Hybridized ferrofluid flow with acute magnetic force over inclined shrinking/stretching surface: Slip conditions cases
Liaquat Ali Lund
KCAET Khairpur Mir's, Sindh Agriculture University, Tando jam, Sindh, Pakistan
Search for more papers by this authorJawad Raza
Department of Mathematics, COMSATS University Islamabad Vehari Campus, Vehari, Pakistan
Search for more papers by this authorAbdul Fattah Chandio
Department of Electronic Engineering, Quaid-E-Awam University of Engineering, Science & Technology Nawabshah, Nawabshah, Sindh, Pakistan
Search for more papers by this authorCorresponding Author
Nehad Ali Shah
Department of Mechanical Engineering, Sejong University, Seoul, South Korea
Correspondence
Nehad Ali Shah, Department of Mechanical Engineering, Sejong University, Seoul, South Korea.
Email: [email protected]
Search for more papers by this authorUbaidullah Yashkun
Department of Mathematics and Social Sciences, Sukkur IBA University, Sukkur, Pakistan
Search for more papers by this authorLiaquat Ali Lund
KCAET Khairpur Mir's, Sindh Agriculture University, Tando jam, Sindh, Pakistan
Search for more papers by this authorJawad Raza
Department of Mathematics, COMSATS University Islamabad Vehari Campus, Vehari, Pakistan
Search for more papers by this authorAbdul Fattah Chandio
Department of Electronic Engineering, Quaid-E-Awam University of Engineering, Science & Technology Nawabshah, Nawabshah, Sindh, Pakistan
Search for more papers by this authorCorresponding Author
Nehad Ali Shah
Department of Mechanical Engineering, Sejong University, Seoul, South Korea
Correspondence
Nehad Ali Shah, Department of Mechanical Engineering, Sejong University, Seoul, South Korea.
Email: [email protected]
Search for more papers by this authorUbaidullah Yashkun
Department of Mathematics and Social Sciences, Sukkur IBA University, Sukkur, Pakistan
Search for more papers by this authorLiaqat Ali Lund and Nehad Ali Shah contributed equally to this work and are co-first authors.
Abstract
This study examines how the inclination affects the heat transfer characteristics of an acute magnetic force under first-order slip conditions. A mixture of incompressible hybridized ferrofluids, specifically Cobalt ferrite and magnetite , are combined with water on an inclined plate. To control the flow, a force of transverse magnetic is applied at an angle . The system of PDEs is converted into a system of nonlinear ordinary differential equations (ODEs) through a similarity transformation. The bvp4c solver function in MATLAB software is then utilized to resolve these ODEs. Graphical representation illustrates impact of changing the angle of inclination , the acute angle , the mixed convection parameter , velocity slip parameter , thermal slip parameter , and other pertinent variables. Dual branches are found for different involved parameters, with 1st solution determined to be stable through stability analysis. The angle of inclination shown a positive correlation with the skin friction coefficient (SFC) in the boundary layer (BL) and the Nusselt number in the first solution. The augmentation of the volume fraction of Cobalt ferrite nanoparticles results in the enhancement of both Nusselt number and SFC. Simultaneously, it contributes to the postponement of BL separation at the bifurcation point. The incorporation of Cobalt ferrite nanoparticles into hybrid ferrofluids results in a superior heat transfer rate compared to that achieved with conventional ferrofluids. In the first solution, SFC is increased by the presence of a magnetic field, while in the second solution, it is decreased. The phenomenon of velocity slip exerts an influence on the velocity of fluid flow, resulting in a reduction in the thickness of the momentum BL within the stable solution. Dual solutions are observed for suction parameter and shrinking parameter only.
REFERENCES
- 1Prandtl, L.L.: über Flüssigkeitsbewegungen bei sehr kleiner Reihung. Verhandl III, Intern. Math. Kongr. Heidelberg, Auch: Gesammelte Abhandlungen. 2, 484–491 (1904)
- 2Blasius, H.: Grenzschichten in Flüssigkeiten mit kleiner Reibung. Druck von BG Teubner (1907).
