A robust Morley type conforming discontinuous galerkin method for a fourth order singular perturbation problem
Yuping Zeng
School of Mathematics, Jiaying University, Meizhou, China
Search for more papers by this authorCorresponding Author
Shangyou Zhang
Department of Mathematical Sciences, University of Delaware, Newark, Delaware, USA
Correspondence
Shangyou Zhang, Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA.
Email: [email protected]
Search for more papers by this authorYuping Zeng
School of Mathematics, Jiaying University, Meizhou, China
Search for more papers by this authorCorresponding Author
Shangyou Zhang
Department of Mathematical Sciences, University of Delaware, Newark, Delaware, USA
Correspondence
Shangyou Zhang, Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA.
Email: [email protected]
Search for more papers by this authorAbstract
We propose and analyze a robust Morley type conforming discontinuous Galerkin method for a fourth order perturbation problem. Employing the medius error analysis techniques, we carefully establish a robust error estimate assuming minimal regularity conditions. More precisely, we prove the uniform convergence with respect to the perturbation parameter for the numerical methods in the energy norm. Some numerical results are also carried out to confirm the corresponding theoretical analysis.
REFERENCES
- 1Argyris, J., Fried, I., Scharpf, D.: The TUBA family of plate elements for the matrix displacement method. Aero. J. Roy. Aero. Soc. 72, 701–709 (1968)
- 2Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)
- 3Brenner, S.C., Gudi, T., Sung, L.: An a posteriori error estimator for a quadratic -interior penalty method for the biharmonic problem. IMA J. Numer. Anal. 30, 777–798 (2010)
- 4Brenner, S.C., Neilan, M.: A interior penalty method for a fourth order elliptic singular perturbation problem. SIAM J. Numer. Anal. 49, 869–892 (2011)
- 5Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. 3rd ed. Vol 15. Texts in Applied Mathematics. Springer, New York (2008).
10.1007/978-0-387-75934-0 Google Scholar
- 6Brenner, S.C., Sung, L.Y.: interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22/23, 83–118 (2005)
- 7Carstensen, C., Puttkammer, S.: Direct guaranteed lower eigenvalue bounds with optimal a priori convergence rates for the bi-Laplacian. SIAM J. Numer. Anal. 61, 812–836 (2023)
- 8Chen, H., Chen, S.: Uniformly convergent nonconforming element for 3-D fourth order elliptic singular perturbation problem. J. Comput. Math. 32, 687–695 (2014)
- 9Chen, H., Chen, S., Qiao, Z.: -nonconforming tetrahedral and cuboid elements for the three-dimensional fourth order elliptic problem. Numer. Math. 124, 99–119 (2013)
- 10Chen, H., Li, J., Qiu, W.: A interior penalty method for mth-Laplace equation. ESAIM: Math. Model. Numer. Anal. 56, 2081–2103 (2022)
10.1051/m2an/2022074 Google Scholar
- 11Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978).
10.1016/S0168-2024(08)70178-4 Google Scholar
- 12Ciarlet, P.G.: Interpolation error estimates for the reduced Hsieh-Clough-Tocher triangle. Math. Comput. 32, 335–344 (1978)
- 13Cui, M., Zhang, S.: On the uniform convergence of the weak Galerkin finite element method for a singularly-perturbed biharmonic equation. J. Sci. Comput. 82(1), 5 (2020)
- 14Dedner, A., Hodson, A.: Robust nonconforming virtual element methods for general fourth-order problems with varying coefficients. IMA J. Numer. Anal. 42, 1364–1399 (2022)
- 15Dong, Z., Ern, A.: Hybrid high-order method for singularly perturbed fourth-order problems on curved domains. ESAIM: Math. Model. Numer. Anal. 55, 3091–3114 (2021)
10.1051/m2an/2021081 Google Scholar
- 16Dong, Z., Mascotto, L., Sutton, O.J.: Residual-based a posteriori error estimates for hp-discontinuous Galerkin discretizations of the biharmonic problem. SIAM J. Numer. Anal. 59, 1273–1298 (2021)
- 17Du, S., Lin, R., Zhang, Z.: Residual-based a posteriori error estimators for mixed finite element methods for fourth order elliptic singularly perturbed problems. J. Comput. Appl. Math. 412, 114323 (2022)
