Preparation and evaluation of gellan gum hydrogel reinforced with silk fibers with enhanced mechanical and biological properties for cartilage tissue engineering
Wooyoup Kim
Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, Jeonju-si, Korea
Search for more papers by this authorJoo Hee Choi
Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, Jeonju-si, Korea
Search for more papers by this authorPilyun Kim
Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, Jeonju-si, Korea
Search for more papers by this authorJina Youn
Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, Jeonju-si, Korea
Search for more papers by this authorJeong Eun Song
Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, Jeonju-si, Korea
Search for more papers by this authorAntonella Motta
Department of Industrial Engineering and BIOtech Research Center, University of Trento, Trento, Italy
Search for more papers by this authorClaudio Migliaresi
Department of Industrial Engineering and BIOtech Research Center, University of Trento, Trento, Italy
Search for more papers by this authorCorresponding Author
Gilson Khang
Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, Jeonju-si, Korea
Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, Jeonju-si, Korea
Correspondence
Gilson Khang, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center; Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Korea.
Email: [email protected]
Search for more papers by this authorWooyoup Kim
Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, Jeonju-si, Korea
Search for more papers by this authorJoo Hee Choi
Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, Jeonju-si, Korea
Search for more papers by this authorPilyun Kim
Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, Jeonju-si, Korea
Search for more papers by this authorJina Youn
Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, Jeonju-si, Korea
Search for more papers by this authorJeong Eun Song
Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, Jeonju-si, Korea
Search for more papers by this authorAntonella Motta
Department of Industrial Engineering and BIOtech Research Center, University of Trento, Trento, Italy
Search for more papers by this authorClaudio Migliaresi
Department of Industrial Engineering and BIOtech Research Center, University of Trento, Trento, Italy
Search for more papers by this authorCorresponding Author
Gilson Khang
Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, Jeonju-si, Korea
Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, Jeonju-si, Korea
Correspondence
Gilson Khang, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center; Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk 54896, Korea.
Email: [email protected]
Search for more papers by this authorWooyoup Kim and Joo Hee Choi are first co-authors.
Abstract
Various research about cartilage regeneration using biomaterials has been done recently. Particularly, gellan gum hydrogel (GG) is reported to be suitable as a biomaterial for cartilage tissue engineering (TE) for its water uptaking ability, producibility, and environmental resemblance of native cartilage. Despite these advantages, mechanical and cell adhesion properties are still difficult to modulate. Reinforcement is essential to overcome these problems. Herein, GG was modified by physically blending with different lengths of silk fiber (SF). As SF is expected to improve such disadvantages of GG, mechanical and biological properties were characterized to confirm its reinforcement ability. Mechanical properties such as degradation rate, swelling rate, compression strength, and viscosity were studied and it was confirmed that SF significantly reinforces the mechanical properties of GG. Furthermore, in vitro study was carried out to confirm morphology, biocompatibility, proliferation, and chondrogenesis of chondrocytes encapsulated in the hydrogels. Overall, chondrocytes in the GG blended with SF (SF/GG) showed enhanced cell viability and growth. According to this study, SF/GG can be a promising biomaterial for cartilage TE biomaterial.
