A pharmacogenomic approach to Alzheimer’s disease
R. Cacabelos
EuroEspes Biomedical Research Center, Institute for CNS Disorders, 15,166-Bergondo, La Coruña, Spain
Search for more papers by this authorA. Alvarez
EuroEspes Biomedical Research Center, Institute for CNS Disorders, 15,166-Bergondo, La Coruña, Spain
Search for more papers by this authorL. Fenández-Novoa
EuroEspes Biomedical Research Center, Institute for CNS Disorders, 15,166-Bergondo, La Coruña, Spain
Search for more papers by this authorV. R. M. Lombardi
EuroEspes Biomedical Research Center, Institute for CNS Disorders, 15,166-Bergondo, La Coruña, Spain
Search for more papers by this authorR. Cacabelos
EuroEspes Biomedical Research Center, Institute for CNS Disorders, 15,166-Bergondo, La Coruña, Spain
Search for more papers by this authorA. Alvarez
EuroEspes Biomedical Research Center, Institute for CNS Disorders, 15,166-Bergondo, La Coruña, Spain
Search for more papers by this authorL. Fenández-Novoa
EuroEspes Biomedical Research Center, Institute for CNS Disorders, 15,166-Bergondo, La Coruña, Spain
Search for more papers by this authorV. R. M. Lombardi
EuroEspes Biomedical Research Center, Institute for CNS Disorders, 15,166-Bergondo, La Coruña, Spain
Search for more papers by this authorAbstract
Single nucleotide polymorphisms (susceptibility genetics) and genomic point mutations (mendelian genetics) can be used in Alzheimer's disease (AD) for diagnostic, predictive and therapeutic purposes. Using a matrix genetic model, including APOE, PS1 and PS2 allelic variants, we have studied the distribution of 36 different genotypes in the AD population (N=479) and the genotype-related cognitive response to a multifactorial therapy in AD patients with mild-to-moderate dementia. The 10 most frequent AD genotypes are the following: 1) E33P112P2+ (17.75%), 2) E33P112P2− (15.55%), 3) E33P111P2+ (10.85%), 4) E34P112P2+ (9.60%), 5) E34P112P2− (7.56%), 6) E33P111P2− (7.10%), 7) E34P111P2+ (4.80%), 8) E33P122P2+ (4.38%), 9) E34P111P2− (4.18%), and 10) E34P122P2+ (3.55%). APOE-4/4-related genotypes represent less than 3% in the following order: E44P112P2+> E44P111P2+=E44P111P2−>E44P112P2+>E44P122P2+= E44P122P2−. Multifactorial therapy with CDP-choline (1000 mg/day)+piracetam (2400 mg/day)+anapsos (360 mg/day) did improve mental performance during the first 6–15 months in a genotype-specific fashion. The best responders in the APOE series were patients with APOE-3/4 genotype (r=+0.013), while the worst responders were APOE-4/4 patients (r=−0.93). PS1-related genotypes responded in a similar manner; and patients with a defective PS2 gene exon 5 (PS2+) always showed a poorer therapeutic response than PS2− patients. All these data suggest that the therapeutic outcome in AD exhibits a genotype-specific pattern, and that a pharmacogenomic approach to AD might be a valuable strategy for drug development and monitoring.
References
- 1 Cacabelos R. Neurogeriatrics. Alzheimer Disease and Other Dementias. Epidemiology and Genetics. Barcelona, Spain: Masson, 1999.
- 2 Cacabelos R, Takeda M & Winblad B. The glutamatergic system and neurodegeneration in dementia: Preventive strategies in Alzheimer disease. Int J Geriat Psychiatry 1999; 102: 3–47.
- 3 Arendt T, Holzer M, Fruth R, Brückner MK & Gärtner U. Phosphorylation of tau, Aβ-formation, and apoptosis after in vivo inhibition of PP-1 and PP-2A. Neurobiol Aging 1998; 19: 3–13.DOI: 10.1016/s0197-4580(98)00003-7
- 4 Spillantini MG & Goedert M. Tau protein pathology in neurodegenerative diseases. Trands Neurosci 1998; 21: 428–33.
- 5 Cacabelos R, Alvarez XA & Lombardi V et al. Pharmaco-logical treatment of Alzheimer's disease. From psycho-tropic drugs and cholinesterase inhibitors to pharmaco-genomics. Drugs Today 2000; 36: 415–99.
- 6 Hardy J & Gwinn-Hardy K. Genetic classification of primary degenerative disease. Science 1998; 282: 1075–9.
- 7
Roses AD.
Alzheimer diseases: A model of gene mutations and susceptibility polymorphisms for complex psychiatric diseases.
Am J Med Genet
1998; 81: 49–57.DOI: 10.1002/(sici)1096-8628(19980207)81:1<49::aid-ajmg10>3.3.co;2-x
10.1002/(SICI)1096-8628(19980207)81:1<49::AID-AJMG10>3.0.CO;2-W CAS PubMed Web of Science® Google Scholar
- 8
Cacabelos R.
