. 1993; 35: 26–39.
- 251 Niedobitek G, Young LS, Lau R et al. Epstein-Barr virus infection in oral hairy leukoplakia: Virus replication in the absence of a detectable latent phase. J. Gene. Virol. 1991; 72: 3035–46.
- 252 Gilligan K, Rajadurai P, Resnick L, Raab-Traub N. Epstein-Barr virus small nuclear RNAs are not expressed in permissively infected cells in AlDS-associated leukoplakia. Proc. Natl Acad Sci. USA 1990; 87: 8790–4.
- 253 Lau R, Middeldorp J, Farrell PJ. Epstein-Barr virus gene expression in oral hairy leukoplakia. Virology 1993; 195: 463–74.
- 254 Thomas JA, Felix DH, Wray D, Southam JC, Cubie HA, Crawford DH. Epstein-Barr virus gene expression and epithelial cell differentiation in oral hairy leukoplakia. Am. J. Pathol. 1991; 139: 1369–80.
- 255 Gratama JW, Oosterveer MA, Zwaan FE, Lepoutre J, Klein G, Ernberg I. Eradication of Epstein-Barr virus by allogeneic bone marrow transplantation: Implications for sites of viral latency. Proc. Nail Acad. Sci. USA 1988; 85: 8693–6.
- 256 Veltri RW, McClung JE, Sprinkle PM. Epstein-Barr nuclear antigen (EBNA) carrying lymphocytes in human palatine tonsils. J. Gen Virol. 1976; 32: 455–60.
- 257 Yao QY, Ogan P, Rowe M, Wood M, Rickinson AB. Epstein-Barr virus-infected B cells persist in the circulation of acyclovir-treated virus carriers. Int. J. Cancer 1989; 42: 67–71.
- 258 Yao QY, Ogan P, Rowe M, Wood M, Rickinson AB. The Epstein-Barr virus: host balance in acute infectious mononucleosis patients receiving acyclovir anti-viral therapy. Int. J. Cancer 1989; 43: 61–6.
- 259 van der Horst C, Joneas J, Ahronheim G, Gustafson N, Stein G. Lack of effect of peroral acyclovir for the treatment of acute infectious mononucleosis. J. Infect. Dis. 1991; 164: 788–92.
- 260 Lindahl G, Lonnquist B, Hedfors E. Lymphocytic infiltrations of lip salivary glands in bone marrow recipients. A model for the development of the histopathological changes in Sjögren's syndrome J. Autoimmun. 1989; 2: 579–83.