Stokes flow past circular cylinders in an out-phase slip patterned microchannel using boundary element method
Vishal Chhabra
Department of Mathematics, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
Search for more papers by this authorCorresponding Author
Chandra Shekhar Nishad
Department of Science, and Mathematics, International Institute of Information Technology, Naya Raipur, Chhattisgarh, India
Correspondence: Dr. Chandra Shekhar Nishad, Department of Science, and Mathematics, International Institute of Information Technology, Naya Raipur, Chhattisgarh, 493661, India.
Email: [email protected]
Search for more papers by this authorK. G. Vijay
Department of Ocean Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
Search for more papers by this authorManoj Sahni
Department of Mathematics, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
Search for more papers by this authorVishal Chhabra
Department of Mathematics, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
Search for more papers by this authorCorresponding Author
Chandra Shekhar Nishad
Department of Science, and Mathematics, International Institute of Information Technology, Naya Raipur, Chhattisgarh, India
Correspondence: Dr. Chandra Shekhar Nishad, Department of Science, and Mathematics, International Institute of Information Technology, Naya Raipur, Chhattisgarh, 493661, India.
Email: [email protected]
Search for more papers by this authorK. G. Vijay
Department of Ocean Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
Search for more papers by this authorManoj Sahni
Department of Mathematics, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
Search for more papers by this authorAbstract
The objective of the present study is to investigate a steady, pressure-driven two-dimensional viscous incompressible creeping flow characterized by low Reynold's limit around circular cylinders of equal diameter inside a microchannel exhibiting wall roughness. The wall roughness is modeled using Navier's slip condition on the horizontal surfaces in an alternative manner, which retains a phase difference (i.e., out-phase arrangement). The governing equations are solved using the stream function-vorticity variables approach of the boundary element method. We considered the two instances of wall roughness, namely large and fine patterned wall roughness depending on the periodicity of patterning. We studied the streamline and vorticity contour plots, flow profiles, and shear stresses with varying slip lengths and radii of the horizontally aligned configuration of circular cylinders to obtain an in-depth understanding of flow mechanics. The flow velocity and the shear stress show larger values when fine-patterned wall roughness is considered. The present framework has immense feasible implications such as optimizing microfluidic devices, enhancing thermal management in electronics, and advancing nanofluidic platforms for various molecular and biomedical applications, including drug delivery systems.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.
REFERENCES
- 1Jeong, J.T.: Two-dimensional Stokes flow through a slit in a microchannel with slip. J. Phys. Soc. Japan 75(9), 7–11 (2006). https://doi.org/10.1143/JPSJ.75.094401
10.1143/JPSJ.75.094401 Google Scholar
- 2Ageev, A.I., Osiptsov, A.N.: Stokes flow in a microchannel with superhydrophobic walls. Fluid Dyn. 54(2), 205–217 (2019). https://doi.org/10.1134/S0015462819020010
- 3Gräfner, S.J., Wu, P.Y., Kao, C.R.: Flow in a microchannel filled with arrays of numerous pillars. Int. J. Heat Fluid Flow 97, 109045 (2022). https://doi.org/10.1016/j.ijheatfluidflow.2022.109045
- 4Singh, J., Gliere, A., Achard, J.L.: A novel non-primitive boundary integral equation method for three-dimensional and axisymmetric stokes flows. Meccanica 47(8), 2013–2026 (2012). https://doi.org/10.1007/s11012-012-9571-0