Diagnosis of Alzheimer's disease: defining genetic profiles (genotype vs phenotype).
Acta Neurol Scand
1996; Suppl. 165: 72–84.
10.1111/j.1600-0404.1996.tb05875.x Google Scholar
- 9 Cacabelos R, Beyer K, Lao JI, Mesa MD & Fernández-Novoa L. Association of genetic risk factors and a novel mutation in the predicted TM2 domain of the presenilin 2 gene in late-onset AD. In: K Iqbal, DF Swaab, B Winblad, HM Wisniewski, eds. Alzheimer's Disease and Related Disorders. Chichester: Wiley, 1999: 93–102.
- 10 Cacabelos R, Lao JI, Beyer K, Alvarez XA & Franco-Maside A. Genetic testing in Alzheimer's disease: APOE genotyping and etiopathogenic factors. Meth Find Exp Clin Pharmacol 1996; 18(Suppl. A): 161–79.
- 11 Price DL, Sisodia SS & Borchelt DR. Genetic neurodegenerative diseases: The human illness and transgenic models. Science 1998; 282: 1079–83.
- 12 Blacker D & Tanzi RE. The genetics of Alzheimer's disease: Current status and future prospects. Arch Neurol 1998; 55: 294–6.
- 13 Hong M, Zhukareva V & Vogelsberg-Ragaglia V et al. Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science 1998; 282: 1914–17.
- 14 Murayama G, Murayama M, Honda T, Sun X, Nihonmatsu N & Takashima A. Twenty-nine missense mutations linked with familial Alzheimer's disease alter the processing of presenilin 1. Prog Neuro-Psychopharmacol Biol Psychiat 1999; 23: 905–13.
- 15 Russon C, Schettini G & Saido TC et al. Presenilin-1 mutations in Alzheimer's disease. Nature 2000; 405: 530–1.DOI: 10.1038/35014733
- 16 Vahidassr MD, Savage DS, Patterson CC, Lawson JT & Passmore AP. Carriage of apoE ε4 lowers the age of onset of Alzheimer's disease in Northern Ireland. Alzheimer Reports 2000; 3: 7–10.
- 17 Mattson MP & Guo G. The presenilins. Neuroscientist 1999; 5: 112–24.
- 18
Nishimura M,
Yu G &
Levesque G et al. Presenilin mutations associated with Alzheimer disease cause defective intracellular trafficking of β-catenin, a component of the presenilin protein complex.
Nat Med
1999; 5: 164–9.DOI: 10.1038/5526
10.1038/5526 Google Scholar
- 19 Guo Q, Fu W & Sopher BL et al. Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice. Nat Med 1999; 5: 101–6.DOI: 10.1038/4789
- 20 Zhang Z, Hartman H & Do VM et al. Destabilization of β-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nature 1998; 395: 698–702.DOI: 10.1038/27208
- 21 Annaert W & De Strooper B. Presenilins: molecular switches between proteolysis and signal transduction. Trends Neurosci 1999; 22: 439–43.DOI: 10.1016/s0166-2236(99)01455-1
- 22 Scheper W, Annaert W, Cupers P, Saftig P & De Strooper B. Function and dysfunction of the presenilins. Alzheimer Reports 1999; 2: 73–81.
- 23 Li YM, Xu M & Lai MT et al. Photoactivated γ-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 2000; 405: 689–94.DOI: 10.1038/35015085
- 24 Roses AD. Pharmacogenomics and future drug development and delivery. Lancet 2000; 355: 1358–61.DOI: 10.1016/s0140-6736(00)02126-7
- 25 Hitzenberg G, Rameis H & Manigley C. Pharmacological properties of piracetam. CNS Drugs 1998; 9(Suppl. 1): 19–27.
- 26 Cacabelos R. New strategies for Alzheimer's disease treatment: pleiotropic drugs and multifactorial intervention. In: E Giacobini, R Becker, eds. Boston:Birkhäuser, 1994; 493–8.
- 27 Cacabelos R, Alvarez XA, Franco-Maside A, Fernández-Novoa L & Caamaño J. Effect of CDP-Choline on cognition and immune function in Alzheimer's disease. Ann NY Acad Sci 1993; 695: 321–3.
- 28 Cacabelos R, Caamaño J, Gómez MJ, Fernández-Novoa L, Franco-Maside A & Alvarez XA. Therapeutic effects of CDP-choline in Alzheimer's disease. Cognition, brain mapping, cerebrovascular hemodynamics, and immune factors. Ann NY Acad Sci 1996; 777: 399–403.
- 29 Cacabelos R, Nordberg A & Caamaño J et al. Molecular strategies for the first generations of anti-dementia drugs (I). Drugs Today 1994; 30: 295–337.
