Limiting behavior of solutions of the exterior Stokes problem as the friction coefficient tends to zero and infinity
Anis Dhifaoui
LR Analysis and Control of PDEs, LR22ES03, Department of Mathematics, Faculty of Sciences of Monastir University of Monastir, Tunisia
Search for more papers by this authorCorresponding Author
Evgenii S. Baranovskii
Department of Applied Mathematics, Informatics and Mechanics, Voronezh State University, Voronezh, Russia
Correspondence
Evgenii S. Baranovskii, Department of Applied Mathematics, Informatics and Mechanics, Voronezh State University, Voronezh 394018, Russia.
Email: [email protected]
Search for more papers by this authorAnis Dhifaoui
LR Analysis and Control of PDEs, LR22ES03, Department of Mathematics, Faculty of Sciences of Monastir University of Monastir, Tunisia
Search for more papers by this authorCorresponding Author
Evgenii S. Baranovskii
Department of Applied Mathematics, Informatics and Mechanics, Voronezh State University, Voronezh, Russia
Correspondence
Evgenii S. Baranovskii, Department of Applied Mathematics, Informatics and Mechanics, Voronezh State University, Voronezh 394018, Russia.
Email: [email protected]
Search for more papers by this authorAbstract
The aim of this work is to study the limiting behavior of solutions of a mathematical model describing 3D steady-state flows of a viscous incompressible fluid around an obstacle under the Navier slip boundary conditions in the situations when the friction coefficient goes to zero and infinity. Both limiting cases are important from a physical point of view because they represent the slip-without-friction regime and the no-slip regime, respectively.
REFERENCES
- 1Achdou, Y., Pironneau, O.: Domain decomposition and wall laws. C. R. Acad. Sci. Paris Sér. I Math. 320(5), 541–547 (1995)
- 2Achdou, Y., Pironneau, O., Valentin, F.: Effective boundary conditions for laminar flows over periodic rough boundaries. J. Comput. Phys. 147(1), 187–218 (1998)
- 3Achdou, Y., Pironneau, O., Valentin, F.: Shape control versus boundary control. In: Équations aux dérivées partielles et applications, pp. 1–18. Gauthier-Villars, Éd. Sci. Méd. Elsevier, Paris (1998)
- 4Alliot, F., Amrouche, C.: Weak solutions for the exterior Stokes problem in weighted Sobolev spaces. Math. Methods Appl. Sci. 23(6), 575–600 (2000)
- 5Amrouche, C., Girault, V., Giroire, J.: Weighted Sobolev spaces for Laplace's equation in . J. Math. Pures Appl. (9) 73(6), 579–606 (1994)
- 6Amrouche, C., Girault, V., Giroire, J.: Dirichlet and Neumann exterior problems for the -dimensional Laplace operator: An approach in weighted Sobolev spaces. J. Math. Pures Appl. (9) 76(1), 55–81 (1997)
10.1016/S0021-7824(97)89945-X Google Scholar
- 7Amrouche, C., Meslameni, M.: Stokes problem with several types of boundary conditions in an exterior domain. Electron. J. Differ. Equ. 2013, 196 (2013)
- 8Amrouche, C., Rejaiba, A.: -theory for Stokes and Navier–Stokes equations with Navier boundary condition. J. Differ. Equ. 256(4), 1515–1547 (2014)
10.1016/j.jde.2013.11.005 Google Scholar
- 9Amrouche, C., Rejaiba, A.: Navier–Stokes equations with Navier boundary condition. Math. Methods Appl. Sci. 39(17), 5091–5112 (2016)
10.1002/mma.3338 Google Scholar
- 10Antontsev, S.N., de Oliveira, H.B.: Navier–Stokes equations with absorption under slip boundary conditions: Existence, uniqueness and extinction in time. In: Kyoto Conference on the Navier–Stokes Equations and their Applications, RIMS Kôkyûroku Bessatsu, B1, pp. 21–41. RIMS, Kyoto (2007)
- 11Artemov, M.A., Baranovskii, E.S.: Solvability of the boussinesq approximation for water polymer solutions. Mathematics 7(7), 611 (2019)
10.3390/math7070611 Google Scholar
- 12Baranovskii, E.S.: The Navier–Stokes–Voigt equations with position-dependent slip boundary conditions. Z. Angew. Math. Phys. 74(1), 6 (2023)
10.1007/s00033-022-01881-y Google Scholar
- 13Basson, A., Gérard-Varet, D.: Wall laws for fluid flows at a boundary with random roughness. Comm. Pure Appl. Math. 61(7), 941–987 (2008)
- 14Beirão da Veiga, H.: Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions. Adv. Differ. Equ. 9(9-10), 1079–1114 (2004)
- 15Beirão da Veiga, H.: On the regularity of flows with Ladyzhenskaya shear-dependent viscosity and slip or nonslip boundary conditions. Comm. Pure Appl. Math. 58(4), 552–577 (2005)
