New DGGE strategies for the analyses of methanotrophic microbial communities using different combinations of existing 16S rRNA-based primers
Corresponding Author
Paul L.E. Bodelier
Netherlands Institute of Ecology (NIOO-KNAW), Centre for Limnology, Department of Microbial Ecology, Rijksstraatweg 6, NL3631 AC Nieuwersluis, The Netherlands
*Corresponding author. Tel.: +31 0 294239307; fax: +31 0 294222324. [email protected]Search for more papers by this authorMarion Meima-Franke
Netherlands Institute of Ecology (NIOO-KNAW), Centre for Limnology, Department of Microbial Ecology, Rijksstraatweg 6, NL3631 AC Nieuwersluis, The Netherlands
Search for more papers by this authorGabriel Zwart
Netherlands Institute of Ecology (NIOO-KNAW), Centre for Limnology, Department of Microbial Ecology, Rijksstraatweg 6, NL3631 AC Nieuwersluis, The Netherlands
Search for more papers by this authorHendrikus J. Laanbroek
Netherlands Institute of Ecology (NIOO-KNAW), Centre for Limnology, Department of Microbial Ecology, Rijksstraatweg 6, NL3631 AC Nieuwersluis, The Netherlands
Search for more papers by this authorCorresponding Author
Paul L.E. Bodelier
Netherlands Institute of Ecology (NIOO-KNAW), Centre for Limnology, Department of Microbial Ecology, Rijksstraatweg 6, NL3631 AC Nieuwersluis, The Netherlands
*Corresponding author. Tel.: +31 0 294239307; fax: +31 0 294222324. [email protected]Search for more papers by this authorMarion Meima-Franke
Netherlands Institute of Ecology (NIOO-KNAW), Centre for Limnology, Department of Microbial Ecology, Rijksstraatweg 6, NL3631 AC Nieuwersluis, The Netherlands
Search for more papers by this authorGabriel Zwart
Netherlands Institute of Ecology (NIOO-KNAW), Centre for Limnology, Department of Microbial Ecology, Rijksstraatweg 6, NL3631 AC Nieuwersluis, The Netherlands
Search for more papers by this authorHendrikus J. Laanbroek
Netherlands Institute of Ecology (NIOO-KNAW), Centre for Limnology, Department of Microbial Ecology, Rijksstraatweg 6, NL3631 AC Nieuwersluis, The Netherlands
Search for more papers by this authorAbstract
Methane-oxidising microbial communities are studied intensively because of their importance for global methane cycling. A suite of molecular microbial techniques has been applied to the study of these communities. Denaturing gradient gel electrophoresis (DGGE) is a diversity screening tool combining high sample throughput with phylogenetic information of high resolution. The existing 16S rRNA-based DGGE assays available for methane-oxidising bacteria suffer from low-specificity, low phylogentic information due to the length of the amplified fragments and/or from lack of resolving power. In the present study we developed new combinations of existing primers and applied these on methane-oxidising microbial communities in a freshwater wetland marsh. The designed strategies comprised nested as well as direct amplification of environmental DNA. Successful application of direct amplification using combinations of universal and specific primers circumvents the nested designs currently used. All developed assays resulted in identical community profiles in wetland soil cores with Methylobacter sp. and Methylocystis sp.-related sequences. Changes in the occurrence of Methylobacter-related sequences with depth in the soil profile may be related to the decrease in methane-oxidizing activity.
References
- [1] IPCC (2001). Climate Change 2001: The scientific basis. Contribution of the working group I to the third assessment report of the Intergovernmental panel on climate change, 881 pp. Cambridge University Press, Cambridge
- [2] LeMer, J., Roger, P. (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur. J. Soil Biol. 37, 25–50.
- [3] Hanson, R.S., Hanson, T.E. (1996) Methanotrophic bacteria. Microbiol. Rev. 60, 439–471.
- [4] Frenzel, P. Plant-associated methane oxidation in rice fields and wetlands
- [5] Bowman, J. The Methanotrophs – The Families Methylococcaceae and Methylocystaceae Dworkin, M., Ed. The Prokaryotes 2000, Springer, New York.
- [6] Eller, G., Frenzel, P. (2001) Changes in activity and community structure of methane-oxidizing bacteria over the growth period of rice. Appl. Environ. Microbiol. 67, 2395–2403.