- 30 Alvarez XA, Laredo M & Corzo L et al. Citicoline improves memory performance in elderly subjects. Meth Find Exp Clin Pharmacol 1997; 19: 201–10.
- 31 Alvarez XA, Mouzo R & Pichel V et al. Effects of CDP-choline on cognitive performance, brain bioelectrical activity and brain hemodynamics in Alzheimer's disease patients. A double-blind placebo controlled study. Ann Psychiat 1999; 7: 331–52.
- 32 Alvarez XA, Miguel-Hidalgo J, Fernández-Novoa L, Díaz J, Sempere JM & Cacabelos R. Anapsos: Neuroimmuno-trophic treatment in Alzheimer disease and neurodegenerative disorders. CNS Drug Rev 1997; 3: 181–206.
- 33 Cacabelos R, Caamaño J & Alvarez XA et al. Diagnostic criteria and genotyping in Alzheimer's disease. In: Cacabelos R, Frey H, Nishimura T, Winblad B, eds. Neurogerontology and Neurogeriatrics. Barcelona: Prous Science 1995; 1: 329–53.
- 34 Beyer K, Lao JI, Alvarez XA & Cacabelos R. A general method for DNA polymorphism identification in genetic assessment and molecular diagnosis. Meth Find Exp Clin Pharmacol 1997; 19: 87–91.
- 35 Beyer K, Lao JI, Alvarez XA & Cacabelos R. Different implications of APOE ε4 in Alzheimer's disease and vascular dementia in the Spanish population. Alzheimer Res 1996; 2: 215–20.
- 36 Beyer K, Lao JI & Cacabelos R. Molecular genetics and genotyping in Alzheimer's disease. Ann Psychiat 1996; 6: 173–87.
- 37 Romas SN, Mayeux R & Tang MX et al. No association between a presenilin 1 polymorphism and Alzheimer disease. Arch Neurol 2000; 57: 699–702.
- 38 Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G & Attardi G. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 1999; 286: 774–9.DOI: 10.1126/science.286.5440.774
- 39 Lucotte G, Oddoze C & Michel BF. Apolipoprotein E genotype allele ε4 and response to tacrine in Alzheimer's disease. Alzheimer Res 1996; 2: 101–2.
- 40 Cacabelos R, Rodríguez B & Carrera C et al. Behavioral changes associated with different apolipoprotein E genotypes in dementia. Alzheimer Dis Assoc Dis 1997; 11(Suppl. 4): S27–S34.
- 41 Corzo L, Fernández-Novoa L & Zas R et al. Influence of the APOE genotype on serum ApoE levels in Alzheimer's disease patients. In: Fisher A, Hanin I, Yoshida M, eds. New York: Plenum Press, , 1996: 765–71.
- 42
Lombardi VRM,
García M &
Cacabelos R.
Microglia activation induced by factor(s) contained in sera from Alzheimer-related APOE genotypes.
J Neurosci Res
1998; 54: 539–53.DOI: 10.1002/(sici)1097-4547(19981115)54:4<539::aid-jnr11>3.0.co;2-q
10.1002/(sici)1097-4547(19981115)54:4<539::aid-jnr11>3.0.co;2-q CAS PubMed Web of Science® Google Scholar
- 43 Takeda M, Shinosaka K & Nishikawa T et al. Tau protein levels in cerebrospinal fluid and apolipoprotein E genotyping in differential diagnosis of dementia. Ann Psychiat 1999; 7: 135–46.
- 44
Lasser RA,
Dukoff R &
Levy J et al. Apolipoprotein E ε4 allele in association with global cognitive performance and CSF markers in Alzheimer's disease.
Int J Geriat Psychiat
1998; 13: 767–74.
10.1002/(SICI)1099-1166(1998110)13:11<767::AID-GPS866>3.0.CO;2-F CAS PubMed Web of Science® Google Scholar
- 45 Maneiro E, Lombardi VRM, Lagares R & Cacabelos R. An experimental model to study the cytotoxic effects induced by β-amyloid, histamine, LPS and serum from Alzheimer patients on cultured rat endothelial cells. Meth Find Exp Clin Pharmacol 1997; 19: 5–12.
- 46 Chui DH, Tanahashi H & Ozawa Z et al. Transgenic mice with Alzheimer presenilin 1 mutations show accelerated neurodegeneration without amyloid plaque formation. Nat Med 1999; 5: 560–4.DOI: 10.1038/8438
- 47 McCarthy JJ & Hilfiker R. The use of single-nucleotide polymorphism maps in pharmacogenomics. Nature Biotechnology 2000; 18: 505–8.DOI: 10.1038/75360
- 48 Evans WE & Relling MV. Pharmacogenomics: Translating functional genomics into rational therapeutics. Science 1999; 286: 487–91.DOI: 10.1126/science.286.5439.487