Developmental effects of SSRIs: lessons learned from animal studies
Xenia Borue
University of Virginia Medical Scientist Training Program and University of Virginia Neuroscience Graduate Program, Charlottesville, VA, 22904 United States
University of Virginia, Department of Biology, Charlottesville, VA, 22904 United States
Search for more papers by this authorJohn Chen
University of Virginia Medical Scientist Training Program and University of Virginia Neuroscience Graduate Program, Charlottesville, VA, 22904 United States
University of Virginia, Department of Biology, Charlottesville, VA, 22904 United States
Search for more papers by this authorCorresponding Author
Barry G. Condron
University of Virginia, Department of Biology, Charlottesville, VA, 22904 United States
Corresponding author at: University of Virginia, Department of Biology, Gilmer Hall 071, Box 400328, Charlottesville, VA 22904, United States. Tel.: +1 434 243 6794; fax: +1 434 243 5315.
E-mail address: [email protected] (B.G. Condron).
Search for more papers by this authorXenia Borue
University of Virginia Medical Scientist Training Program and University of Virginia Neuroscience Graduate Program, Charlottesville, VA, 22904 United States
University of Virginia, Department of Biology, Charlottesville, VA, 22904 United States
Search for more papers by this authorJohn Chen
University of Virginia Medical Scientist Training Program and University of Virginia Neuroscience Graduate Program, Charlottesville, VA, 22904 United States
University of Virginia, Department of Biology, Charlottesville, VA, 22904 United States
Search for more papers by this authorCorresponding Author
Barry G. Condron
University of Virginia, Department of Biology, Charlottesville, VA, 22904 United States
Corresponding author at: University of Virginia, Department of Biology, Gilmer Hall 071, Box 400328, Charlottesville, VA 22904, United States. Tel.: +1 434 243 6794; fax: +1 434 243 5315.
E-mail address: [email protected] (B.G. Condron).
Search for more papers by this authorAbstract
Selective serotonin reuptake inhibitors (SSRIs) are utilized in the treatment of depression in pregnant and lactating women. SSRIs may be passed to the fetus through the placenta and the neonate through breastfeeding, potentially exposing them to SSRIs during peri- and postnatal development. However, the long-term effects of this SSRI exposure are still largely unknown. The simplicity and genetic amenability of model organisms provides a critical experimental advantage compared to studies with humans. This review will assess the current research done in animals that sheds light on the role of serotonin during development and the possible effects of SSRIs. Experimental studies in rodents show that administration of SSRIs during a key developmental window creates changes in brain circuitry and maladaptive behaviors that persist into adulthood. Similar changes result from the inhibition of the serotonin transporter or monoamine oxidase, implicating these two regulators of serotonin signaling in developmental changes. Understanding the role of serotonin in brain development is critical to identifying the possible effects of SSRI exposure.
References
- C. Alexandre, D. Popa, V. Fabre, S. Bouali, P. Venault, K.P. Lesch, M. Hamon, J. Adrien. Early life blockade of 5-hydroxytryptamine 1A receptors normalizes sleep and depression-like behavior in adult knock-out mice lacking the serotonin transporter. J. Neurosci. 26: 2006; 5554–5564
- M.S. Ansorge, M. Zhou, A. Lira, R. Hen, J.A. Gingrich. Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science. 306: 2004; 879–881
- N.M. Barnes, T. Sharp. A review of central 5-HT receptors and their function. Neuropharmacology. 38: 1999; 1083–1152
- B.S. Beltz, J.L. Benton, J.M. Sullivan. Transient uptake of serotonin by newborn olfactory projection neurons. Proc. Natl. Acad. Sci. U.S.A. 98: 2001; 12730–12735
