Polynomial decay rate in extensible Timoshenko–Boltzmann beam
Shengda Zeng
National Center for Applied Mathematics in Chongqing, and School of Mathematical Sciences, Chongqing Normal University, Chongqing, China
Search for more papers by this authorCorresponding Author
Moncef Aouadi
Ecole Nationale d'Ingénieurs de Bizerte, UR 17ES21 Systèmes dynamiques et applications, Université de Carthage, Bizerte, Tunisia
Correspondence
Moncef Aouadi, Ecole Nationale d'Ingénieurs de Bizerte, UR 17ES21 Systèmes dynamiques et applications, Université de Carthage, Bizerte, 7035, BP66, Tunisia.
Email: [email protected]
Search for more papers by this authorShengda Zeng
National Center for Applied Mathematics in Chongqing, and School of Mathematical Sciences, Chongqing Normal University, Chongqing, China
Search for more papers by this authorCorresponding Author
Moncef Aouadi
Ecole Nationale d'Ingénieurs de Bizerte, UR 17ES21 Systèmes dynamiques et applications, Université de Carthage, Bizerte, Tunisia
Correspondence
Moncef Aouadi, Ecole Nationale d'Ingénieurs de Bizerte, UR 17ES21 Systèmes dynamiques et applications, Université de Carthage, Bizerte, 7035, BP66, Tunisia.
Email: [email protected]
Search for more papers by this authorAbstract
In this article we derive the equations that form the nonlinear mathematical model of the Timoshenko–Boltzmann extensible system with memories. The nonlinear governing equations are derived by applying the Hamiltonian principle to full von Kármán equations in the framework of Euler–Bernoulli beam and Boltzmann theories for viscoelastic materials. The model takes into account the effects of extensibility where the dissipations are entirely contributed by memories. Based on semigroup theory, we establish existence and uniqueness of weak and strong solutions to the derived problem with two memory kernels. Using a resolvent criterion due to Borichev and Tomilov and eliminating the extensibility effect and one of the memory kernels, we prove the optimality of the polynomial decay rate for the corresponding problem under certain conditions on the physical coefficients. Moreover, by an approach based on the Gearhart–Herbst–Prüss–Huang theorem, we show the non-exponential stability of each problem, even if the memory kernel functions are of exponential type. Finally we show the strong stability of the semigroup corresponding to the derived model without the extensibility by a result due to Arendt–Batty.
CONFLICT OF INTEREST STATEMENT
There is no conflict of interests.
REFERENCES
- 1Loudini, M.: Timoshenko beam theory based dynamic modeling of lightweight flexible link robotic manipulators. In: E Hall, (ed.) Advances in Robot Manipulators, pp. 625–650. InTech, London, UK (2010)
10.5772/9661 Google Scholar
- 2Timoshenko, S.P.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Magazine. 6, 744–746 (1921)
10.1080/14786442108636264 Google Scholar
- 3Alves, M.O., Tavares, E.H.G., Jorge da Silva, M.A., Rodrigues, J.H.: On modeling and uniform stability of a partially dissipative viscoelastic Timoshenko system. SIAM J. Math. Anal. 51, 4520–4543 (2019)
- 4Khodja, A.F., Benabdallah, A., Muñoz Rivera, J.E., Racke, R.: Energy decay for Timoshenko systems of memory type. J. Diff. Eqs. 194, 82–115 (2003)
- 5Boltzmann, L.: Zur theorie der elastischen Nachwirkung. Wien Ber. 70, 275–306 (1874)
- 6Boltzmann, L.: Zur theorie der elastischen Nachwirkung. Wied Ann. 5, 430–432 (1878)
10.1002/andp.18782411107 Google Scholar
- 7Drozdov, A.D., Kolmanovskii, V.B.: Stability in Viscoelasticity. North-Holland, Amsterdam (1994)
- 8Prüss, J.: On the spectrum of . Trans. Ame. Math. Soc. 284, 847–847 (1984)
- 9Bernardi, C., Copetti, M.I.M.: Discretization of a nonlinear dynamic thermoviscoelastic Timoshenko beam model. Z. Angew. Math. Mech. 97, 532–549 (2017)
- 10Chen, L.Q., Ding, H.: Steady-state transverse response in coupled planar vibration of axially moving viscoelastic beams. J. Vib. Acous. 132, 011009 (2010)
- 11Enyi, C.D., Mukiawa, S.E., Apalara, T.A.: Stabilization of a new memory-type thermoelastic Timoshenko system. Appl. Anal. 102, 2271–2292 (2023)
- 12Hilton, H.H.: Viscoelastic Timoshenko beam theory. Mech. Time-Depend. Mater. 13, 1–10 (2009)
- 13Manevich, A.I., Kolakowski, Z.: Free and forced oscillations of timoshenko beam made of viscoelastic material. J. Theor. Appl. Mech. 49, 3–16 (2011)
- 14Ramos, A., Aouadi, M., Mahfoudhi, I., Freitas, M.: Asymptotic behavior and numerical analysis for a Timoshenko beam with viscoelasticity and thermodiffusion effects. Math. Contr. Relat Fields 14, 467–492 (2024)