- 3Falkneb, V.M., Skan, S.W.: LXXXV. Solutions of the boundary-layer equations. Lond. Edinb. Dubl. Phil. Mag. J. Sci. 12(80), 865–896 (1931)
10.1080/14786443109461870 Google Scholar
- 4Cortell, R.: Numerical solutions of the classical Blasius flat-plate problem. Appl. Math. Comput. 170(1), 706–710 (2005)
- 5Sakiadis, B.C.: Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow. AlChE J. 7(1), 26–28 (1961)
- 6Cortell, R.: A numerical tackling on Sakiadis flow with thermal radiation. Chin. Phys. Lett. 25(4), 1340 (2008)
- 7Crane, L.J.: Flow past a stretching plate. Z. Angew. Math. Phys. 21, 645–647 (1970)
- 8Hossain, M.T., Mojumder, R., Hossain, M.A.: Solution of natural convection boundary layer flow above a semi-infinite porous horizontal plate under similarity transformations with suction and blowing. Daffodil Int. Univ. J. Sci. Technol. 6(1), 43–51 (2011)
10.3329/diujst.v6i1.9333 Google Scholar
- 9Islam, A., Mahmood, Z., Khan, U.: Double-diffusive stagnation point flow over a vertical surface with thermal radiation: assisting and opposing flows. Sci. Prog. 106(1), 00368504221149798 (2023)
- 10Lund, L.A., Omar, Z., Khan, I.: Quadruple solutions of mixed convection flow of magnetohydrodynamic nanofluid over exponentially vertical shrinking and stretching surfaces: Stability analysis. Comput. Methods Programs Biomed. 182, 105044 (2019)
- 11Dyapa, H., Kishan, N.: Numerical simulation of Dufour and Soret impacts on MHD Williamson nanofluid flow through an inclined surface. Heat Transfer 52(1), 448–466 (2023)
- 12Eid, M.R., Jamshed, W., Goud, B.S., Ibrahim, R.W., El Din, S.M., Abd-Elmonem, A., Abdalla, N.S.E.: Mathematical analysis for energy transfer of micropolar magnetic viscous nanofluid flow on permeable inclined surface and Dufour impact. Case Stud. Therm. Eng. 49, 103296 (2023)
- 13Rehman, K.U., Shatanawi, W., Çolak, A.B.: Computational analysis on magnetized and non-magnetized boundary layer flow of casson fluid past a cylindrical surface by using artificial neural networking. Mathematics 11(2), 326 (2023)
- 14Khedher, N.B., El-Zahar, E.R., Seddek, L.F., Ullah, Z., Eldin, S.M.: Amplitude and oscillating assessment of thermal and magnetic boundary layer flow across circular heated cylinder with heat source/sink. Case Stud. Therm. Eng. 49, 103216 (2023)
10.1016/j.csite.2023.103216 Google Scholar
- 15Lund, L.A., Yashkun, U., Shah, N.A.: Multiple solutions of unsteady Darcy–Forchheimer porous medium flow of Cu–Al2O3/water based hybrid nanofluid with joule heating and viscous dissipation effect. J. Therm. Anal. Calorim. 1–13 (2024)
- 16Choi, S.U., Eastman, J.A.: Enhancing Thermal Conductivity of Fluids with Nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab.(ANL), Argonne, IL (United States) (1995)
- 17Sheikholeslami, M., Farshad, S.A., Ebrahimpour, Z., Said, Z.: Recent progress on flat plate solar collectors and photovoltaic systems in the presence of nanofluid: A review. J. Cleaner Prod. 293, 126119 (2021)
- 18Said, Z., Sundar, L.S., Tiwari, A.K., Ali, H.M., Sheikholeslami, M., Bellos, E., Babar, H.: Recent advances on the fundamental physical phenomena behind stability, dynamic motion, thermophysical properties, heat transport, applications, and challenges of nanofluids. Phys. Rep. 946, 1–94 (2022)
- 19Sidik, N.A.C., Jamil, M.M., Japar, W.M.A.A., Adamu, I.M.: A review on preparation methods, stability and applications of hybrid nanofluids. Renew. Sustain. Energy Rev. 80, 1112–1122 (2017)
- 20Asghar, A., Lund, L.A., Shah, Z., Vrinceanu, N., Deebani, W., Shutaywi, M.: Effect of thermal radiation on three-dimensional magnetized rotating flow of a hybrid nanofluid. Nanomaterials 12(9), 1566 (2022)