- D. Bengel, D.L. Murphy, A.M. Andrews, C.H. Wichems, D. Feltner, A. Heils, R. Mossner, H. Westphal, K.P. Lesch. Altered brain serotonin homeostasis and locomotor insensitivity to 3,4-methylenedioxymethamphetamine (“Ecstasy”) in serotonin transporter-deficient mice. Mol. Pharmacol. 53: 1998; 649–655
- C.A. Bennett-Clarke, M.H. Hankin, M.J. Leslie, N.L. Chiaia, R.W. Rhoades. Patterning of the neocortical projections from the raphe nuclei in perinatal rats: investigation of potential organizational mechanisms. J. Comp. Neurol. 348: 1994; 277–290
- C.B. Boylan, M.E. Blue, C.F. Hohmann. Modeling early cortical serotonergic deficits in autism. Behav. Brain Res. 2006
- A. Caspi, K. Sugden, T.E. Moffitt, A. Taylor, I.W. Craig, H. Harrington, J. Mcclay, J. Mill, J. Martin, A. Braithwaite, R. Poulton. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science. 301: 2003; 386–389
- B.G. Condron. Serotonergic neurons transiently require a midline-derived FGF signal. Neuron. 24: 1999; 531–540
- J.A. Couch, J. Chen, H.I. Rieff, E.M. Uri, B.G. Condron. Robo2 and robo3 interact with eagle to regulate serotonergic neuron differentiation. Development. 131: 2004; 997–1006
- R.J. D'amato, M.E. Blue, B.L. Largent, D.R. Lynch, D.J. Ledbetter, M.E. Molliver, S.H. Snyder. Ontogeny of the serotonergic projection to rat neocortex: transient expression of a dense innervation to primary sensory areas. Proc. Natl. Acad. Sci. U.S.A. 84: 1987; 4322–4326
- C.O. Drugs. Use of psychoactive medication during pregnancy and possible effects on the fetus and newborn. Committee on Drugs. 105: 2000; American Academy of Pediatrics: Pediatrics; 880–887
- L. Du, D. Bakish, A. Ravindran, P.D. Hrdina. MAO-A gene polymorphisms are associated with major depression and sleep disturbance in males. Neuroreport. 15: 2004; 2097–2101
- S.J. Evans, P.V. Choudary, C.R. Neal, J.Z. Li, M.P. Vawter, H. Tomita, J.F. Lopez, R.C. Thompson, F. Meng, J.D. Stead, D.M. Walsh, R.M. Myers, W.E. Bunney, S.J. Watson, E.G. Jones, H. Akil. Dysregulation of the fibroblast growth factor system in major depression. Proc. Natl. Acad. Sci. U.S.A. 101: 2004; 15506–15511
- P. Gaspar, O. Cases, L. Maroteaux. The developmental role of serotonin: news from mouse molecular genetics. Nat. Rev. Neurosci. 4: 2003; 1002–1012
- D.L. Glanzman. Postsynaptic regulation of the development and long-term plasticity of Aplysia sensorimotor synapses in cell culture. J. Neurobiol. 25: 1994; 666–693
- L. Groenink, M.J. Van Bogaert, J. Van Der Gugten, R.S. Oosting, B. Olivier. 5-HT1A receptor and 5-HT1B receptor knockout mice in stress and anxiety paradigms. Behav. Pharmacol. 14: 2003; 369–383
- M.K. Hahn, R.D. Blakely. Monoamine transporter gene structure and polymorphisms in relation to psychiatric and other complex disorders. Pharmacogenomics J. 2: 2002; 217–235
- H.H. Hansen, J.D. Mikkelsen. Long-term effects on serotonin transporter mRNA expression of chronic neonatal exposure to a serotonin reuptake inhibitor. Eur. J. Pharmacol. 352: 1998; 307–315
- H.H. Hansen, C. Sanchez, E. Meier. Neonatal administration of the selective serotonin reuptake inhibitor Lu 10-134-C increases forced swimming-induced immobility in adult rats: a putative animal model of depression? J. Pharmacol. Exp. Ther. 283: 1997; 1333–1341
- R. Hen. Structural and functional conservation of serotonin receptors throughout evolution. EXS. 63: 1993; 266–278
- V. Hendrick, Z.N. Stowe, L.L. Altshuler, S. Hwang, E. Lee, D. Haynes. Placental passage of antidepressant medications. Am. J. Psychiatry. 160: 2003; 993–996
- T.J. Hendricks, D.V. Fyodorov, L.J. Wegman, N.B. Lelutiu, E.A. Pehek, B. Yamamoto, J. Silver, E.J. Weeber, J.D. Sweatt, E.S. Deneris. Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron. 37: 2003; 233–247
- C.F. Hohmann, C. Richardson, E. Pitts, J. Berger-Sweeney. Neonatal 5,7-DHT lesions cause sex-specific changes in mouse cortical morphogenesis. Neural Plast. 7: 2000; 213–232
- C.F. Hohmann, E.M. Walker, C.B. Boylan, M.E. Blue. Neonatal serotonin depletion alters behavioral responses to spatial change and novelty. Brain Res. 1139: 2007; 163–177