- 18Feng, F., Yu, Y.: A modified interior penalty virtual element method for fourth-order singular perturbation problems. J. Sci. Comput. 101(1), 21 (2024)
- 19Georgoulis, E.H., Houston, P., Virtanen, J.: An a posteriori error indicator for discontinuous Galerkin approximations of fourth-order elliptic problems. IMA J. Numer. Anal. 31, 281–298 (2011)
- 20Gudi, T.: A new error analysis for discontinuous finite element methods for linear elliptic problems. Math. Comput. 79, 2169–2189 (2010)
- 21Guzmán, J., Leykekhman, D., Neilan, M.: A family of non-conforming elements and the analysis of Nitsche's method for a singularly perturbed fourth order problem. Calcolo 49, 95–125 (2012)
- 22Guzmán, J., Lischke, A., Neilan, M.: Exact sequences on Worsey-Farin splits. Math. Comput. 338, 2571–2608 (2022)
- 23Hu, J., Lin, T., Wu, Q.: A construction of conforming finite element spaces in any dimension. Found. Comput. Math. 24(6), 1941–1977 (2024) https://doi.org/10.1007/s10208-023-09627-6
10.1007/s10208-023-09627-6 Google Scholar
- 24Hu, J., Ma, R., Shi, Z.: A new a priori error estimate of nonconforming finite element methods. Sci. China Math. 57, 887–902 (2014)
- 25Huang, X., Shi, Y., Wang, W.: A Morley-Wang-Xu element method for a fourth order elliptic singular perturbation problem. J. Sci. Comput. 87(3), 84 (2021)
- 26Morley, L.S.D.: The triangular equilibrium element in the solution of plate bending problems. Aero. Quart. 19, 149–169 (1968)
- 27Nilssen, T.K., Tai, X., Winther, R.: A robust nonconforming -element. Math. Comput. 70, 489–505 (2001)
- 28Semper, B.: Conforming finite element approximations for a fourth-order singular perturbation problem. SIAM J. Numer. Anal. 29, 1043–1058 (1992)
- 29Shi, Z., Wang, M.: Finite Element Methods. Science Press, Beijing (2010).
- 30Tai, X., Winther, R.: A discrete de Rham complex with enhanced smoothness. Calcolo 43, 287–306 (2006)
- 31Verfürth, R.: A Review of A Posteriori Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, New York (1996)
- 32Wang, L., Wu, Y., Xie, X.: Uniformly stable rectangular elements for fourth order elliptic singular perturbation problems, Numer. Methods PDEs. 29, 721–737 (2013)
- 33Wang, M., Meng, X.: A robust finite element method for a 3-D elliptic singular perturbation problem. J. Comput. Math. 25, 631–644 (2007)
- 34Wang, M., Xu, J.: The Morley element for fourth order elliptic equations in any dimensions. Numer. Math. 103, 155–169 (2006)
- 35Wang, M., Xu, J., Hu, Y.: Modified Morley element method for a fourth order elliptic singular perturbation problem. J. Comput. Math. 24, 113–120 (2006)
- 36Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241, 103–115 (2013)
- 37Wang, W., Huang, X., Tang, K., Zhou, R.: Morley-Wang-Xu element methods with penalty for a fourth order elliptic singular perturbation problem. Adv. Comput. Math. 44, 1041–1061 (2018)
- 38Xie, P., Shi, D., Li, H.: A new robust -type nonconforming triangular element for singular perturbation problems. Appl. Math. Comput. 217, 3832–3843 (2010)
- 39Ye, X., Zhang, S.: A conforming discontinuous Galerkin finite element method. Int. J. Numer. Anal. Model. 17, 110–117 (2020)
- 40Ye, X., Zhang, S.: A conforming discontinuous Galerkin finite element method: Part II. Int. J. Numer. Anal. Model. 17, 281–296 (2020)
- 41Ye, X., Zhang, S.: A weak divergence CDG method for the biharmonic equation on triangular and tetrahedral meshes. Appl. Numer. Math. 178, 155–165 (2022)
- 42Ye, X., Zhang, S.: A -conforming DG finite element method for biharmonic equations on triangle/tetrahedron. J. Numer. Math. 30, 163–172 (2022)
10.1515/jnma-2021-0012 Google Scholar
- 43Zhang, B., Zhao, J.: The virtual element method with interior penalty for the fourth-order singular perturbation problem. Commun. Nonlinear Sci. Numer. Simulat. 133, 107964 (2024)
- 44Zhang, B., Zhao, J., Chen, S.: The nonconforming virtual element method for fourth-order singular perturbation problem. Adv. Comput. Math. 46(2), 19 (2020)
- 45Zhang, S.: A family of 3D continuously differentiable finite elements on tetrahedral grids. Appl. Numer. Math. 59, 219–233 (2009)