Functional coupling between vanillate-O-demethylase and formaldehyde detoxification pathway
Makoto Hibi
Biofrontier Laboratories, Kyowa Hakko Kogyo Co. Ltd., 3-6-6 Asahimachi, Machidashi, Tokyo 194-8533, Japan
Search for more papers by this authorTomonori Sonoki
Biofrontier Laboratories, Kyowa Hakko Kogyo Co. Ltd., 3-6-6 Asahimachi, Machidashi, Tokyo 194-8533, Japan
Search for more papers by this authorCorresponding Author
Hideo Mori
Biofrontier Laboratories, Kyowa Hakko Kogyo Co. Ltd., 3-6-6 Asahimachi, Machidashi, Tokyo 194-8533, Japan
*Corresponding author. Tel.: +81 42 726 2555; fax: +81 42 726 8330., E-mail address: [email protected]Search for more papers by this authorMakoto Hibi
Biofrontier Laboratories, Kyowa Hakko Kogyo Co. Ltd., 3-6-6 Asahimachi, Machidashi, Tokyo 194-8533, Japan
Search for more papers by this authorTomonori Sonoki
Biofrontier Laboratories, Kyowa Hakko Kogyo Co. Ltd., 3-6-6 Asahimachi, Machidashi, Tokyo 194-8533, Japan
Search for more papers by this authorCorresponding Author
Hideo Mori
Biofrontier Laboratories, Kyowa Hakko Kogyo Co. Ltd., 3-6-6 Asahimachi, Machidashi, Tokyo 194-8533, Japan
*Corresponding author. Tel.: +81 42 726 2555; fax: +81 42 726 8330., E-mail address: [email protected]Search for more papers by this authorEdited by S. Silver
Abstract
Pseudomonas putida vanillate-O-demethylase consisting of VanA and VanB was expressed in Escherichia coli strain K-12. Recombinant E. coli strain K-12 cells expressing VanAB efficiently converted vanillate into protocatechuate with glucose consumption. Mutant lacking either pgi or zwf showed higher or lower converting activity than the parental strain, respectively. Formaldehyde, which is the by-product of the demethylation, was converted into formate in the cellular reaction. Formate accumulation was blocked by gene disruption of the E. coli frmA that coded glutathione-dependent formaldehyde dehydrogenase.
References
- [1] Detroy, R.W., St Julian, G. (1983) Biomass conversion: fermentation chemicals and fuels. Crit. Rev. Microbiol. 10, 203–228.
- [2] Rosazza, J. (1995) Biocatalysis, microbiology and chemistry: the power of positive linking. ASM News 61, 241–245.
- [3] Perez, J., Munoz-Dorado, J., de la Rubia, T., Martinez, J. (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Intern. Microbiol. 5, 53–63.
- [4] Buswell, J.A., Ribbons, D.W. (1988) Vanillate O-demethylase from Pseudomonas species. Meth. Enzymol. 161, 294–301.
- [5] Brunel, F., Davison, J. (1988) Cloning and sequencing of Pseudomonas genes encoding vanillate demethylase. J. Bacteriol. 170, 4924–4930.
- [6] Priefert, H., Rabenhorst, J., Steinbuchel, A. (1997) Molecular characterization of genes of Pseudomonas sp. strain HR199 involved in bioconversion of vanillin to protocatechuate. J. Bacteriol. 66, 2595–2607.
- [7] Venturi, V., Zennaro, F., Degrassi, G., Okeke, B.C., Bruschi, C.V. (1998) Genetics of ferulic acid bioconversion to protocatechuic acid in plant-growth-promoting Pseudomonas putida WCS358. Microbiology 144, 965–973.
- [8] Goodman, J.I., Tephly, T.R. (1971) A comparison of rat and human liver formaldehyde dehydrogenase. Biochim. Biophys. Acta 252, 489–505.
- [9] Uotila, L., Koivusalo, M. (1979) Purification of formaldehyde and formate dehydrogenases from pea seeds by affinity chromatography and S-formylglutathione as the intermediate of formaldehyde metabolism. Arch. Biochem. Biophys. 196, 33–45.
- [10] Schüte, H., Flossdorf, J., Sahm, H., Kula, M.R. (1976) Purification and properties of formaldehyde dehydrogenase and formate dehydrogenase from Candida boidinii. Eur. J. Biochem. 62, 151–160.
- [11] Van Ophem, P.W., Duine, J.A. (1990) Different types of formaldehyde-oxidizing dehydrogenases in Nocardia species 239. Arch. Biochem. Biophys. 282, 248–253.
- [12] Gutheil, W.G., Holmquist, B., Vallee, B.L. (1992) Purification, characterization, and partial sequence of the glutathione-dependent formaldehyde dehydrogenase from Escherichia coli: a class III alcohol dehydrogenase. Biochemistry 31, 475–481.