CONFLICTS OF INTEREST
The authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- Agrawal, A., Rahbar, N., & Calvert, P. D. (2013). Strong fiber-reinforced hydrogel. Acta Biomaterialaia, 9(2), 5313–5318. https://doi.org/10.1016/j.actbio.2012.10.011
- Akiyama, H. (2008). Control of chondrogenesis by the transcription factor Sox9. Modern Rheumatology, 18(3), 213–219. https://doi.org/10.1007/s10165-008-0048-x
- Botchwey, E. A., Dupree, M. A., Pollack, S. R., Levine, E. M., & Laurencin, C. T. (2003). Tissue engineered bone: Measurement of nutrient transport in three-dimensional matrices. Journal of Biomedical Materials Research Part A, 67(1), 357–367. https://doi.org/10.1002/jbm.a.10111
- Cao, Z., Dou, C., & Dong, S. (2014). Scaffolding biomaterials for cartilage regeneration. Journal of Nanomaterials, 2014, 1–8. https://doi.org/10.1155/2014/489128
- Cerqueira, M. T., da Silva, L. P., Santos, T. C., Pirraco, R. P., Correlo, V. M., Reis, R. L., & Marques, A. P. (2014). Gellan gum-hyaluronic acid spongy-like hydrogels and cells from adipose tissue synergize promoting neoskin vascularization. ACS Applied Materials & Interfaces, 6(22), 19668-19679. https://doi.org/10.1021/am504520j
- Chang, C., Duan, B., Cai, J., & Zhang, L. (2010). Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. European Polymer Journal, 46(1), 92–100. https://doi.org/10.1016/j.eurpolymj.2009.04.033
- Chen, C. H., Kuo, C. Y., Wang, Y. J., & Chen, J. P. (2016). Dual function of glucosamine in gelatin/hyaluronic acid cryogel to modulate scaffold mechanical properties and to maintain chondrogenic phenotype for cartilage tissue engineering. International Journal of Molecular Sciences, 17–11. https://doi.org/10.3390/ijms17111957
10.3390/ijms17111957 Google Scholar
- Chen, Y., Yang, W., Wang, W., Zhang, M., & Li, M. (2017). Bombyx mori silk fibroin scaffolds with Antheraea pernyi silk fibroin micro/nano fibers for promoting EA. hy926 cell proliferation. Materials, 10(no. 10). https://doi.org/10.3390/ma10101153
10.3390/ma10101153 Google Scholar
- Chen, S., Chen, W., Chen, Y., Mo, X., & Fan, C. (2020). Chondroitin sulfate modified 3D porous electrospun nanofiber scaffolds promote cartilage regeneration. Materials Science and Engineering: C, 118, 1–12. https://doi.org/10.1016/j.msec.2020.111312
- Chiu, Y. C., Cheng, M. H., Engel, H., Kao, S. W., Larson, J. C., Gupta, S., & Brey, E. M. (2011). The role of pore size on vascularization and tissue remodeling in PEG hydrogels. Biomaterials, 32(26), 6045–6051. https://doi.org/10.1016/j.biomaterials.2011.04.066
- Coburn, J., Gibson, M., Bandalini, P. A., Laird, C., Mao, H. Q., Moroni, L., Seliktar, D., & Elisseeff, J. (2011). Biomimetics of the extracellular matrix: An integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering. Smart Structures and Systems, 7(3), 213–222. https://doi.org/10.12989/sss.2011.7.3.213
- Diba, M., Polini, A., Petre, D. G., Zhang, Y., & Leeuwenburgh, S. C. G. (2018). Fiber-reinforced colloidal gels as injectable and moldable biomaterials for regenerative medicine. Materials Science and Engineering: C, 92(April), 143–150. https://doi.org/10.1016/j.msec.2018.06.038
- Douglas, T. E. L., Lapa, A., Samal, S. K., Declercq, H. A., Schaubroeck, D., Mendes, A. C. L., der Voort, P. V., Dokupil, A., Plis, A., DeSchamphelaere, K., Chronakis, I. S., Pamua, E., & Skirtach, A. G. (2017). Enzymatic, urease-mediated mineralization of gellan gum hydrogel with calcium carbonate, magnesium-enriched calcium carbonate and magnesium carbonate for bone regeneration applications. Journal of Tissue Engineering and Regenerative Medicine, 11(12), 3556–3566. https://doi.org/10.1002/term.2273