- 16Beirão da Veiga, H.: Vorticity and regularity for flows under the Navier boundary condition. Comm. Pure Appl. Anal. 5(4), 907–918 (2006)
- 17Casado-Díaz, J., Fernández-Cara, E., Simon, J.: Why viscous fluids adhere to rugose walls: a mathematical explanation. J. Differential Equations 189(2), 526–537 (2003)
10.1016/S0022-0396(02)00115-8 Google Scholar
- 18Dhifaoui, A.: -strong solution for the stationary exterior Stokes equations with Navier boundary condition. Discrete Contin. Dyn. Syst., Ser. S 15(6), 1403–1420 (2022)
10.3934/dcdss.2022086 Google Scholar
- 19Dhifaoui, A.: -theory for the exterior Stokes problem with Navier's type slip-without-friction boundary conditions. Z. Angew. Math. Phys. 73(3), 87 (2022)
10.1007/s00033-022-01725-9 Google Scholar
- 20Dhifaoui, A.: Very weak solution for the stationary exterior Stokes equations with non-standard boundary conditions in -theory. Math. Methods Appl. Sci. 46(1), 641–655 (2023)
- 21Dhifaoui, A., Meslameni, M., Razafison, U.: Weighted Hilbert spaces for the stationary exterior Stokes problem with Navier slip boundary conditions. J. Math. Anal. Appl. 472(2), 1846–1871 (2019)
- 22Friedmann, E.: The optimal shape of riblets in the viscous sublayer. J. Math. Fluid Mech. 12(2), 243–265 (2010)
10.1007/s00021-008-0284-z Google Scholar
- 23Friedmann, E., Richter, T.: Optimal microstructures drag reducing mechanism of riblets. J. Math. Fluid Mech. 13(3), 429–447 (2011)
10.1007/s00021-010-0033-y Google Scholar
- 24Gérard-Varet, D., Masmoudi, N.: Relevance of the slip condition for fluid flows near an irregular boundary. Comm. Math. Phys. 295(1), 99–137 (2010)
10.1007/s00220-009-0976-0 Google Scholar
- 25Girault, V.: The stokes problem and vector potential operator in three-dimensional exterior domains: An approach in weighted Sobolev spaces. Differ. Integral Equ. 7(2), 535–570 (1994)
- 26Girault, V., Giroire, J., Sequeira, A.: A stream-function–vorticity variational formulation for the exterior Stokes problem in weighted Sobolev spaces. Math. Methods Appl. Sci. 15(5), 345–363 (1992)
- 27Girault, V., Sequeira, A.: A well-posed problem for the exterior Stokes equations in two and three dimensions. Arch. Rational Mech. Anal. 114(4), 313–333 (1991)
10.1007/BF00376137 Google Scholar
- 28Hanouzet, B.: Espaces de Sobolev avec poids. Application au problème de Dirichlet dans un demi espace. Rend. Sem. Mat. Univ. Padova 46, 227–272 (1971)
- 29Jäger, W., Mikelić, A.: On the roughness-induced effective boundary conditions for an incompressible viscous flow. J. Differ. Equ. 170(1), 96–122 (2001)
- 30Joseph, D.D., Beavers, G.S.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)
- 31Kufner, A.: Weighted Sobolev spaces. A Wiley-Interscience Publication. John Wiley & Sons Inc., New York (1985)
- 32Louati, H., Meslameni, M., Razafison, U.: On the three-dimensional stationary exterior stokes problem with non standard boundary conditions. Z. Angew. Math. Phys. 100, e201900181 (2020)
10.1002/zamm.201900181 Google Scholar
- 33Mulone, G., Salemi, F.: On the existence of hydrodynamic motion in a domain with free boundary type conditions. Meccanica 18, 136–144 (1983)
10.1007/BF02128580 Google Scholar
- 34Mulone, G., Salemi, F.: On the hydrodynamic motion in a domain with mixed boundary conditions: existence, uniqueness, stability and linearization principle. Ann. Mat. Pura Appl. (4) 139, 147–174 (1985)
10.1007/BF01766853 Google Scholar
- 35Navier, C.L.M.H.: Mémoire sur les Lois du Mouvement des fluides. Mem. Acad. Sci. Inst. de France (2) 6, 389–440 (1827)
- 36Russo, A., Tartaglione, A.: On the Navier problem for the stationary Navier–Stokes equations. J. Differ. Equ. 251(9), 2387–2408 (2011)
10.1016/j.jde.2011.07.001 Google Scholar
- 37Solonnikov, V.A., Scadilov, V.E.: A certain boundary value problem for the stationary system of Navier–Stokes equations. Trudy Mat. Int. Steklov 125, 1515–1547 (1973)
- 38Specovius-Neugebauer, M.: Exterior Stokes problems and decay at infinity. Math. Methods Appl. Sci. 8(3), 351–367 (1986)
10.1002/mma.1670080124 Google Scholar
- 39Specovius-Neugebauer, M.: Weak solutions of the Stokes problem in weighted Sobolev spaces. Acta Appl. Math. 37(1-2), 195–203 (1994)
10.1007/BF00995141 Google Scholar