- 5Ranjith, S.K., Vedantam, S., Patnaik, B.S.V.: Hydrodynamics of flow through microchannels with hydrophobic strips. Microfluid. Nanofluidics 19(3), 547–556 (2015). https://doi.org/10.1007/s10404-015-1580-6
- 6Zhang, T.T., Jia, L., Wang, Z.C., Li, X.: The application of homotopy analysis method for 2-dimensional steady slip flow in microchannels. Phys. Lett. Sect. A Gen. At. Solid State Phys. 372(18), 3223–3227 (2008). https://doi.org/10.1016/j.physleta.2008.01.077
- 7Yang, F.: Slip boundary condition for viscous flow over solid surfaces. Chem. Eng. Commun. 197(4), 544–550 (2010). https://doi.org/10.1080/00986440903245948
- 8Bolaños, S.J., Vernescu, B.: Derivation of the Navier slip and slip length for viscous flows over a rough boundary. Phys. Fluids 29(5), 057103 (2017). https://doi.org/10.1063/1.4982899
- 9Rothstein, J.P.: Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42, 89–109 (2010). https://doi.org/10.1146/annurev-fluid-121108-145558
- 10Nizkaya, T.V., Asmolov, E.S., Vinogradova, O.I.: Flow in channels with superhydrophobic trapezoidal textures. Soft Matter 9(48), 11671 (2013). https://doi.org/10.1039/c3sm51850g
- 11Nishad, C.S., Chandra, A., Sekhar, G.P.R.: Flows in slip-patterned micro-channels using boundary element methods. Eng. Anal. Bound. Elem. 73, 95–102 (2016). https://doi.org/10.1016/j.enganabound.2016.09.006
- 12Kumar, A., Datta, S., Kalyanasundaram, D.: Permeability and effective slip in confined flows transverse to wall slippage patterns. Phys. Fluids 28(8), 082002 (2016). https://doi.org/10.1063/1.4959184
- 13Hendy, S.C., Jasperse, M., Burnell, J.: Effect of patterned slip on micro- and nanofluidic flows. Phys. Rev. E—Stat. Nonlinear, Soft Matter Phys. 72(1), 1–8 (2005). https://doi.org/10.1103/PhysRevE.72.016303
- 14Mour, M., Das, D., Mullick, A.N.: Characteristics of fluid flow through microchannels. AIP Conf. Proc. 1298, 71–79 (2010). https://doi.org/10.1063/1.3516416
10.1063/1.3516416 Google Scholar
- 15Ng, C.O., Wang, C.Y.: Effective slip for Stokes flow over a surface patterned with two- or three-dimensional protrusions. Fluid Dyn. Res. 43(6), 065504 (2011). https://doi.org/10.1088/0169-5983/43/6/065504
- 16Aminpour, M., Galindo Torres, S.A., Scheuermann, A., Li, L.: Slip-flow regimes in nanofluidics: a universal superexponential model. Phys. Rev. Appl. 15(5), 054051 (2021). https://doi.org/10.1103/PhysRevApplied.15.054051
- 17Baranovskii, E.S.: Analytical solutions to the unsteady poiseuille flow of a second grade fluid with slip boundary conditions. Polymers 16(2), 1–16 (2024). https://doi.org/10.3390/polym16020179
- 18Housiadas, K.D., Tsangaris, C.: Channel flow with variable geometry and Navier slip at the walls using high-order lubrication theory. Eur. J. Mech.—B/Fluids 98, 194–207 (2023). https://doi.org/10.1016/j.euromechflu.2022.10.010
- 19Ceccacci, S., Calabretto, S.A.W., Thomas, C., Denier, J.P.: The linear stability of slip channel flows. Phys. Fluids 34(7), 074103 (2022). https://doi.org/10.1063/5.0098609
- 20Málek, J., Rajagopal, K.R.: On determining Navier's slip parameter at a solid boundary in flows of a Navier-Stokes fluid. Phys. Fluids 36(1), 013117 (2024). https://doi.org/10.1063/5.0185585
- 21Neto, C., Evans, D.R., Bonaccurso, E., Butt, H.J., Craig, V.S.J.: Boundary slip in Newtonian liquids: A review of experimental studies. Reports Prog. Phys., 68(12), 2859–2897 (2005). https://doi.org/10.1088/0034-4885/68/12/R05
- 22Priezjev, N.V., Darhuber, A.A., Troian, S.M.: Slip behavior in liquid films on surfaces of patterned wettability: Comparison between continuum and molecular dynamics simulations. Phys. Rev. E—Stat. Nonlinear, Soft Matter Phys. 71(4), 1–11 (2005). https://doi.org/10.1103/PhysRevE.71.041608