- Eslami, M., Vrana, N. E., Zorlutuna, P., Sant, S., Jung, S., Masoumi, N., Khavari-Nejad, R. A., Javadi, G., & Khademhosseini, A. (2014). Fiber-reinforced hydrogel scaffolds for heart valve tissue engineering. Journal of Biomaterials Applications, 29(3), 399–410. https://doi.org/10.1177/0885328214530589
- Gantenbein, B., Croft, A. S., & Larraillet, M. (2020). Mammalian cell viability methods in 3D scaffolds for tissue engineering. Fluorescence Methods for Investigation of Living Cells and Microorganisms, no. i, 1–25. https://doi.org/10.5772/intechopen.93078
10.5772/intechopen.93078 Google Scholar
- Gao, C., Liu, M., Chen, J., & Zhang, X. (2009). Preparation and controlled degradation of oxidized sodium alginate hydrogel. Polymer Degradation and Stability, 94(9), 1405–1410. https://doi.org/10.1016/j.polymdegradstab.2009.05.011
- Ge, Z., Li, C., Heng, B. C., Cao, G., & Yang, Z. (2012). Functional biomaterials for cartilage regeneration. Journal of Biomedical Materials Research Part A, 100 A(9), 2526–2536. https://doi.org/10.1002/jbm.a.34147
10.1002/jbm.a.34147 Google Scholar
- Geckil, H., Xu, F., Zhang, X., Moon, S., & Demirci, U. (2010). Engineering hydrogels as extracellular matrix mimics. Nanomedicine, 5(3), 469–484. https://doi.org/10.2217/nnm.10.12
- Gupta, P., Adhikary, M., J. C. M., Kumar, M., Bhardwaj, N., & Mandal, B. B. (2016). Biomimetic, osteoconductive non-mulberry silk fiber reinforced tricomposite scaffolds for bone tissue engineering. ACS Applied Materials & Interfaces, 8(45), 30797–30810. https://doi.org/10.1021/acsami.6b11366
- Han, S. O., Lee, S. M., Park, W. H., & Cho, D. (2006). Mechanical and thermal properties of waste silk fiber-reinforced poly(butylene succinate) biocomposites. Journal of Applied Polymer Science, 100(6), 4972–4980. https://doi.org/10.1002/app.23300
- Hyun, H., Yoo, Y. B., Kim, S. Y., Ko, H. S., Chun, H. J., & Yang, D. H. (2019). Hydrogel-mediated DOX·HCl/PTX delivery system for breast cancer therapy. International Journal of Molecular Sciences, 20, 4671–4719. https://doi.org/10.3390/ijms20194671
- Illeperuma, W. R. K., Sun, J. Y., Suo, Z., & Vlassak, J. J. (2014). Fiber-reinforced tough hydrogels. Extrem. Mech. Lett., 1, 90–96. https://doi.org/10.1016/j.eml.2014.11.001
10.1016/j.eml.2014.11.001 Google Scholar
- Karande, T. S., Ong, J. L., & Agrawal, C. M. (2004). Diffusion in musculoskeletal tissue engineering scaffolds: Design issues related to porosity, permeability, architecture, and nutrient mixing. Annals of Biomedical Engineering, 32(12), 1728–1743. https://doi.org/10.1007/s10439-004-7825-2
- Kerin, A. J., Wisnom, M. R., & Adams, M. A. (1998). The compressive strength of articular cartilage. Proceedings - Institution of Mechanical Engineers Part H J. Eng. Med., 212(4), 273–280. https://doi.org/10.1243/0954411981534051
- Kiani, C., Chen, L., Wu, Y. J., Yee, A. J., & Yang, B. B. (2002). Structure and function of aggrecan. Cell Research, 12(1), 19–32. https://doi.org/10.1038/sj.cr.7290106
- Kim, H. J., You, S. J., Yang, D. H., Eun, J., Park, H. K., Kim, M. S., & Chun, H. J. (2020a). Injectable hydrogels based on MPEG-PCL-RGD and BMSCs for bone tissue engineering. Biomaterials Science, 8(15), 4334–4345. https://doi.org/10.1039/d0bm00588f