- 21Roy, N.C., Pop, I.: Dual solutions of a nanofluid flow past a convectively heated nonlinearly shrinking sheet. Chin. J. Phys. 82, 31–40 (2023)
- 22Khan, M., Ahmad, L., Yasir, M., Ahmed, J.: Numerical analysis in thermally radiative stagnation point flow of Cross nanofluid due to shrinking surface: dual solutions. Appl. Nanosci. 13(1), 573–584 (2023)
- 23Rosensweig, R.E.: Magnetic fluids. Annu. Rev. Fluid Mech. 19(1), 437–461 (1987)
10.1146/annurev.fl.19.010187.002253 Google Scholar
- 24Bahiraei, M., Hangi, M.: Flow and heat transfer characteristics of magnetic nanofluids: a review. J. Magn. Magn. Mater. 374, 125–138 (2015)
- 25Lund, L.A., Omar, Z., Khan, I., Baleanu, D., Nisar, K.S.: Convective effect on magnetohydrodynamic (MHD) stagnation point flow of Casson fluid over a vertical exponentially stretching/shrinking surface: Triple solutions. Symmetry 12(8), 1238 (2020)
- 26Zainodin, S., Jamaludin, A., Nazar, R., Pop, I.: MHD mixed convection flow of hybrid ferrofluid through stagnation-point over the nonlinearly moving surface with convective boundary condition, viscous dissipation, and joule heating effects. Symmetry 15(4), 878 (2023)
- 27Kole, M., Khandekar, S.: Engineering applications of ferrofluids: A review. J. Magn. Magn. Mater. 537, 168222 (2021)
- 28Nazir, M.W., Nazeer, M., Javed, T., Ali, N., Al-Basyouni, K., Khan, M.I.: Hydrothermal features of the magnetite nanoparticles on natural convection flow through a square conduit by using the finite element method. Int. J. Mod. Phys. B 37(07), 2350069 (2023)
- 29Lund, L.A., Omar, Z., Raza, J., Khan, I.: Magnetohydrodynamic flow of Cu–Fe3O4/H2O hybrid nanofluid with effect of viscous dissipation: Dual similarity solutions. J. Therm. Anal. Calorim. 143, 915–927 (2021)
- 30Zainodin, S., Jamaludin, A., Nazar, R., Pop, I.: Impact of heat source on mixed convection hybrid ferrofluid flow across a shrinking inclined plate subject to convective boundary conditions. Alex. Eng. J. 87, 662–681 (2024)
- 31Mohamed, M.K.A., Ishak, A., Rosli, W.M.H.W., Soid, S.K., Alkasasbeh, H.T.: MHD natural convection flow of Casson ferrofluid over a vertical truncated cone. J. Adv. Res. Fluid Mech. Therm. Sci. 112(1), 94–105 (2023)
10.37934/arfmts.112.1.94105 Google Scholar
- 32Sarvar, S., Rashidi, S., Rafee, R.: A brief review of the application of ferrofluids and magnetic fields in solar energy systems. J. Magn. Magn. Mater. 588, 171435 (2023)
- 33Mishra, A., Upreti, H.: A comparative study of Ag–MgO/water and Fe3O4–CoFe2O4/EG–water hybrid nanofluid flow over a curved surface with chemical reaction using Buongiorno model. Partial Differ. Equ. Appl. Math. 5, 100322 (2022)
10.1016/j.padiff.2022.100322 Google Scholar
- 34Kamis, N.I., Jiann, L.Y., Shafie, S., Rawi, N.A.: Comparative analysis of Fe3O4/CoFe2O4 and NiZnFe2O4/MnZnFe2O4 hybrid ferro-nanofluids flow under magnetic dipole effect over a slip stretching sheet. Case Stud. Therm. Eng. 51, 103580 (2023)
- 35Manh, T.D., Khan, A.R., Shafee, A., Nam, N.D., Tlili, I., Nguyen-Thoi, T., Li, Z.: Hybrid nanoparticles migration due to MHD free convection considering radiation effect. Physica A 551, 124042 (2020)
- 36Giwa, S.O., Sharifpur, M., Meyer, J.P.: Effects of uniform magnetic induction on heat transfer performance of aqueous hybrid ferrofluid in a rectangular cavity. Appl. Therm. Eng. 170, 115004 (2020)
- 37Anuar, N.S., Bachok, N., Pop, I.: Influence of MHD hybrid ferrofluid flow on exponentially stretching/shrinking surface with heat source/sink under stagnation point region. Mathematics 9(22), 2932 (2021)
- 38Cloitre, M., Bonnecaze, R.T.: A review on wall slip in high solid dispersions. Rheol. Acta 56, 283–305 (2017)