- 23Vinogradova, O.I., Yakubov, G.E.: Surface roughness and hydrodynamic boundary conditions. Phys. Rev. E—Stat. Nonlinear, Soft Matter Phys. 73(4), 1–4 (2006). https://doi.org/10.1103/PhysRevE.73.045302
- 24Maali, A., Bhushan, B.: Review article: Measurement of slip length on superhydrophobic surfaces. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 370(1967), 2304–2320 (2012). https://doi.org/10.1098/rsta.2011.0505
- 25Busse, A., Sandham, N.D., McHale, G., Newton, M.I.: Change in drag, apparent slip and optimum air layer thickness for laminar flow over an idealised superhydrophobic surface. J. Fluid Mech. 727, 488–508 (2013). https://doi.org/10.1017/jfm.2013.284
- 26Lee, T., Charrault, E., Neto, C.: Interfacial slip on rough, patterned and soft surfaces: A review of experiments and simulations. Adv. Colloid Interface Sci. 210, 21–38 (2014). https://doi.org/10.1016/j.cis.2014.02.015
- 27Georgiou, G., Momani, S., Crochet, M.J., Walters, K.: Newtonian and non-Newtonian flow in a channel obstructed by an antisymmetric array of cylinders. J. Nonnewton. Fluid Mech. 40(2), 231–260 (1991). https://doi.org/10.1016/0377-0257(91)85014-A
- 28Moreau, F., Hellou, M., El Yazidi, M.: Ecoulements cellulaires de Stokes dans un canal plan obstrué par une file de cylindres. Z. Angew. Math. Phys. 49(1), 31–45 (1998). https://doi.org/10.1007/PL00001484
10.1007/PL00001484 Google Scholar
- 29Sumner, D., Price, S.J., Païdoussis, M.P.: Flow-pattern identification for two staggered circular cylinders in cross-flow. J. Fluid Mech. 411, 263–303 (2000). https://doi.org/10.1017/S0022112099008137
- 30Wang, C.Y.: Stokes flow through a channel obstructed by horizontal cylinders. Acta Mech. 157(1–4), 213–221 (2002). https://doi.org/10.1007/BF01182165
- 31Alam, M.M., Sakamoto, H., Zhou, Y.: Determination of flow configurations and fluid forces acting on two staggered circular cylinders of equal diameter in cross-flow. J. Fluids Struct. 21(4), 363–394 (2005). https://doi.org/10.1016/j.jfluidstructs.2005.07.009
- 32Li, T., Deen, N.G., Kuipers, J.A.M.: Numerical investigation of hydrodynamics and mass transfer for in-line fiber arrays in laminar cross-flow at low Reynolds numbers. Chem. Eng. Sci. 60(7), 1837–1847 (2005). https://doi.org/10.1016/j.ces.2004.10.032
- 33Konstantinidis, E., Balabani, S., Yianneskis, M.: A study of vortex shedding in a staggered tube array for steady and pulsating cross-flow. J. Fluids Eng. Trans. ASME 124(3), 737–746 (2002). https://doi.org/10.1115/1.1487359
- 34Jester, W., Kallinderis, Y.: Numerical study of incompressible flow about fixed cylinder pairs. J. Fluids Struct. 17(4), 561–577 (2003). https://doi.org/10.1016/S0889-9746(02)00149-4
- 35Akbari, M.H., Price, S.J.Ã.: Numerical investigation of flow patterns for staggered cylinder pairs in cross-flow. J. Fluids Struct. 20, 533–554 (2005). https://doi.org/10.1016/j.jfluidstructs.2005.02.005
- 36Baranovskii, E.S.: A novel 3D model for non-Newtonian fluid flows in a pipe network. Math. Methods Appl. Sci. 44(5), 3827–3839 (2021). https://doi.org/10.1002/mma.6989
- 37Tamayol, A., Khosla, A., Gray, B.L., Bahrami, M.: Creeping flow through ordered arrays of micro-cylinders embedded in a rectangular minichannel. Int. J. Heat Mass Transf. 55(15–16), 3900–3908 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.008
- 38Jeong, J.T.: Axisymmetric Stokes flow around a sphere translating along the axis of a circular cylinder. Eur. J. Mech. B/Fluids 77, 252–258 (2019). https://doi.org/10.1016/j.euromechflu.2019.05.007
- 39Jeong, J.T., Yoon, S.H.: Two-dimensional Stokes flow around a circular cylinder in a microchannel. J. Mech. Sci. Technol. 28(2), 573–579 (2014). https://doi.org/10.1007/s12206-013-1162-z
- 40Xu, W., Zhang, S., Ma, Y., Liu, B., Wang, J.: A study on the FIV hydrodynamic force coefficients of two staggered flexible cylinders via an inverse method. Ocean Eng. 219, 108272 (2020). https://doi.org/10.1016/j.oceaneng.2020.108272
