Prandtl ternary nanofluid flow with magnetohydrodynamics and thermal effects over a 3D stretching surface using convective boundary conditions
Muhammad Ehsan Ullah
Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan
Search for more papers by this authorMuhammad Idrees
Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan
Search for more papers by this authorCorresponding Author
Syed Tauseef Saeed
Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan
Correspondence
Syed Tauseef Saeed, Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan.
Email: [email protected]
Search for more papers by this authorAbdou Al Zubaidi
Department of Mathematics, College of Science, King Khalid University, Abha, Saudi Arabia
Search for more papers by this authorMuhammad Ehsan Ullah
Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan
Search for more papers by this authorMuhammad Idrees
Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan
Search for more papers by this authorCorresponding Author
Syed Tauseef Saeed
Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan
Correspondence
Syed Tauseef Saeed, Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan.
Email: [email protected]
Search for more papers by this authorAbdou Al Zubaidi
Department of Mathematics, College of Science, King Khalid University, Abha, Saudi Arabia
Search for more papers by this authorAbstract
This study investigates the three-dimensional (3D) magnetohydrodynamic flow and heat transfer characteristics of a Prandtl ternary nanofluid over a stretching surface under convective boundary conditions. The significance of this work lies in its potential to enhance thermal management in advanced industrial processes through optimized heat and mass transfer. Despite extensive research on nanofluids, there remains a research gap in comprehensively integrating the effects of magnetohydrodynamics, porosity, and complex thermal phenomena, such as thermal radiation, heat generation/absorption, and activation energy, in ternary nanofluid systems. The primary objective of this work is to address this gap by formulating and numerically solving a set of nonlinear partial differential equations using similarity transformations and the shooting method. Our analysis reveals that parameters such as the Prandtl number, Brownian motion, thermophoresis, and magnetic field strength significantly influence the velocity, temperature, and nanoparticle concentration profiles. The findings provide critical insights into the role of these parameters in enhancing heat transfer performance, thereby offering a robust framework for optimizing thermal systems in industrial applications.
REFERENCES
- 1Choi, S.: Developments and applications of non-newtonian flows. ASME FED (1995)
- 2Zhao, Q., Yan, S., Zhang, B., Fan, K., Zhang, J., Li, W.: An on-chip viscoelasticity sensor for biological fluids. Cyborg Bionic Syst. 4, 0006 (2023)
- 3Liu, G., Shang, D., Zhao, Y., Du, X.: Characterization of brittleness index of gas shale and its influence on favorable block exploitation in southwest china. Front. Earth Sci. 12, 1389378 (2024)
10.3389/feart.2024.1389378 Google Scholar
- 4Xiong, F., Wang, L., Huang, J., Luo, K.: A thermodynamically consistent phase-field lattice Boltzmann method for two-phase electrohydrodynamic flows. J. Sci. Comput. 103(1), 1–32 (2025)
- 5Borjigin, S., Zhao, W., Fu, W., Liang, W., Bai, S., Ma, J., Meng, K., Baoyin, H.: Review of plate heat exchanger utilized for gases heat exchange. Renew. Sustain. Energy Rev. 210, 115224 (2025)
- 6Yan, H., Wang, L., Huang, J., Yu, Y.: Thermocapillary migration of a self-rewetting droplet on an inclined surface: A phase-field simulation. Appl. Therm. Eng. 263, 125345 (2025)
- 7Shaheen, S., Huang, H., Arain, M.B., Ijaz, N., Saleem, S.: Heat and mass transfer in tri-layer ependymal ciliary transport with diverse viscosity. J. Appl. Math. Mech. 104(11), e202301007 (2024)
10.1002/zamm.202301007 Google Scholar