- 39Zainodin, S., Jamaludin, A., Nazar, R., Pop, I.: Effects of higher order chemical reaction and slip conditions on mixed convection hybrid ferrofluid flow in a Darcy porous medium. Alex. Eng. J. 68, 111–126 (2023)
- 40Ariffin, N.A.N., Waini, I., Kasim, A.R.M., Kamal, M.H.A., Ilias, M.R., Kechil, S.A.: Flow and heat transfer analysis on reiner-philippoff fluid flow over a stretching sheet in the presence of first and second order velocity slip and temperature jump effects. CFD Lett. 15(1), 88–102 (2023)
10.37934/cfdl.15.1.88102 Google Scholar
- 41Lund, L.A., Ghoto, A.A., Al-Khaled, K., Ghachem, K., Fadhel, M.A., Khan, S.U., Kolsi, L.: Thin film flow of blood-based hybrid nanoparticles subject to slip effects: A stability assessment. Int. J. Mod. Phys. B 38, 2450183 (2023)
- 42Lund, L.A., Fadhel, M.A., Dero, S., Shah, Z., Alshehri, M., Alshehri, A.: Slip and radiative effect on magnetized CNTs/C2H6O2 + H2O hybrid base nanofluid over exponentially shrinking surface. J. Magn. Magn. Mater. 580, 170958 (2023)
- 43Maxwell, J.C.: III. On stresses in rarefied gases arising from inequalities of temperature. Proc. R. Soc. Lond. 27(185–189), 304–308 (1878)
10.1098/rspl.1878.0052 Google Scholar
- 44Navier, C.L.: Memorie sur les lois du lois du mouvement des fluides. Mem. Acad. Sci. Inst. France 6, 298–440 (1827)
- 45Rao, I.J., Rajagopal, K.R.: The effect of the slip boundary condition on the flow of fluids in a channel. Acta Mech. 135(3-4), 113–126 (1999)
- 46Asghar, A., Chandio, A.F., Shah, Z., Vrinceanu, N., Deebani, W., Shutaywi, M., Lund, L.A.: Magnetized mixed convection hybrid nanofluid with effect of heat generation/absorption and velocity slip condition. Heliyon 9(2), e13189 (2023)
- 47Swain, K., Mebarek-Oudina, F., Abo-Dahab, S.M.: Influence of MWCNT/Fe3O4 hybrid nanoparticles on an exponentially porous shrinking sheet with chemical reaction and slip boundary conditions. J. Therm. Anal. Calorim. 147(2), 1561–1570 (2022)
- 48Yashkun, U., Lund, L.A., Fadhel, M.A., Shah, N.A.: Velocity slip effect on magnetized casson nanofluid over shrinking/stretching cylinder: duality and stability analysis. Phys. Scr. (2023)
- 49Yan, L., Dero, S., Khan, I., Mari, I.A., Baleanu, D., Nisar, K.S., … Abdo, H.S.: Dual solutions and stability analysis of magnetized hybrid nanofluid with joule heating and multiple slip conditions. Processes 8(3), 332 (2020)
- 50Ramzan, M., Dawar, A., Saeed, A., Kumam, P., Watthayu, W., Kumam, W.: Heat transfer analysis of the mixed convective flow of magnetohydrodynamic hybrid nanofluid past a stretching sheet with velocity and thermal slip conditions. PLoS One 16(12), e0260854 (2021)
- 51Lund, L.A., Omar, Z., Khan, U., Khan, I., Baleanu, D., Nisar, K.S.: Stability analysis and dual solutions of micropolar nanofluid over the inclined stretching/shrinking surface with convective boundary condition. Symmetry 12(1), 74 (2020)
- 52Wahid, N.S., Arifin, N.M., Khashi'ie, N.S., Pop, I.: Mixed convection MHD hybrid nanofluid over a shrinking permeable inclined plate with thermal radiation effect. Alex. Eng. J. 66, 769–783 (2023)
- 53Thabet, E.N., Khan, Z., Abd-Alla, A.M., Bayones, F.S.: Thermal enhancement, thermophoretic diffusion, and Brownian motion impacts on MHD micropolar nanofluid over an inclined surface: Numerical simulation. Numer. Heat Transf. A: Appl. 1–20 (2023)
- 54Al-Shammari, H., Ullah, Z., Ilyas, A., Aldhabani, M.S., Alkathiri, E.T., El-Sayed, M.E., … Hassan, A.M.: Heat source/sink impact on wave oscillations of thermal and concentration boundary layer along inclined plate under lower gravitational region. Case Stud. Therm. Eng. 53, 103829 (2024)
- 55Yadav, S., Yadav, S., Yadav, P.K.: The mixed convection thermally radiated hybrid nanofluid flow through an inclined permeable shrinking plate with slip condition and inclined magnetic effect. Chin. J. Phys. 89, 1041–1050 (2024)