10.1016/j.oceaneng.2020.108272 Google Scholar
- 41Qu, W., Chen, W., Fu, Z., Gu, Y.: Fast multipole singular boundary method for Stokes flow problems. Math. Comput. Simul. 146, 57–69 (2018). https://doi.org/10.1016/j.matcom.2017.10.001
- 42Hassard, P., Turner, I., Farrell, T., Lester, D.: An efficient boundary element formulation for doubly-periodic two-dimensional Stokes flow with pressure boundary conditions. J. Comput. Phys. 365, 18–36 (2018). https://doi.org/10.1016/j.jcp.2017.12.010
- 43Khalifa, Z., Pocher, L., Tilton, N.: Regimes of flow through cylinder arrays subject to steady pressure gradients. Int. J. Heat Mass Transf. 159, 120072 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120072
- 44Dwivedi, K., et al.: Numerical investigation of the onset of three-dimensional characteristics in flow past a pair of square cylinders at various arrangements. Fluid Dyn. Res. 53(4), 045508 (2021). https://doi.org/10.1088/1873-7005/ac1998
- 45Tran-Cong, T., Blake, J.R.: General solutions of the Stokes’ flow equations. J. Math. Anal. Appl. 90(1), 72–84 (1982). https://doi.org/10.1016/0022-247X(82)90045-2
10.1016/0022-247X(82)90045-2 Google Scholar
- 46Nishad, C.S., Chandra, A., Raja Sekhar, G.P.: Stokes flow inside topographically patterned microchannel using boundary element method. Int. J. Chem. React. Eng. 15(5), 20170057 (2017). https://doi.org/10.1515/ijcre-2017-0057
- 47Chhabra, V., Nishad, C.S., Sahni, M.: Effect of magnetic field on viscous flow through porous wavy channel using boundary element method. J. Appl. Math. Mech. 104(6), e202300416 (2024). https://doi.org/10.1002/zamm.202300416
10.1002/zamm.202300416 Google Scholar
- 48Tezduyar, T.E., Liou, J., Ganjoo, D.K.: Incompressible flow computations based on the vorticity-stream function and velocity-pressure formulations. Comput. Struct. 35(4), 445–472 (1990). https://doi.org/10.1016/0045-7949(90)90069-E
- 49Chhabra, V., Nishad, C.S., Sahni, M.: Effect of magnetic field on viscous flow through composite porous channel using boundary element method. J. Appl. Comput. Mech. 9(4), 1016–1035 (2023). https://doi.org/10.22055/jacm.2023.43024.4006
- 50Chhabra, V., Nishad, C.S., Sahni, M., Chaurasiya, V.K.: Effect of magnetic field and hydrodynamic slippage on electro-osmotic Brinkman flow through patterned zeta potential microchannel. J. Eng. Math. 148(1) (2024). https://doi.org/10.1007/s10665-024-10391-x
- 51Chhabra, V., Nishad, C.S., Sahni, M.: Boundary element method for viscous flow through out-phase slip-patterned microchannel under the influence of inclined magnetic field. Chem. Prod. Process Model. 19(5), 825-846 (2024). https://doi.org/10.1515/cppm-2024-0065
- 52Nishad, C.S., Chandra, A., Karmakar, T., Raja Sekhar, G.P.: A non-primitive boundary element technique for modeling flow through non-deformable porous medium using Brinkman equation. Meccanica 53(9), 2333–2352 (2018). https://doi.org/10.1007/s11012-018-0832-4
- 53Burggraf, O.R.: Analytical and numerical studies of the structure of steady separated flows. J. Fluid Mech. 24(1), 113–151 (1966). https://doi.org/10.1017/S0022112066000545
- 54Guerrero, J.S.P., Cotta, R.M.: Integral transform solution for the lid-driven cavity flow problem in streamfunction-only formulation. Int. J. Numer. Methods Fluids 15(4), 399–409 (1992). https://doi.org/10.1002/fld.1650150403
- 55Karageorghis, A., Fairweather, G.: The simple layer potential method of fundamental solutions for certain biharmonic problems. Int. J. Numer. Methods Fluids 9(10), 1221–1234 (1989). https://doi.org/10.1002/fld.1650091005
- 56Campion-Renson, A., Crochet, M.J.: On the stream function-vorticity finite element solutions of Navier-Stokes equations. Int. J. Numer. Methods Eng. 12(12), 1809–1818 (1978). https://doi.org/10.1002/nme.1620121204