- [7] Dedysh, S.N., Dunfield, P.F., Derakshani, M., Stubner, S., Heyer, J., Liesack, W. (2003) Differential detection of type II methanotrophic bacteria in acidic peatlands using newly developed 16S rRNA-targeted fluorescent oligonucleotide probes. FEMS Microbiol. Ecol. 43, 299–308.
- [8] Bodelier, P.L.E., Roslev, P., Henckel, T., Frenzel, P. (2000) Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature 403, 421–424.
- [9] Nold, S.C., Boschker, H.T.S., Pel, R., Laanbroek, H.J. (1999) Ammonium addition inhibits 13C-methane incorporation into methanotroph membrane lipids in a freshwater sediment. FEMS Microbiol. Ecol. 29, 81–89.
- [10] Kolb, S., Knief, C., Stubner, S., Conrad, R. (2003) Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl. Environ. Microbiol. 69, 2423–2429.
- [11] Holmes, A.J., Roslev, P., McDonald, I.R., Iversen, N., Henriksen, K., Murrell, J.C. (1999) Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Appl. Environ. Microbiol. 65, 3312–3318.
- [12] Horz, H.P., Yimga, M.T., Liesack, W. (2001) Detection of methanotroph diversity on roots of submerged rice plants by molecular retrieval of pmoA, mmoX, mxaF, and 16S rRNA and ribosomal DNA, including pmoA-based terminal restriction fragment length polymorphism profiling. Appl. Environ. Microbiol. 67, 4177–4185.
- [13] Henckel, T., Roslev, P., Conrad, R. (2000) Effects of O2 and CH4 on presence and activity of the indigenous methanotrophic community in rice field soil. Environ. Microbiol. 2, 666–679.
- [14] Bodrossy, L., Stralis-Pavese, N., Murrell, J.C., Radajewski, S., Weilharter, A., Sessitsch, A. (2003) Development and validation of a diagnostic microbial microarray for methanotrophs. Environ. Microbiol. 5, 566–582.
- [15] Muyzer, G. (1999) DGGE/TGGE a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol. 2, 317–322.
- [16] Henckel, T., Friedrich, M., Conrad, R. (1999) Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl. Environ. Microbiol. 65, 1980–1990.
- [17] Henckel, T., Jackel, U., Schnell, S., Conrad, R. (2000) Molecular analyses of novel methanotrophic communities in forest soil that oxidize atmospheric methane. Appl. Environ. Microbiol. 66, 1801–1808.
- [18] Hoffmann, T., Horz, H.P., Kemnitz, D., Conrad, R. (2002) Diversity of the particulate methane monooxygenase gene in methanotrophic samples from different rice field soils in China and the Philippines. Syst. Appl. Microbiol. 25, 267–274.
- [19]
Yimga, M.T.,
Dunfield, P.F.,
Ricke, P.,
Heyer, H.,
Liesack, W. (2003) Wide distribution of a novel pmoA-like gene copy among type II methanotrophs, and its expression in Methylocystis strain SC2.
Appl. Environ. Microbiol. 69, 5593–5602.
10.1128/AEM.69.9.5593-5602.2003 Google Scholar
- [20] Tsien, H.C., Bratina, B.J., Tsuji, K., Hanson, R.S. (1990) Use of oligodeoxynucleotide signature probes for identification of physiological groups of methylotrophic bacteria. Appl. Environ. Microbiol. 56, 2858–2865.
- [21] Wise, M.G., McArthur, J.V., Shimkets, L.J. (1999) Methanotroph diversity in landfill soil: isolation of novel type I and type II methanotrophs whose presence was suggested by culture-independent 16S ribosomal DNA analysis. Appl. Environ. Microbiol. 65, 4887–4897.
- [22] Carini, S.A., Orcutt, B.N., Joye, S.B. (2003) Interactions between methane oxidation and nitrification in coastal sediments. Geomicrobiol. J. 20, 355–374.
- [23] Wartiainen, I., Hestnes, A.G., Svenning, M.M. (2003) Methanotrophic diversity in high arctic wetlands on the islands of svalbard (Norway)-denaturing gradient gel electrophoresis analysis of soil DNA and enrichment cultures. Can. J. Microbiol. 49, 602–612.