- Kim, S. Y., Hwang, Y. S., Chun, H. J., & Yang, D. H. (2020b). Preparation of a photocured GelMA hydrogel co-cultured with HOKs and HGFs for an artificial oral mucosal tissue model. Journal of Industrial and Engineering Chemistry, 89, 470–475. https://doi.org/10.1016/j.jiec.2020.06.025
- Koivisto, J. T., Joki, T., Parraga, J. E., Pääkkönen, R., Ylä-Outinen, L., Salonen, L., Jönkkäri, I., Peltola, M., Ihalainen, T. O., Narkilahti, S., & Kellomäki, M. (2017). Bioamine-crosslinked gellan gum hydrogel for neural tissue engineering. Biomedical Materials, 12(2), 0–37. https://doi.org/10.1088/1748-605X/aa62b0
- Koivisto, J. T., Gering, C., Karvinen, J., Maria Cherian, R., Belay, B., Hyttinen, J., Aalto-Setälä, K., Kellomäki, M., & Parraga, J., (2019). Mechanically biomimetic gelatin-gellan gum hydrogels for 3D culture of beating human cardiomyocytes. ACS Applied Materials & Interfaces, 11(23), 20589–20602. https://doi.org/10.1021/acsami.8b22343
- Lee, J. H., & Kim, H. W. (2018). Emerging properties of hydrogels in tissue engineering. Journal of Tissue Engineering, 9, 0–3. https://doi.org/10.1177/2041731418768285
- Liu, H., Ge, Z., Wang, Y., Toh, S. L., Sutthikhum, V., & Goh, J. C. H. (2007). Modification of sericin-free silk fibers for ligament tissue engineering application. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 82(1), 129–138. https://doi.org/10.1002/jbm.b.30714
- Mandal, B. B., Grinberg, A., Gil, E. S., Panilaitis, B., & Kaplan, D. L. (2012). High-strength silk protein scaffolds for bone repair. Proceedings of the National Academy of Sciences of the United States of America, 109(20), 7699–7704. https://doi.org/10.1073/pnas.1119474109
- Musumeci, G., Loreto, C., Castorina, S., Imbesi, R., Leonardi, R., & Castrogiovanni, P. (2013). Current concepts in the treatment of cartilage damage. A review. Italian Journal of Anatomy and Embryology, 118(2), 189–203. https://doi.org/10.1400/227272
- Patterson, J., Siew, R., Herring, S. W., Lin, A. S. P., Guldberg, R., & Stayton, P. S. (2010). Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration. Biomaterials, 31(26), 6772–6781. https://doi.org/10.1016/j.biomaterials.2010.05.047
- Simonaro, C. M. (2010). Cartilage and chondrocyte pathology in the mucopolysaccharidoses: The role of glycosaminoglycan-mediated inflammation. Journal of Pediatric Rehabilitation Medicine, 3(2), 85–88. https://doi.org/10.3233/PRM-2010-0120
- Stoddart, M., Grad, S., Eglin, D., & Alini, M. (2009). Cells and biomaterials in cartilage tissue engineering. Regenerative Medicine, 4(1), 81–98. https://doi.org/10.2217/17460751.4.1.81
- Sworn, G. (2009). Gellan gum. In Handb. Hydrocoll ( 2nd ed., pp. 204–227). Atcc 31461. https://doi.org/10.1533/9781845695873.204
10.1533/9781845695873.204 Google Scholar
- Tamaddon, M., Burrows, M., Ferreira, S. A., Dazzi, F., Apperley, J. F., Bradshaw, A., Brand, D. D., Czernuszka, J., & Gentleman, E. (2017). Monomeric, porous type II collagen scaffolds promote chondrogenic differentiation of human bone marrow mesenchymal stem cells in vitro. Scientific Reports, 7, 1–10. https://doi.org/10.1038/srep43519
- Thu-Hien, L., Thanh-Truc, N., Toi, V. V., Khon, H. C., Bao, B. C., Niem, V. V. T., Anh, M. N. T., Hai, N. D., Chuong, P. D., & Hiep, N. T. (2018). Evaluation of the morphology and biocompatibility of natural silk fibers/agar blend scaffolds for tissue regeneration. International Journal of Polymer Science, 2018. 1–7. https://doi.org/10.1155/2018/5049728