- A. Holmes, Q. Lit, D.L. Murphy, E. Gold, J.N. Crawley. Abnormal anxiety-related behavior in serotonin transporter null mutant mice: the influence of genetic background. Genes Brain Behav. 2: 2003; 365–380
- A. Holmes, D.L. Murphy, J.N. Crawley. Abnormal behavioral phenotypes of serotonin transporter knockout mice: parallels with human anxiety and depression. Biol. Psychiatry. 54: 2003; 953–959
- A. Holmes, R.J. Yang, K.P. Lesch, J.N. Crawley, D.L. Murphy. Mice lacking the serotonin transporter Exhibit 5-HT(1A) receptor-mediated abnormalities in tests for anxiety-like behavior. Neuropsychopharmacology. 28: 2003; 2077–2088
- S. Janusonis, V. Gluncic, P. Rakic. Early serotonergic projections to Cajal-Retzius cells: relevance for cortical development. J. Neurosci. 24: 2004; 1652–1659
- D. Kahne, A. Tudorica, A. Borella, L. Shapiro, F. Johnstone, W. Huang, P.M. Whitaker-Azmitia. Behavioral and magnetic resonance spectroscopic studies in the rat hyperserotonemic model of autism. Physiol. Behav. 75: 2002; 403–410
- D.K. Kim, T.J. Tolliver, S.J. Huang, B.J. Martin, A.M. Andrews, C. Wichems, A. Holmes, K.P. Lesch, D.L. Murphy. Altered serotonin synthesis, turnover and dynamic regulation in multiple brain regions of mice lacking the serotonin transporter. Neuropharmacology. 49: 2005; 798–810
- J.A. Lasky-Su, S.V. Faraone, S.J. Glatt, M.T. Tsuang. Meta-analysis of the association between two polymorphisms in the serotonin transporter gene and affective disorders. Am. J. Med. Genet. B Neuropsychiatr. Genet. 133: 2005; 110–115
- C. Lebrand, O. Cases, C. Adelbrecht, A. Doye, C. Alvarez, S. El Mestikawy, I. Seif, P. Gaspar. Transient uptake and storage of serotonin in developing thalamic neurons. Neuron. 17: 1996; 823–835
- Q. Li. Cellular and molecular alterations in mice with deficient and reduced serotonin transporters. Mol. Neurobiol. 34: 2006; 51–66
- X.M. Li, K.W. Perry, D.T. Wong. Difference in the in vivo influence of serotonin1A autoreceptors on serotonin release in prefrontal cortex and dorsal hippocampus of the same rat treated with fluoxetine. Chin. J. Physiol. 42: 1999; 53–59
- A. Lira, M. Zhou, N. Castanon, M.S. Ansorge, J.A. Gordon, J.H. Francis, M. Bradley-Moore, J. Lira, M.D. Underwood, V. Arango, H.F. Kung, M.A. Hofer, R. Hen, J.A. Gingrich. Altered depression-related behaviors and functional changes in the dorsal raphe nucleus of serotonin transporter-deficient mice. Biol. Psychiatry. 54: 2003; 960–971
- I. Lucki, A. Dalvi, A.J. Mayorga. Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology (Berl). 155: 2001; 315–322
- H.J. Luhmann, I. Hanganu, W. Kilb. Cellular physiology of the neonatal rat cerebral cortex. Brain Res. Bull. 60: 2003; 345–353
- D. Maciag, K.L. Simpson, D. Coppinger, Y. Lu, Y. Wang, R.C. Lin, I.A. Paul. Neonatal antidepressant exposure has lasting effects on behavior and serotonin circuitry. Neuropsychopharmacology. 31: 2006; 47–57
- E. Maron, I. Toru, A. Must, G. Tasa, E. Toover, V. Vasar, A. Lang, J. Shlik. Association study of tryptophan hydroxylase 2 gene polymorphisms in panic disorder. Neurosci Lett. 411: 2007; 180–184
- T.A. Mathews, D.E. Fedele, F.M. Coppelli, A.M. Avila, D.L. Murphy, A.M. Andrews. Gene dose-dependent alterations in extraneuronal serotonin but not dopamine in mice with reduced serotonin transporter expression. J. Neurosci. Methods. 140: 2004; 169–181
- A. Meyer-Lindenberg, J.W. Buckholtz, B.A.R.H. Kolachana, L. Pezawas, G. Blasi, A. Wabnitz, R. Honea, B. Verchinski, J.H. Callicott, M. Egan, V. Mattay, D.R. Weinberger. Neural mechanisms of genetic risk for impulsivity and violence in humans. Proc. Natl. Acad. Sci. U.S.A. 103: 2006; 6269–6274
- M. Mirmiran, N.E. Van De Poll, M.A. Corner, H.G. Van Oyen, H.L. Bour. Suppression of active sleep by chronic treatment with chlorimipramine during early postnatal development: effects upon adult sleep and behavior in the rat. Brain Res. 204: 1981; 129–146
- S. Montanez, W.A. Owens, G.G. Gould, D.L. Murphy, L.C. Daws. Exaggerated effect of fluvoxamine in heterozygote serotonin transporter knockout mice. J. Neurochem. 86: 2003; 210–219