- [13] Uotila, L., Koivusalo, M. (1974) Purification and properties of S-formylglutathione hydrolase from human liver. J. Biol. Chem. 249, 7665–7672.
- [14] Harms, N., Ras, J., Reijnders, W.N., van Spanning, R.J.M., Stouthamer, A.H. (1996) S-Formylglutathione hydrolase of Paracoccus denitrificans is homologous to human esterase D: a universal pathway for formaldehyde detoxification. J. Bacteriol. 178, 6296–6299.
- [15] Haslam, R., Rust, S., Pallett, K., Cole, D., Coleman, J. (2002) Cloning and characterisation of S-formylglutathione hydrolase from Arabidopsis thaliana: a pathway for formaldehyde detoxification. Plant Physiol. Biochem. 40, 281–288.
- [16] Yurimoto, H., Lee, B., Yano, T., Sakai, Y., Kato, N. (2003) Physiological role of S-formylglutathione hydrolase in C(1) metabolism of the methylotrophic yeast Candida boidinii. Microbiology 149, 1971–1979.
- [17] Kummerle, N., Feucht, H.H., Kaulfers, P.M. (1996) Plasmid-mediated formaldehyde resistance in Escherichia coli: characterization of resistance gene. Antimicrob. Agents. Chemother. 40, 2276–2279.
- [18] Dorsey, C.W., Actis, L.A. (2004) Analysis of pVU3695, a plasmid encoding glutathione-dependent formaldehyde dehydrogenase activity and formaldehyde resistance in the Escherichia coli VU3695 clinical strain. Plasmid 51, 116–126.
- [19] Overbeek, R., Larsen, N., Walunas, T., D'Souza, M., Pusch, G., Selkov Jr., E., Liolios, K., Joukov, V., Kaznadzey, D., Anderson, I., Bhattacharyya, A., Burd, H., Gardner, W., Hanke, P., Kapatral, V., Mikhailova, N., Vasieva, O., Osterman, A., Vonstein, V., Fonstein, M., Ivanova, N., Kyrpides, N. (2003) The ERGO genome analysis and discovery system. Nucl. Acids Res. 31, 164–171.
- [20] Herring, C.D., Blattner, F.R. (2004) Global transcriptional effects of a suppressor tRNA and the inactivation of the regulator frmR. J. Bacteriol. 186, 6714–6720.
- [21] Nelson, K.E., Weinel, C., Paulsen, I.T., Dodson, R.J., Hilbert, H., Martins dos Santos, V.A., Fouts, D.E., Gill, S.R., Pop, M., Holmes, M., Brinkac, L., Beanan, M., DeBoy, R.T., Daugherty, S., Kolonay, J., Madupu, R., Nelson, W., White, O., Peterson, J., Khouri, H., Hance, I., Chris Lee, P., Holtzapple, E., Scanlan, D., Tran, K., Moazzez, A., Utterback, T., Rizzo, M., Lee, K., Kosack, D., Moestl, D., Wedler, H., Lauber, J., Stjepandic, D., Hoheisel, J., Straetz, M., Heim, S., Kiewitz, C., Eisen, J.A., Timmis, K.N., Dusterhoft, A., Tummler, B., Fraser, C.M. (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol. 4, 799–808.
- [22] Hua, Q., Yang, C., Baba, T., Mori, H., Shimizu, K. (2003) Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts. J. Bacteriol. 185, 7053–7067.
- [23] Mori, H. (2004) From the sequence to cell modeling: comprehensive functional genomics in Escherichia coli. J. Biochem. Mol. Biol. 37, 83–92.
- [24] Datsenko, K.A., Wanner, B.L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645.
- [25] Haldimann, A., Fisher, S.L., Daniels, L.L., Walsh, C.T., Wanner, B.L. (1997) Transcriptional regulation of the Enterococcus faecium BM4147 vancomycin resistance gene cluster by the VanS–VanR two-component regulatory system in Escherichia coli K-12. J. Bacteriol. 179, 5903–5913.
- [26] Johnson, B.H., Hecht, M.H. (1994) Recombinant proteins can be isolated from E. coli cells by repeated cycles of freezing and thawing. Biotechnology 12, 1357–1360.
- [27] Itoh, T., Okayama, T., Hashimoto, H., Takeda, J.R., Davis, W., Mori, H., Gojobori, T. (1999) A low rate of nucleotide changes in Escherichia coli K-12 estimated from a comparison of the genome sequences between two different substrains. FEBS Lett. 450, 72–76.
- [28] Yamaguchi, K., Masamune, Y. (1985) Autogenous regulation of synthesis of the replication protein in plasmid pSC101. Mol. Gen. Genet. 200, 362–367.
- [29] Fraenkel, D.G., Levisohn, S.R. (1967) Glucose and gluconate metabolism in an Escherichia coli mutant lacking phosphoglucose isomerase. J. Bacteriol. 93, 1571–1578.