Transplantable melanomas in gerbils (meriones unguiculatus). II: melanogenesis
Przemyslaw M. Plonka
Laboratory for Radiospectroscopy of Cancer and Radiobiology, Institute of Molecular Biology and Biotechnology, Jagiellonian University, Krakow, Poland,
Search for more papers by this authorAndrzej T. Slominski
Department of Pathology, University of Tennessee, Memphis, TN, USA
Search for more papers by this authorStanislawa Pajak
Laboratory for Radiospectroscopy of Cancer and Radiobiology, Institute of Molecular Biology and Biotechnology, Jagiellonian University, Krakow, Poland,
Search for more papers by this authorKrystyna Urbanska
Laboratory for Radiospectroscopy of Cancer and Radiobiology, Institute of Molecular Biology and Biotechnology, Jagiellonian University, Krakow, Poland,
Search for more papers by this authorPrzemyslaw M. Plonka
Laboratory for Radiospectroscopy of Cancer and Radiobiology, Institute of Molecular Biology and Biotechnology, Jagiellonian University, Krakow, Poland,
Search for more papers by this authorAndrzej T. Slominski
Department of Pathology, University of Tennessee, Memphis, TN, USA
Search for more papers by this authorStanislawa Pajak
Laboratory for Radiospectroscopy of Cancer and Radiobiology, Institute of Molecular Biology and Biotechnology, Jagiellonian University, Krakow, Poland,
Search for more papers by this authorKrystyna Urbanska
Laboratory for Radiospectroscopy of Cancer and Radiobiology, Institute of Molecular Biology and Biotechnology, Jagiellonian University, Krakow, Poland,
Search for more papers by this authorAbstract
Abstract: We characterized the melanogenic apparatus in a family of transplantable gerbil melanomas (melanotic and amelanotic) using a combination of biophysical, ultrastructural and biochemical methods. Melanotic melanomas produced pure eumelanin but in vesiculo-globular melanosomes (‘pheomelanosomes’); the eumelanosomes, characteristically ellipsoidal in shape with fibrillar or fibrillo-lamelar matrix, were never noticed. Melanotic melanomas also had significant tyrosinase activity and Zn, Pb/S, Ca and P content; all higher than in the amelanotic variants. The amelanotic variant, which was devoid of melanin pigment and melanosomes, had clearly detectable tyrosinase activity (albeit at 20% of that in the melanotic variant). Thus, with these multidirectional approaches we demonstrate that pure eumelanin can be synthesized in organelles ultrastructurally defined as pheomelanosomes, but a defect in the formation of melanosomes can prevent in vivo melanin synthesis despite the presence of detectable tyrosinase activity. We conclude that this melanoma system provides an excellent experimental model for the study of molecular components determining pheo- and/or eumelanogenesis. The information generated can be used for defining the roles of melanogenesis and of tyrosinase expression in the regulation of melanoma behavior and the effect of their modification on the course of the disease.
References
- 1 Naito M, Aoyama H, Fujoka Y, Ito A. Induction of gliomas in Mongolian gerbils (Meriones unguiculatus) following neotatal administration of N-Ethyl-N-Nitrosourea. J Natl Cancer Inst 1985: 75: 581–587.
- 2 Vincent A, Porter D, Ash L. Spontaneous lesions and parasites of the Mongolian gerbil, Meriones unguiculatus. Lab Anim Sci 1975, 25.
- 3 Vincent A, Ash L. Further observations on spontaneous neoplasms in the Mongolian gerbil, Meriones unguiculatus. Lab Anim Sci 1978: 88: 297–300.
- 4 Handler A, Magalini S, Pav D. Oncogenic studies on the Mongolian gerbil. Cancer Res 1966: 26: 844–847.
- 5 Hashimoto O, Miyamoto K, Moritomo T, Saito H, Watanabe T, Mochizuki K. Characterization of cultured cells derived from Mongolian gerbil's (Meriones unguiculatus): ascitic malignant melanoma. J Vet Med Sci 1993: 57: 635–640.
- 6 Hashimoto O, Ogawa K, Kurohmaru M, Hayashi Y. Effect of extracellular matrix on two cell lines established from Mongolian Gerbil's (Meriones unguiculatus) malignant melanoma. J Vet Med Sci 1995: 57: 635–640.
- 7 Moritomo T, Saito H, Watanabe T, Mochizuki K. Tissue culture study on Mongolian gerbil's (Meriones unguiculatus) malignant melanoma. Exp Anim (Tokyo) Jikken Dobutsu 1991: 40: 385–388.
- 8 Pawlowski A, Lea P. Nevi and melanoma induced by chemical carcinogens in laboratory animals: similarities and differences with human lesions. J Cutan Pathol 1983: 10: 81–110.
- 9 Cramlet S, Toft I I J, Olsen N. Malignant melanoma in a black gerbil (Meriones unguiculatus) Lab Anim Sci 1974: 24: 545–547.
- 10 Quevedo W, Bienieki T, Fausto N, Magalini S. Induction of pigmentary changes in the skin of the Mongolian gerbil by chemical carcinogens. Experientia 1968: 24: 585–586.