- [24]
Heyer, J.,
Galchenko, V.F.,
Dunfield, P.F. (2002) Molecular phylogeny of type II methane-oxidizing bacteria isolated from various environments.
Microbiology-(UK)
148, 2831–2846.
10.1099/00221287-148-9-2831 Google Scholar
- [25] Brock, TH.C.M., VanderVelde, G., VandeSteeg, H.M. (1987) The effects of extreme water level fluctuations on the wetland vegetation of a nymphaeid-dominated oxbow lake in the Netherlands. Arch. Hydrobiol. Beih. Ergebn. Limnol. 27, 57–73.
- [26] Kemnitz, D., Chin, K.J., Bodelier, P., Conrad, R. (2004) Community analysis of methanogenic archaea within a riparian flooding gradient. Environ. Microbiol. 6, 449–461.
- [27]
P.L.E. P. Frenzel, Contribution of methanotrophic and nitrifying bacteria to CH4 and
oxidation in the rhizosphere of rice plants as determined by new methods of discrimination, Appl. Environ. Microbiol., 65. 1999, 1826-1833.
- [28] Rowe R, T.R., Waide, J. (1977) Microtechnique for most-probable-number analysis. Appl. Environ. Microbiol. 33, 676–680.
- [29] Muyzer, G., Dewaal, E.C., Uitterlinden, A.G. (1993) Profiling of complex microbial-populations by denaturing gradient gel-electrophoresis analysis of polymerase chain reaction-amplified genes-coding for 16s ribosomal-RNA. Appl. Environ. Microbiol. 59, 695–700.
- [30] Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H. Yadhukumar Buchner A., Lai, T., Steppi, S., Jobb, G., Forster, W., Brettske, I., Gerber, S., Ginhart, A.W., Gross, O., Grumann, S., Hermann, S., Jost, R., Konig, A., Liss, T., Lussmann, R., May, M., Nonhoff, B., Reichel, B., Strehlow, R., Stamatakis, A., Stuckmann, N., Vilbig, A., Lenke, M., Ludwig, T., Bode, A., Schleifer, K.H. (2004) ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371.
- [31] Vandepeer, Y., Dewachter, R. (1994) Treecon for Windows – a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput. Appl. Biosci. 10, 569–570.
- [32] Gulledge, J., Ahmad, A., Steudler, P.A., Pomerantz, W.J., Cavanaugh, C.M. (2001) Family- and genus-level 16S rRNA-targeted oligonucleotide probes for ecological studies of methanotrophic bacteria. Appl. Environ. Microbiol. 67, 4726–4733.
- [33] Omelchenko, M.V., Vasileva, L.V., Zavarzin, G.A., Saveleva, N.D., Lysenko, A.M., Mityushina, L.L., Kamelenina, V.N., Trotsenko, Y.A. (1996) A novel psychrophilic methanotroph of the genus Methylobacter. Microbiology 65, 339–343.
- [34] Newby, D.T., Reed, D.W., Petzke, L.M., Igoe, A.L., Delwiche, M.E., Roberto, F.F., McKinley, J.P., Whiticar, M.J., Colwell, F.S. (2004) Diversity of methanotroph communities in a basalt aquifer. FEMS Microbiol. Ecol. 48, 333–344.
- [35] Pester, M., Friedrich, M.W., Schink, B., Brune, A. (2004) pmoA-Based analysis of methanotrophs in a, littoral lake sediment reveals a diverse and stable community in a dynamic environment. Appl. Environ. Microbiol. 70, 3138–3142.
- [36] Adamczyk, J., Hesselsoe, M., Iversen, N., Horn, M., Lehner, A., Nielsen, P.H., Schloter, M., Roslev, P., Wagner, M. (2003) The isotope array, a new tool that employs substrate-mediated labeling of rRNA for determination of microbial community structure and function. Appl. Environ. Microbiol. 69, 6875–6887.
- [37] Edwards, U., Rogall, T., Blocker, H., Emde, M., Bottger, E.C. (1989) Isolation and direct complete nucleotide determination of entire genes – characterization of a gene coding for 16s-ribosomal RNA. Nucleic Acids Res. 17, 7843–7853.
- [38] Weisburg, W.G., Barns, S.M., Pelletier, D.A., Lane, D.J. (1991) 16s ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703.