- Tibbitt, M. W., & Anseth, K. S. (2009). Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnology and Bioengineering, 103(4), 655–663. https://doi.org/10.1002/bit.22361
- Tonsomboon, K., Butcher, A. L., & Oyen, M. L. (2017). Strong and tough nanofibrous hydrogel composites based on biomimetic principles. Materials Science and Engineering: C, 72, 220–227. https://doi.org/10.1016/j.msec.2016.11.025
- Valli, R. C., & Miskiel, F. J. (2020). Gellan gum. Handbook of Dietary Fiber, 20(3), 695–720. https://doi.org/10.1201/9780203904220-39
10.1201/9780203904220?39 Google Scholar
- Vepari, C., & Kaplan, D. L. (2007). Silk as a biomaterial. Progress in Polymer Science, 32(8–9), 991–1007. https://doi.org/10.1016/j.progpolymsci.2007.05.013
- Wang, X., Lou, T., Zhao, W., Song, G., Li, C., & Cui, G. (2015). The effect of fiber size and pore size on cell proliferation and infiltration in PLLA scaffolds on bone tissue engineering. Journal of Biomaterials Applications, 30(10), 1545–1551. https://doi.org/10.1177/0885328216636320
- Wang, Y. F., Barrera, C. M., Dauer, E. A., Gu, W., Andreopoulos, F., & Huang, C. Y. C. (2016). Systematic characterization of porosity and mass transport and mechanical properties of porous polyurethane scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 65, 657–664. https://doi.org/10.1016/j.jmbbm.2016.09.029
- Wöltje, M., Brünler, R., Böbel, M., Ernst, S., Neuss, S., Aibibu, D., & Cherif, C. (2020). Functionalization of silk fibers by PDGF and bioceramics for bone tissue regeneration. Coatings, 10(1), 1–18. https://doi.org/10.3390/coatings10010008
- Wood, A. T., Everett, D., Budhwani, K. I., Dickinson, B., & Thomas, V. (2016). Wet-laid soy fiber reinforced hydrogel scaffold: Fabrication, mechano-morphological and cell studies. Materials Science and Engineering: C, 63, 308–316. https://doi.org/10.1016/j.msec.2016.02.078
- Wray, L. S., Hu, X., Gallego, J., Georgakoudi, I., Omenetto, F. G., Schmidt, D., & Kaplan, D. L. (2011). Effect of processing on silk-based biomaterials: Reproducibility and biocompatibility. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 99 B(1), 89–101. https://doi.org/10.1002/jbm.b.31875
- Xu, Z., Li, Z., Jiang, S., & Bratlie, K. M. (2018). Chemically modified gellan gum hydrogels with tunable properties for use as tissue engineering scaffolds. ACS Omega, 3(6), 6998–7007. https://doi.org/10.1021/acsomega.8b00683
- Yan, S., Han, G., Wang, Q., Zhang, S., You, R., Luo, Z., Xu, A., Li, X., Li, M., Zhang, Q., & Kaplan, D. L. (2019). Directed assembly of robust and biocompatible silk fibroin/hyaluronic acid composite hydrogels. Composites Part B: Engineering, 176, 107204. https://doi.org/10.1016/j.compositesb.2019.107204
- Yodmuang, S., McNamara, S. L., Nover, A. B., Mandal, B. B., Agarwal, M., Kelly, T. A. N., Chao, P. G., Hung, C., Kaplan, D. L., & Vunjak-Novakovic, G. (2015). Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomaterialia, 11(1), 27–36. https://doi.org/10.1016/j.actbio.2014.09.032
- Zadpoor, A. A. (2015). Bone tissue regeneration: The role of scaffold geometry. Biomater. Sci., 3(2), 231–245. https://doi.org/10.1039/c4bm00291a
- Zhang, Q., Lu, H., Kawazoe, N., & Chen, G. (2014). Pore size effect of collagen scaffolds on cartilage regeneration. Acta Biomaterialia, 10(5), 2005–2013. https://doi.org/10.1016/j.actbio.2013.12.042