Article
Ferrocene Derivatives Bearing one and two Isocyanato, Isothiocyanato and Isoselenocyanato Substituents†
Bernd Wrackmeyer Prof. Dr.,
Heidi E. Maisel, Wolfgang Milius, Max Herberhold,
Corresponding Author
Bernd Wrackmeyer Prof. Dr.
Bayreuth, Universität, Anorganische Chemie II
Anorganische Chemie II, Universität Bayreuth, D-95440 Bayreuth / Germany, Fax: Int. Code +(921)552157Search for more papers by this authorBernd Wrackmeyer Prof. Dr.,
Heidi E. Maisel, Wolfgang Milius, Max Herberhold,
Corresponding Author
Bernd Wrackmeyer Prof. Dr.
Bayreuth, Universität, Anorganische Chemie II
Anorganische Chemie II, Universität Bayreuth, D-95440 Bayreuth / Germany, Fax: Int. Code +(921)552157Search for more papers by this author†
Dedicated to Professor Heinrich Nöth on the Occasion of his 80th Birthday
Abstract
Isocyanato- (1a), 1,1′-di(isocyanato)- (2a), isothiocyanato- (1b), 1,1′-di(isothiocyanato)- (2b), isoselenocyanato- (1c) and 1,1′-di(isoselenocyanato)ferrocene (2c) were prepared and studied by 1H, 13C and 14N NMR spectroscopy. Isocyanatoferrocene (1a) trimerizes upon chromatography on alumina to give 3a. The molecular structures of 2c and 3a were determined by X-ray analysis, and almost undistorted ferrocene-like structures were found in both cases.
REFERENCES
- 1a (ed.), Chemistry and Technology of Isocyanates, Wiley, Chichester, 1996.
- 1b F. Palacios, C. Alonso, D. Aparicio, G. Rubiales, J. M. de los Santos, Tetrahedron, 2006, 63, 523.
- 2a S. Braverman, M. Cherkinsky, M. L. Birsa, Science of Synthesis, Vol. 18, pp. 65–320, Thieme, Stuttgart, 2005.
- 2b T. Sakakura, J-C. Choi, H. Yasuda, Chem. Rev., 2007, 107, 2365.
- 3a A. Antinolo, S. Garcia-Yuste, A. Otero, E. Villasenor, J. Organomet. Chem., 2007, 692, 4436.
- 3b K. Tanaka, Synlett, 2007, 1977.
- 4 N. Hazari, P. Mountford, Acc. Chem. Res., 2005, 38, 839.
- 5 (eds.), Ferrocenes. Homogeneous Catalysis, Organic Synthesis, Materials Science, VCH, Weinheim, 1995.
- 6a G. R. Knox, P. L. Pauson, D. Willison, E. Solcaniova, S. Toma, Organometallics, 1990, 9, 301.
- 6b T. El-Shihi, F. Siglmüller, R. Herrmann, M. F. N. N. Carvalho, A. J. Pombeiro, J. Organomet. Chem., 1987, 337, 239.
- 7 B. Wrackmeyer, H. E. Maisel, O. L. Tok, W. Milius, M. Herberhold, Z. Anorg. Allg. Chem., 2004, 630, 2106.
- 8a D. van Leusen, B. Hessen, Organometallics, 2001, 20, 224.
- 8b K. Schlögl, H. Seiler, Naturwissenschaften, 1958, 45, 337.
- 9a U. Siemeling, D. Rother, C. Bruhn, H. Fink, T. Weidner, F. Träger, A. Rothenberger, D. Fenske, A. Priebe, J. Maurer, R. Winter, J. Am. Chem. Soc., 2005, 127, 1102.
- 9b P. J. Shapiro, R. Zehnder, D. M. Foo, P. Perrotin, P. H. M. Budzelaar, S. Leitch, B. Twamley, Organometallics, 2006, 25, 719.
- 10 U. Siemeling, D. Rother, C. Bruhn, Chem. Commun., 2007, 4227.
- 11a A. N. Nesmeyanov, E. G. Perevalova, R. V. Golovnya, L. S. Shilovtseva, Dokl. Akad. Nauk SSSR, 1955, 102, 535. C. A., 1956, 50, 4925g.
- 11b M. Herberhold, M. Ellinger, W. Kremnitz, J. Organomet. Chem., 1983, 241, 227.