- D.L. Murphy, Q. Li, S. Engel, C. Wichems, A. Andrews, K.P. Lesch, G. Uhl. Genetic perspectives on the serotonin transporter. Brain Res. Bull. 56: 2001; 487–494
- D.L. Murphy, A. Lerner, G. Rudnick, K.P. Lesch. Serotonin transporter: gene, genetic disorders, and pharmacogenetics. Mol. Interv. 4: 2004; 109–123
- M. Ogawa, T. Miyata, K. Nakajima, K. Yagyu, M. Seike, K. Ikenaka, H. Yamamoto, K. Mikoshiba. The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron. 14: 1995; 899–912
- A.M. Persico, C. Altamura, E. Calia, S. Puglisi-Allegra, R. Ventura, F. Lucchese, F. Keller. Serotonin depletion and barrel cortex development: impact of growth impairment vs. serotonin effects on thalamocortical endings. Cereb. Cortex. 10: 2000; 181–191
- A.M. Persico, E. Mengual, R. Moessner, F.S. Hall, R.S. Revay, I. Sora, J. Arellano, J. Defelipe, J.M. Gimenez-Amaya, M. Conciatori, R. Marino, A. Baldi, S. Cabib, T. Pascucci, G.R. Uhl, D.L. Murphy, K.P. Lesch, F. Keller. Barrel pattern formation requires serotonin uptake by thalamocortical afferents, and not vesicular monoamine release. J. Neurosci. 21: 2001; 6862–6873
- J. Prathiba, K.B. Kumar, K.S. Karanth. Hyperactivity of hypothalamic pituitary axis in neonatal clomipramine model of depression. J. Neural. Transm. 105: 1998; 1335–1339
- A. Rebsam, I. Seif, P. Gaspar. Refinement of thalamocortical arbors and emergence of barrel domains in the primary somatosensory cortex: a study of normal and monoamine oxidase a knock-out mice. J. Neurosci. 22: 2002; 8541–8552
- N. Salichon, P. Gaspar, A.L. Upton, S. Picaud, N. Hanoun, M. Hamon, E. De Maeyer, D.L. Murphy, R. Mossner, K.P. Lesch, R. Hen, I. Seif. Excessive activation of serotonin (5-HT) 1B receptors disrupts the formation of sensory maps in monoamine oxidase a and 5-HT transporter knock-out mice. J. Neurosci. 21: 2001; 884–896
- D.R. Thakker, F. Natt, D. Husken, H. Van Der Putten, R. Maier, D. Hoyer, J.F. Cryan. siRNA-mediated knockdown of the serotonin transporter in the adult mouse brain. Mol. Psychiatry. 10(782–789): 2005; 714
- O.A. Tjurmina, I. Armando, J.M. Saavedra, D.S. Goldstein, D.L. Murphy. Exaggerated adrenomedullary response to immobilization in mice with targeted disruption of the serotonin transporter gene. Endocrinology. 143: 2002; 4520–4526
- A.L. Upton, N. Salichon, C. Lebrand, A. Ravary, R. Blakely, I. Seif, P. Gaspar. Excess of serotonin (5-HT) alters the segregation of ispilateral and contralateral retinal projections in monoamine oxidase A knock-out mice: possible role of 5-HT uptake in retinal ganglion cells during development. J. Neurosci. 19: 1999; 7007–7024
- T. Vitalis, J.G. Parnavelas. The role of serotonin in early cortical development. Dev. Neurosci. 25: 2003; 245–256
- Y.M. Wang, R.R. Gainetdinov, F. Fumagalli, F. Xu, S.R. Jones, C.B. Bock, G.W. Miller, R.M. Wightman, M.G. Caron. Knockout of the vesicular monoamine transporter 2 gene results in neonatal death and supersensitivity to cocaine and amphetamine. Neuron. 19: 1997; 1285–1296
- A.M. Weissman, B.T. Levy, A.J. Hartz, S. Bentler, M. Donohue, V.L. Ellingrod, K.L. Wisner. Pooled analysis of antidepressant levels in lactating mothers, breast milk, and nursing infants. Am. J. Psychiatry. 161: 2004; 1066–1078
- P.M. Whitaker-Azmitia. Behavioral and cellular consequences of increasing serotonergic activity during brain development: a role in autism? Int. J. Dev. Neurosci. 23: 2005; 75–83
- Y. Xu, Y. Sari, F.C. Zhou. Selective serotonin reuptake inhibitor disrupts organization of thalamocortical somatosensory barrels during development. Brain Res. Dev. Brain Res. 150: 2004; 151–161
- F.M. Zhou, Y. Liang, R. Salas, L. Zhang, M. De Biasi, J.A. Dani. Corelease of dopamine and serotonin from striatal dopamine terminals. Neuron. 46: 2005; 65–74
- P. Zill, A. Buttner, W. Eisenmenger, H.J. Moller, B. Bondy, M. Ackenheil. Single nucleotide polymorphism and haplotype analysis of a novel tryptophan hydroxylase isoform (TPH2) gene in suicide victims. Biol. Psychiatry. 56: 2004; 581–586