- 8Shah, S.A.A., Idrees, M., Bariq, A., Ahmad, B., Ali, B., Ragab, A.E., Az-Zo'bi, E.A.: Comparative study of some non-newtonian nanofluid models across stretching sheet: A case of linear radiation and activation energy effects. Sci. Rep. 14(1), 4950 (2024)
- 9Hartmann, J.: Mercury dynamics I. Theory of the laminar flow of an electrically conductive liquid in a homogeneous magnetic field. Det Kgl. Danske Videnskabernes. Selskab. Mathematisk-fysiske Meddelelser 15, 1–28 (1937)
- 10Zafar, S.S., Khan, U., Ali, F., Eldin, S.M., Saeed, A.M., Zaib, A., Galal, A.M.: Irreversibility analysis of radiative flow of Prandtl nanofluid over a stretched surface in Darcy-Forchheimer medium with activation energy and chemical reaction. Heliyon 9(4), e14877 (2023)
- 11Wu, C., Deng, J., Zhou, X., Gao, A., Feng, K., Zhu, C.: Turbulence affected by submerged aquatic vegetation under wind-induced flow. Phys. Fluids 37(1), 015170 (2025)
- 12Tan, X.-H., Zhou, X.-J., Xu, P., Zhu, Y., Zhuang, D.-J.: A fractal geometry-based model for stress-sensitive permeability in porous media with fluid-solid coupling. Powder Technol. 455, 120774 (2025)
- 13Li, N., Morozov, I.B., Fu, L.-Y., Deng, W.: Unified nonlinear elasto-visco-plastic rheology for bituminous rocks at variable pressure and temperature. J. Geophys. Res. Solid Earth 130(3), e2024JB029295 (2025)
- 14Yuan, H., Yuan, W., Duan, S., Jiao, K., Zhang, Q., Lim, E.G., Chen, M., Zhao, C., Pan, P., Liu, X., et al.: Microfluidic-assisted caenorhabditis elegans sorting: Current status and future prospects. Cyborg Bionic Syst. 4, 0011 (2023)
- 15Mao, Z., Hosoya, N., Maeda, S.: Flexible electrohydrodynamic fluid-driven valveless water pump via immiscible interface. Cyborg Bionic Syst. 5, 0091 (2024)
- 16Almutairi, S., Sarfraz, M., Saleem, S., Khan, M., et al.: Exploring cubic kinetics in viscoelastic fluid flow with thermal viscous dissipation on a stretching surface. Chem. Phys. Lett. 849, 141420 (2024)
- 17Azhar, E., Maraj, E., Afaq, H., Jamal, M., Iqbal, Z.: Application of activation energy and joule heating with variable viscosity on MHD flow of trihybrid nanofluid over a disk. Int. Commun. Heat Mass Transf. 155, 107573 (2024)
- 18Yi, X., Xu, H., Jin, G., Lu, Y., Chen, B., Xu, S., Shi, J., Fan, X.: Boundary slip and lubrication mechanisms of organic friction modifiers with effect of surface moisture. Friction 12(7), 1483–1498 (2024)
- 19Zhang, G., Luo, J., Sun, M., Yu, Y., Wang, J., Chen, B., Ouyang, Q., Qiu, Y., Chen, G., Shen, T., et al.: Effect of soft magnetic particles content on multi-physics field of magnetorheological composite gel clutch with complex flow channel excited by Halbach array arrangement. Compos. - A: Appl. Sci. Manuf. 188, 108576 (2025)
- 20Xiao, D., Chen, L., Xu, X., Tang, G., Hu, Y., Guo, B., Liu, M., Yuan, C., Li, G.: Coupling model of wellbore heat transfer and cuttings bed height during horizontal well drilling. Phys. Fluids 36(9), 097163 (2024)
- 21Zeng, W., Zhou, P., Wu, Y., Wu, D., Xu, M.: Multi-cavitation states diagnosis of the vortex pump using a combined DT-CWT-VMD and BO-LW-KNN based on motor current signals. IEEE Sens. J. 24, 30690-30705 (2024)
- 22Ma, C., Hu, J., Li, M., Deng, X., Yang, J., He, J., Hua, C., Wang, L., Liu, J., Liu, K., et al.: Multi-objective topology optimization for cooling element of precision gear grinding machine tool. Int. Commun. Heat Mass Transf. 160, 108356 (2025)
- 23He, J., Hou, Q., Yang, X., Duan, H., Lin, L.: Isolated slug traveling in a voided line and impacting at an end orifice. Phys. Fluids 36(2), 027105 (2024)
- 24Saleem, M., Al-Zubaidi, A., Tufail, M.N., Fiaz, Z., Saleem, S.: Exploration of numerical simulation for unsteady casson nanofluid thin film flow over stretching surface with mixed convection effects using Buongiorno's nanofluid model. J. Appl. Math. Mech. 104(12), e202400165 (2024)
10.1002/zamm.202400165 Google Scholar
- 25Murtaza, S., Ahmad, Z.: Analysis of clay based cementitious nanofluid subjected to newtonian heating and slippage conditions with constant proportional caputo derivative. GeoStruct Innov. (GSI) 2, 53–67 (2024)