- 11c B. Bildstein, M. Malaun, H. Kopacka, K. Wurst, M. Mitterböck, K.-H. Ongania, G. Opromolla, P. Zanello, Organometallics, 1999, 18, 4325.
- 12 A. Shafir, M. P. Power, G. D. Whitener, J. Arnold, Organometallics, 2000, 19, 3978.
- 13a F. Oton, A. Espinosa, A. Tarraga, C. Ramirez de Arellano, P. Molina, Chem. Eur. J., 2007, 13, 5742.
- 13b F. Oton, A. Tarraga, A. Espinosa, M. D. Velasco, D. Bautista, P. Molina, J. Org. Chem., 2005, 70, 6603.
- 14 T. Weidner, B. Krohn, M. Trojtza, C. Bruhn, D. Rother, U. Siemeling, F. Traeger, Proc.SPIE (Int.Soc. Opt. Engin.), 2006, 6106, 13948. Chem. Abstr. 2006, 146, 13948.
- 15 H.-O. Kalinowski, S. Berger, S. Braun, 13C-NMR-Spektroskopie, Thieme, Stuttgart 1984.
- 16a (eds.), Nitrogen NMR, Plenum, New York 1973.
- 16b G. J. Martin, M. L. Martin, J.-P. Gouesnard, in NMR, Basic Principles and Progress, ( , eds.) Vol. 18: Nitrogen-15 NMR Spectroscopy, Springer, Berlin 1981.
- 17a T. Klapötke, M. Broschag, Compilation of Reported 77Se NMR Chemical Shifts, Wiley, Chichester 1996.
- 17b H. Duddeck, Progr. NMR Spectrosc., 1995, 27, 1.
- 18a P. Seiler, J. D. Dunitz, Acta Crystallogr., 1979, B 35, 2020.
- 18b D. Braga, F. Grepioni, Organometallics, 1992, 11, 711.
- 19For the definition of the angles α, β, τ see:
M. Herberhold,
Angew. Chem.,
1995,
107,
1985.
10.1002/ange.19951071707 Google ScholarAngew. Chem. Int. Ed., 1995, 34, 1837.
- 20a B. Steuer, W. Preetz, Z. Naturforsch., 1998, 53b, 271.
- 20b G. De Munno, G. Viau, M. Julve, F. Lloret, J. Faus, Inorg. Chim. Acta, 1997, 257, 121.
- 20c C. P. Raptopoulou, N. Tzavellas, N. Klouras, Z. Anorg. Allg. Chem., 1996, 622, 1387.
- 20d W. Heininger, K. Polborn, G. Nagorsen, Z. Naturforsch., 1988, 43b, 857.
- 21a A. D. Becke, J. Chem. Phys., 1993, 98: 5648.
- 21b C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1988, 41: 785.
- 21c P. J. Stevens, F. J. Devlin, C. F. Chablowski, M. J. Frisch, J. Phys. Chem., 1994, 98, 11623.
- 21d D. Mc Lean, D. G. S. Chandler, J. Chem. Phys., 1980, 72, 5639.
- 21e R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys., 1980, 72, 650.
- 22a R. Ditchfield, Mol. Phys., 1974, 27, 789.
- 22b K. Wolinski, J. F. Hinton, P. Pulay, J. Am. Chem. Soc., 1990, 112, 8251.
- 23a M. Bühl, in (ed.), Encyclopedia of Computational Chemistry, Vol. 3, pp 1835–1845, Wiley, Chichester, 1999.
- 23b J. Vaara, J. Jokisaari, R. E. Wasylishen, D. I. Bryce, Progr. NMR Spectrosc., 2002, 41, 233.
- 23c T. Helgaker, M. Jaszunski, K. Ruud, Chem. Rev., 1999, 99, 293. 61. M. Bühl, W. Thiel, U. Fleischer, W. Kutzelnigg, J. Phys. Chem., 1995, 99: 4000.
- 23d M. Bühl, J. Gauss, J. F. Stanton, Chem. Phys. Lett., 1995, 241: 248.
- 23e T. W. Keal, D. J. Tozer, Mol. Phys., 2005, 103: 1007.
- 24Gaussian 03, Revision B.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.
- 25Crystallographic data (excluding structure factors) for the structures of 2c and 3a reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publications no. CCDC-676597 (2c) and -676596 (3a). Copies of the data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.