- 56Alabdulhadi, S., Abu Bakar, S., Ishak, A., Waini, I., Ahmed, S.E.: Effect of buoyancy force on an unsteady thin film flow of Al2O3/water nanofluid over an inclined stretching sheet. Mathematics 11(3), 739 (2023)
- 57Iqbal, Z., Priya, S., Hakeem, A.A., Ahammad, N.A., Fathima, D., Nour, M.M., … Alhazmi, S.E.: Thermal convection and entropy generation analysis of hybrid nanofluid slip flow over a horizontal poignant thin needle with an inclined magnetic field: A numerical study. Mod. Phys. Lett. B 38(05), 2450004 (2024)
- 58Nazir, U., Saleem, S., Al-Zubaidi, A., Shahzadi, I., Feroz, N.: Thermal and mass species transportation in tri-hybridized Sisko martial with heat source over vertical heated cylinder. Int. Commun. Heat Mass Transfer 134, 106003 (2022)
- 59Khashi'ie, N.S., Waini, I., Zainal, N.A., Hamzah, K., Md Arifin, N., Pop, I.: Multiple solutions and stability analysis of magnetic hybrid nanofluid flow over a rotating disk with heat generation. J. Adv. Res. Fluid Mech. Therm. Sci. 102(1), 59–72 (2023)
10.37934/arfmts.102.1.5972 Google Scholar
- 60Khashi'ie, N.S., Waini, I., Hamzah, K.B., Mukhtar, M.F., Kasim, A.R.M., Arifin, N.M., Pop, I.: Numerical solution and statistical analysis of the unsteady hybrid ferrofluid flow with heat generation subject to a rotating disk. Z. Angew. Math. Mech. 103(6), 202200384 (2023)
- 61Tiwari, R.K., Das, M.K.: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transfer 50(9-10), 2002–2018 (2007)
- 62Rosseland, S.: Auf Atomtheoretischer Grundlage. Springer-Verlag, Berlin (1931)
10.1007/978-3-662-26679-3 Google Scholar
- 63Pop, I., Ingham, D.B.: Convective Heat Transfer: Mathematical and Computational Modelling of Viscous Fluids and Porous Media. Elsevier (2001)
- 64Devi, S.U., Devi, S.A.: Heat transfer enhancement of Cu−Al2O3/water hybrid nanofluid flow over a stretching sheet. J. Nigerian Math. Soc. 36(2), 419–433 (2017)
- 65Alharbi, S.O., Khan, U., Zaib, A., Ishak, A., Raizah, Z., Eldin, S.M., Pop, I.: Heat transfer analysis of buoyancy opposing radiated flow of alumina nanoparticles scattered in water-based fluid past a vertical cylinder. Sci. Rep. 13(1), 10725 (2023)
- 66Oztop, H.F., Abu-Nada, E.: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 29(5), 1326–1336 (2008)
- 67Zainodin, S., Jamaludin, A., Nazar, R., Pop, I.: Effects of higher order chemical reaction and slip conditions on mixed convection hybrid ferrofluid flow in a Darcy porous medium. Alex. Eng. J. 68, 111–126 (2023)
- 68Guled, C.N., Tawade, J.V., Kumam, P., Noeiaghdam, S., Maharudrappa, I., Chithra, S.M., Govindan, V.: The heat transfer effects of MHD slip flow with suction and injection and radiation over a shrinking sheet by optimal homotopy analysis method. Results Eng. 18, 101173 (2023)
- 69Lone, S.A., Alyami, M.A., Saeed, A., Dawar, A., Kumam, P., Kumam, W.: MHD micropolar hybrid nanofluid flow over a flat surface subject to mixed convection and thermal radiation. Sci. Rep. 12(1), 17283 (2022)
- 70Weidman, P.D., Kubitschek, D.G., Davis, A.M.J.: The effect of transpiration on self-similar boundary layer flow over moving surfaces. Int. J. Eng. Sci. 44(11-12), 730–737 (2006)
- 71Harris, S.D., Ingham, D.B., Pop, I.: Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip. Transp. Porous Media 77, 267–285 (2009)
- 72Wahid, N.S., Arifin, N.M., Khashi'ie, N.S., Pop, I., Bachok, N., Hafidzuddin, E.H.: MHD hybrid nanofluid flow with convective heat transfer over a permeable stretching/shrinking surface with radiation. Int. J. Numer. Methods Heat Fluid Flow 32(5), 1706–1727 (2022)
- 73Turkyilmazoglu, M.: Heat and mass transfer of MHD second order slip flow. Comput. Fluids 71, 426–434 (2013)