- 11 Yukawa M, Onodera T, Yoshihara K, Saitoh H, Mochizuki K. Immune response of the Mongolian gerbil (Meriones unguiculatus) to sheep red blood cells. J Exp Anim Sci 1991.
- 12
Plonka P,
Plonka B,
Drzewinska M,
Pajak S.
Accelerated rejection of cardiac allografts and xenografts in presensitized rats and gerbils. In: S
J Lukiewicz,
J
L Zweier, eds.
Nitric Oxide in Transplant Rejection and Anti-Tumor Response.
Boston-Dordrecht-London: Kluwer Academic Publishers, 1998:
205–212.
10.1007/978-1-4615-5081-5_12 Google Scholar
- 13 Karavodin L, Ash L. Weak mixed lymphocyte culture response in the Mongolian gerbil (Meriones unguiculatus) Lab Anim Sci 1977b: 27: 195–203.
- 14 Karavodin L, Ash L. Weak graft-versus-host response in the Mongolian gerbil (Meriones unguiculatus) Lab Anim Sci 1977a: 27: 1035–1036.
- 15 Yukawa M, Onodera T, Suzuki J, Yokomizo Y, Suzuki M, Mochizuki K. Impairment of macrophage function in Mongolian gerbils. Vet Immunol Immunopathol 1992: 33: 353–364.
- 16 Hixon M, Lewis A, Jr Levine A, Chattopadhyay S. Limited diversity in the major histocompatibility complex class II loci of Syrian hamster DNA. Lab Anim Sci 1996: 46: 679–681.
- 17 Darden A, Streilein J. Syrian hamsters express two monomorphic class I major histocompatibility complex molecules. Immunogenetics 1984: 20: 603–622.
- 18 Matsuzaki T, Yasuda Y, Nonaka S. The genetics of coat colors in the mongolian gerbil (Meriones unguiculatus) Exp Anim (Tokyo) Jikken Dobutsu 1989: 38: 337–341.
- 19 Slominski A, Paus R, Mihm M. Inhibition of melanogenesis as an adjuvant strategy in the treatment of melanotic melanomas. selective review and hypothesis. Anticancer Res 1998: 18: 3709–3716.
- 20 Lukiewicz S. Interference with endogenous radioprotectors as a method of radiosensitization in IAEA's modification of radiosensitivity of biological systems. Proceedings of the Advisory Group Meeting : Intern Atomic Energy Agency, Vienna: 1976: 61–76.
- 21 Slominski A, Wortsman J, Carlson A, Matsuoka L, Balch C M, Mihm M. Malignant melanoma: An update. Arch Pathol Lab Med 2001: 125: 1295–1306.
- 22 Miranda M, Amicarelli F, Poma A, et al. Cyto-genotoxic species leakage with human melanoma melanosomes, molecular-morphological correlation. Biochem Mol Biol Int 1994: 32: 913–922.
- 23 Alena F, Jimbow K, Ito S. Melanocytotoxicity and antimelanoma effects of phenolic amine compounds in mice in vivo. Cancer Res 1990: 50: 3743–3747.
- 24 Riley P. Melanogenesis: a realistic target for antimelanoma therapy? Eur J Cancer 1991: 27: 1172–1177.
- 25 Bomirski A, Slominski A, Bigda J. The natural history of a family of transplantable melanomas in hamsters. Cancer Met Rev 1988: 7: 95–119.
- 26 Nordlund J J, Boissy R E, Hearing V J, King R A, Ortonne J P. The pigmentary system. Physiology and pathophysiology. New York and Oxford: Oxford University Press, 1988.
- 27 Slominski A, Paus R. Bomirski melanomas: a versatile and powerful model for pigment cell and melanoma research. Int J Oncol 1993: 2: 221–228.
- 28 Herlyn M. Molecular and cellular biology of melanoma. Austin: RG Landes, 1993.
- 29 Bardessy N, Wong K, DePinho R, Chin L. Animal models of melanoma: recent advances and future prospects. Adv Cancer Res 2000: 79: 123–156.
- 30 Pajak S, Cieszka K, Plonka P, Lukiewicz S, Mihm M, Slominski A. Transplantable melanomas in Gerbils (Meriones unguiculatus) I. Origin, morphology and growth rate. Anticancer Res 1996: 16: 1203–1208.
- 31 Slominski A, Paus R, Plonka P, et al. Melanogenesis during the anagen-catagen-telogen transformation of the murine hair cycle. J Invest Dermatol 1994: 102: 862–869.
- 32 Felix C, Hyde J, Sarna T, Sealy R. Interaction of melanins with metal ions. Electron spin resonance evidence for chelate complexes of metal ions with free radicals. J Am Chem Soc 1978: 100: 3922–3926.
- 33 Deibel R, Chedekel M. Biosynthetic and structural studies on Pheomelanin. J Am Chem Soc 1982: 104: 7306–7309.