- 15Silva, M.A.J., Racke, R.: Effects of history and heat models on the stability of thermoelastic Timoshenko systems. J. Diff. Equat. 275, 167–203 (2021)
- 16Tatar, N.: Well-posedness and stability for a fractional thermo-viscoelastic Timoshenko problem. Comput. Appl. Math. 40, 200 (2021)
- 17Zheng, X., Li, Y., Wang, H.: A viscoelastic Timoshenko beam: Model development, analysis and investigation. J. Math. Phys. 63, 061509 (2022)
- 18Krysko, V., Awrejcewicz, J., Kutepov, E., Krysko, A.: Chaotic dynamics of size-dependent curvilinear Euler–Bernoulli beam resonators (MEMS) in a stationary thermal field. Z. Angew. Math. Mech. 101, e202000109 (2019)
10.1002/zamm.202000109 Google Scholar
- 19Awrejcewicz, J., Krysko, A., Pavlov, S., Zhigalov, M., Kalutsky, L., Krysko, V.: Thermoelastic vibrations of a Timoshenko microbeam based on the modified couple stress theory. Nonlinear Dyn. 99, 919–943 (2020)
- 20Krysko-Jr, V., Awrejcewicz, J., Yakovleva, T., Kirichenko, A., Szymanowska, O., Krysko, V.: Mathematical modeling of MEMS elements subjected to external forces, temperature and noise, taking account of coupling of temperature and deformation fields as well as a nonhomogenous material structure. Commun. Nonlinear Sci. Numer. Simul. 72, 39–58 (2019)
- 21Borichev, A., Tomilov, Y.: Optimal polynomial decay of functions and operator semigroups. Math. Ann. 347, 455–478 (2010)
- 22Huang, F.L.: Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces. Ann. Diff. Eqs. 1, 43–56 (1985)
- 23Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983)
10.1007/978-1-4612-5561-1 Google Scholar
- 24Arendt, W., Batty, C.J.K.: Tauberian theorems and stability of one one-parameter semigroups. Trans. Am. Math. Soc. 306, 837–852 (1988)
10.1090/S0002-9947-1988-0933321-3 Google Scholar
- 25Almeida Júnior, D.S., Santos, M.L., Muñoz Rivera, J.E.: Stability to 1-D thermoelastic Timoshenko beam acting on shear force. Z. Angrew. Math. Phys. 65, 1233–1249 (2014)
- 26Giorgi, C., Naso, M.: Modeling and steady state analysis of the extensible thermoelastic beam. Math. Comput. Model. 53, 896–908 (2011)
- 27Kumar, R.: Effect of phase-lag on thermoelastic vibration of Timoshenko beam. J. Ther. Stress. 43, 1337–1354 (2020)
- 28Woinowsky-Krieger, S.: The effect of an axial force on the vibration of hinged bars. J. Appl. Mech. 17, 35–36 (1950)
- 29Alves, M.O., Muñoz-Rivera, J.E., Raposo, C.A.: Property of growth determined by the spectrum of operator associated to Timoshenko system with memory. Math. Moravica. 23, 75–96 (2019)
10.5937/MatMor1901075R Google Scholar
- 30da Silva, M.B., Delatorre, L.G., Tavares, E.H.G. et al.: Exponential characterization of a fully damped Timoshenko-Boltzmann system. Z. Angew. Math. Phys. 75, 79 (2024).
10.1007/s00033-024-02214-x Google Scholar
- 31Grasselli, M., Pata, V., Prouse, G.: Longtime behavior of a viscoelastic Timoshenko beam. Discrete Contin. Dyn. Syst. 10, 337–348 (2004)
- 32Dafermos, C.M.: Asymptotic stability in viscoelasticity. Arch. Rat. Mech. Anal. 37, 297–308 (1970)
- 33Fabrizio, M., Morro, A.: Mathematical problems in linear viscoelasticity. SIAM - Studies in Applied Mathematics, Philadelphia, PA (1992)
10.1137/1.9781611970807 Google Scholar
- 34Conti, M., Dell'Oro, F., Pata, V.: Timoshenko system with fading memory. Dyn. Part. Diff. Equ. 10, 367–377 (2013)
- 35Kato, T.: Perturbation Theory for Linear Operators. Springer Berlin, Heidelberg (1995)
10.1007/978-3-642-66282-9 Google Scholar
- 36Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd ed, vol. 140, Pure and Applied Mathematics. Elsevier/Academic Press, Amsterdam (2003)
- 37Potomkin, M.: A nonlinear transmission problem for a compound plate with thermoelastic part. Math. Meth. Appl. Sci. 35, 530–546 (2012)
- 38Gearhart, L.M.: Spectral theory for contraction semigroups on Hilbert space. Trans. Amer. Math. Soc. 236, 385–394 (1978)
- 39Engel, K., Nagel, R.: A Short Course on Operator Semigroups. Springer, New York (2006)
- 40Fatori, L.H., Muñoz Rivera, J.E.: Rates of decay to weak thermoelastic Bresse system. IMA J. Appl. Math. 75, 881–904 (2010)
- 41Han, Z-J., Zuazua, E.: Decay rates for elastic-thermoelastic star-shaped networks. Net. Heter. Media. 12, 461–488 (2017)
- 42Wang, J., Han, Z-J., Xu, G-Q.: Decay rates for 1-d mixed type II and type III thermoelastic system with localized viscous damping. J. Math. Anal. Appl. 478, 560–577 (2019)
- 43Liu, Z., Rao, B.: Energy decay rate of the thermoelastic Bresse system. Z. Angew. Math. Phys. 60, 54–69 (2009)