10.56578/gsi020201 Google Scholar
- 26Murtaza, S., Kumam, P., Bilal, M., Sutthibutpong, T., Rujisamphan, N., Ahmad, Z.: Parametric simulation of hybrid nanofluid flow consisting of cobalt ferrite nanoparticles with second-order slip and variable viscosity over an extending surface. Nanotechnol. Rev. 12(1), 20220533 (2023)
- 27Murtaza, S., Kumam, P., Ahmad, Z., Ramzan, M., Ali, I., Saeed, A.: Computational simulation of unsteady squeezing hybrid nanofluid flow through a horizontal channel comprised of metallic nanoparticles. J. Nanofluids 12(5), 1327–1334 (2023)
10.1166/jon.2023.2020 Google Scholar
- 28Murtaza, S., Kumam, P., Sutthibutpong, T., Suttiarporn, P., Srisurat, T., Ahmad, Z.: Fractal-fractional analysis and numerical simulation for the heat transfer of Zno+ + /dw based ternary hybrid nanofluid. J. Appl. Math. Mech. 104(2), e202300459 (2024)
10.1002/zamm.202300459 Google Scholar
- 29Memon, A.A., Murtaza, S., Memon, M.A., Bhatti, K., Haque, M., Ali, M.R.: Simulation of thermal decomposition of calcium oxide in water with different activation energy and the high Reynolds number. Complexity 2022(1), 3877475 (2022)
10.1155/2022/3877475 Google Scholar
- 30Shah, S.A.A., Alanazi, M.M., Malik, M.F., Abbas, Z.: New insight into the dynamics of non-newtonian Powell-Eyring fluid conveying tiny particles on Riga plate with suction and injection. Nanotechnology 34(34), 345401 (2023)
- 31Pattnaik, P.K., Mishra, S., Baitharu, A.P., Jena, S.: Cu-kerosene and -kerosene boundary layer nanofluid flow past a stretching/shrinking surface. Proc. Inst. Mech. Eng., Part N: J. Nanomater. Nanoeng. Nanosyst. 237(3–4), 75–81 (2023)
- 32Bhukta, D., Dash, G., Mishra, S., Jena, S.: Analytical estimation of energy dissipations: Viscous, Joulian, and Darcy of viscoelastic fluid flow phenomena over a deformable surface. Heat Transf. 50(8), 7798–7816 (2021)
10.1002/htj.22254 Google Scholar
- 33Pattnaik, P.K., Jena, S., Mishra, S., Mathur, P.: Application to differential transform method for MHD fluid flow and heat transfer. Biointerface Res. Appl. Chem. 13(2), 110 (2022)
10.33263/BRIAC132.110 Google Scholar
- 34Jena, S., Swain, K., Ibrahim, S.M., Sreenivasulu, P., Lorenzini, G.: Three-dimensional MHD rotating flow of radiative nanofluid over a stretched sheet with homogeneous-heterogeneous chemical reactions. J. Eng. Thermophys. 33(2), 336–353 (2024)
- 35Pattanaik, P.C., Jena, S., Mishra, S.: Control of magnetic dissipation and radiation on an unsteady stagnation point nanofluid flow: A numerical approach. Mod. Phys. Lett. B 38(09), 2450039 (2024)
10.1142/S0217984924500398 Google Scholar
- 36Hayat, T., Aziz, A., Muhammad, T., Alsaedi, A.: Three-dimensional flow of Prandtl fluid with Cattaneo-Christov double diffusion. Results Phys. 9, 290–296 (2018)
10.1016/j.rinp.2018.02.065 Google Scholar
- 37Kumar, K.G., Rudraswamy, N., Gireesha, B., et al.: Effects of mass transfer on MHD three dimensional flow of a Prandtl liquid over a flat plate in the presence of chemical reaction. Results Phys. 7, 3465–3471 (2017)
- 38Owhaib, W., Al-Kouz, W.: Three-dimensional numerical analysis of flow and heat transfer of bi-directional stretched nanofluid film exposed to an exponential heat generation using modified Buongiorno model. Sci. Rep. 12(1), 10060 (2022)
- 39Ullah, M.E., Idrees, M., Muhammad, S., Shuaib, M.: Numerical investigation of heat transfer enhancement in magnetohydrodynamics ternary ferrofluids on nonlinear stretching sheet. Case Stud. Therm. Eng. 59, 104470 (2024)
- 40Mahmood, Z., Eldin, S.M., Rafique, K., Khan, U.: Numerical analysis of MHD tri-hybrid nanofluid over a nonlinear stretching/shrinking sheet with heat generation/absorption and slip conditions. Alex. Eng. J. 76, 799–819 (2023)
- 41Ullah, M.Z., Alghamdi, M.: An optimal analysis for 3d flow of Prandtl nanofluid with convectively heated surface. Commun. Theor. Phys. 71(12), 1485 (2019)
- 42Ariel, P.D.: The three-dimensional flow past a stretching sheet and the homotopy perturbation method. Comput. Math. Appl. 54(7–8), 920–925 (2007)