- 34 Slominski A, Moellmann G, Kuklinska E. 1-tyrosine 1-dopa and tyrosinase as positive regulators of the subcellular apparatus of melanogenesis in Bomirski Ab amelanotic melanoma. Pigment Cell Res 1989: 2: 109–116.
- 35 Bui H, Jennings T, Sheehan C, et al. Silicone identification in soft tissues by electron probe x-ray microanalysis. Am J Clin Pathol 1992: 98: 377–378.
- 36 Meyer D, Bui H, Carlson J, et al. Silicon granulomas and dermatomyositis-like changes associated with chronic eyelid edema after silicone breast implant. Ophthal Plast Reconstr Surg 1998: 14: 182–188.
- 37 Sealy R, Hyde J, Felix C, Menon I, Prota G. Eumelanins and phaeomelanins: characterization by electron spin resonance spectroscopy. Science 1982b: 217: 545–547.
- 38 Sealy R, Hyde J, Felix C, et al. Novel free radicals in synthetic and natural pheomelanins: distinction between dopa melanins and cysteinyldopa melanins by ESR spectroscopy. Proc Natl Acad Sci U S A 1982a: 79: 2885–2889.
- 39 Vsevolodov E, Ito S, Wakamatsu K, Kuchina I, Latypov I. Comparative analysis of hair melanins by chemical and electron spin resonance methods. Pigment Cell Res 1991: 3: 30–34.
- 40 Ito S, Fujita K. Microanalysis of eumelanin and pheomelanin in hair and melanomas by chemical degradation and liquid chromatography. Anal Biochem 1985: 144: 527–536.
- 41 Duhl D, Vrieling H, Miller M, Wolff G, Barsh G. Neomorphic agouti mutations in obese yellow mice. Nat Genet 1994b: 8: 59–65.
- 42 Zemel M, Moore J W, Moustaid N, et al. Effects of a potent melanocortin agonist on the diabetic/obese phenotype in yellow mice. Int J Obes Relat Metab Disord 1998: 22: 678–683.
- 43 Duhl D, Stevens M, Vrieling H, Saxon P, Miller M, C E, Et Al. Pleiotropic effects of the mouse lethal yellow (Ay) mutation explained by deletion of a maternally expressed gene and the simultaneous production of agouti fusion RNAs. Development 1994a: 120: 1695–1708.
- 44 Klebig M, Wilkinson J, Geisler J, Woychick R. Ectopic expression of the agouti gene in transgenic mice causes obesity, features of type II diabetes, and yellow fur. Proc Natl Acad Sci U S A 1995: 92: 4728–4732.
- 45 Waring A, Poole T. Genetic analysis of the black pigment mutation in the Mongolian gerbil. J Hered 1980: 71: 428–429.
- 46 Jimbow K, Hua C, Gomez P, et al. Intracellular vesicular trafficking of tyrosinase gene family protein in eu-and pheomelanosome biogenesis. Pigment Cell Res 2000a: 8: 110–117.
- 47 Marks M, Seabra M. The melanosome. Membrane dynamics in black and white. Nat Rev Mol Cell Biol 2001: 2: 1–11.
- 48
Moellmann G,
Slominski A,
Kuklinska E,
Lerner A B.
Regulation of melanogenesis in melanocytes.
Pigment Cell Res Supplement
1988: 1: 79–87.
10.1111/j.1600-0749.1988.tb00798.x Google Scholar
- 49 Prota G. Melanins and Melanogenesis. New York: Academic Press, 1992.
- 50 Jimbow K, Park J, Kato F, et al. Assembly, target-signaling and the intracellular transport of tyrosinase gene family proteins in the initial stages of melanosome biogenesis. Pigment Cell Res 2000b: 13: 222–229.
- 51 Selaturi V. Sorting and targeting of melanosomal membrane proteins: signals, pathways and mechanisms. Pigment Cell Res 2000: 13: 128–134.
- 52 Hearing V. The melanosome: the perfect model for cellular responses to the environment. Pigment Cell Res 2000: 13: 23–34.
- 53
Silvers W, ed. The Coat Colors of Mice. A Model for Mammalian Gene Action and Interaction. New York: Springer Verlag, 1979.
10.1007/978-1-4612-6164-3 Google Scholar
- 54 Prota G. The chemistry of melanins and melanogenesis. Fortsch Chem Organ Natur 1995: 64: 93–148.
- 55 Bomirski A, Wrzolkowa T, Arendarczyk M, et al. Pathology and ultrastructural characteristics of a hypomelanotic variant of transplantable hamster melanoma with high tyrosinase activity. J Invest Derm 1987: 89: 469–473.
- 56 Slominski A, Paus R, Schanderdorf D. Melanocytes as sensory and regulatory cells in the epidermis. J Theor Biol 1993: 164: 103–120.
- 57 Scislowski P W D, Slominski A, Bomirski A. Biochemical characterization of three hamster melanoma variants. II. Glycolysis and oxygen consumption. Int J Biochem 1984: 16: 327–331.
- 58 Sakai C, Kawakami Y, Law L, Furumura M, , Vh. Melanosomal proteins as melanoma-specific immune targets. Melanoma Res 1997: 7: 83–95.