Platelet-rich plasma enhances mechanical strength of strattice in rat model of ventral hernia repair
Corresponding Author
Joseph S. Fernandez-Moure
Division of Trauma, Acute, and Critical Care Surgery, Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
Correspondence
Joseph S. Fernandez-Moure, Department of Surgery Division of Trauma, Acute and Critical Care Surgery, MS Duke University School of Medicine, Duke University Medical Center DUMC, 2837 2301 Erwin Road, Durham, NC 27710, USA.
Email: [email protected]
Search for more papers by this authorJeffrey L. Van Eps
University of Texas Health Science Center, McGovern Medical School, Houston, Texas, USA
Search for more papers by this authorJacob C. Scherba
Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
Search for more papers by this authorIman K. Yazdi
Department of Nanomedicine, Surgical Advanced Technologies Lab, Houston Methodist Research Institute, Houston, Texas, USA
Department of Medicine, Renal Division, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
Search for more papers by this authorAndrew Robbins
Department of Orthopedic Surgery, Houston Methodist Hospital, Houston, Texas, USA
Search for more papers by this authorFernando Cabrera
Department of Nanomedicine, Surgical Advanced Technologies Lab, Houston Methodist Research Institute, Houston, Texas, USA
Search for more papers by this authorCory Vatsaas
Division of Trauma, Acute, and Critical Care Surgery, Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
Search for more papers by this authorMichael Moreno
Department of Mechanical Engineering, Texas A&M College of Medicine, Bryan, Texas, USA
Search for more papers by this authorBradley K. Weiner
Department of Nanomedicine, Surgical Advanced Technologies Lab, Houston Methodist Research Institute, Houston, Texas, USA
Department of Orthopedic Surgery, Houston Methodist Hospital, Houston, Texas, USA
Search for more papers by this authorEnnio Tasciotti
IRCCS San Raffaele, University San Raffaele, Rome, Italy
3R Biotech, Milan, Italy
Search for more papers by this authorCorresponding Author
Joseph S. Fernandez-Moure
Division of Trauma, Acute, and Critical Care Surgery, Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
Correspondence
Joseph S. Fernandez-Moure, Department of Surgery Division of Trauma, Acute and Critical Care Surgery, MS Duke University School of Medicine, Duke University Medical Center DUMC, 2837 2301 Erwin Road, Durham, NC 27710, USA.
Email: [email protected]
Search for more papers by this authorJeffrey L. Van Eps
University of Texas Health Science Center, McGovern Medical School, Houston, Texas, USA
Search for more papers by this authorJacob C. Scherba
Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
Search for more papers by this authorIman K. Yazdi
Department of Nanomedicine, Surgical Advanced Technologies Lab, Houston Methodist Research Institute, Houston, Texas, USA
Department of Medicine, Renal Division, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
Search for more papers by this authorAndrew Robbins
Department of Orthopedic Surgery, Houston Methodist Hospital, Houston, Texas, USA
Search for more papers by this authorFernando Cabrera
Department of Nanomedicine, Surgical Advanced Technologies Lab, Houston Methodist Research Institute, Houston, Texas, USA
Search for more papers by this authorCory Vatsaas
Division of Trauma, Acute, and Critical Care Surgery, Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
Search for more papers by this authorMichael Moreno
Department of Mechanical Engineering, Texas A&M College of Medicine, Bryan, Texas, USA
Search for more papers by this authorBradley K. Weiner
Department of Nanomedicine, Surgical Advanced Technologies Lab, Houston Methodist Research Institute, Houston, Texas, USA
Department of Orthopedic Surgery, Houston Methodist Hospital, Houston, Texas, USA
Search for more papers by this authorEnnio Tasciotti
IRCCS San Raffaele, University San Raffaele, Rome, Italy
3R Biotech, Milan, Italy
Search for more papers by this author[Corrections added on May 10, 2021 after first online publication: The affiliation and spelling for author Jeffrey L. Van Eps have been corrected. Other affiliations have subsequently been renumbered.]
Abstract
Incisional hernia is a common complication of hernia repair despite the development of various synthetic and bio-synthetic repair materials. Poor long-term mechanical strength, leading to high recurrence rates, has limited the use of acellular dermal matrices (ADMs) in ventral hernia repair (VHR). Biologically derived meshes have been an area of increasing interest. Still these materials bring the risk of more aggressive immune response and fibrosis in addition to the mechanical failures suffered by the synthetic materials. Platelet-rich plasma (PRP), a growth-factor-rich autologous blood product, has been shown to improve early neovascularization, tissue deposition, and to decrease the rates of recurrence. Here, we demonstrate that PRP promotes the release of growth factors stromal derived factor (SDF)-1, transforming growth factor-beta, and platelet-derived growth factor in a dose-dependent manner. Additionally, we utilize an aortic ring angiogenesis assay to show that PRP promotes angiogenesis in vitro. A rat model of VHR using StratticeTM ADM demonstrates similar findings in vivo, corresponding with the increased expression of vascular endothelial growth factor and collagen type 1 alpha 1. Finally, we show that the molecular and cellular activity initiated by PRP results in an increased mechanical stiffness of the hernia repair mesh over time. Collectively, these data represent an essential step in demonstrating the utility and the mechanism of platelet-derived plasma in biomaterial-aided wound healing and provide promising preclinical data that suggest such materials may improve surgical outcomes.
CONFLICT OF INTEREST
The authors have no conflicts of interest to declare.
Open Research
DATA AVAILABILITY STATEMENT
The raw data required to reproduce these findings are available to download https://data.mendeley.com/datasets/znc4tx7rb7/1. The processed data required to reproduce these findings are available to download from https://data.mendeley.com/datasets/znc4tx7rb7/1.
Supporting Information
Filename | Description |
---|---|
term3200-sup-0001-fig_s1.tiff2.9 MB | Supplementary Material 1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Asaad, M., Kapur, S. K., Baumann, D. P., Liu, J., & Butler, C. E. (2020). Acellular dermal matrix provides durable long-term outcomes in abdominal wall reconstruction. Annals of Surgery. https://doi.org/10.1097/sla.0000000000004454
- Barrientos, S., Stojadinovic, O., Golinko, M. S., Brem, H., & Tomic-Canic, M. (2008). Perspective article: Growth factors and cytokines in wound healing. Wound Repair and Regeneration, 16(5), 585–601. https://doi.org/10.1111/j.1524-475X.2008.00410.x
- Beale, E. W., Hoxworth, R. E., Livingston, E. H., & Trussler, A. P. (2012). The role of biologic mesh in abdominal wall reconstruction: A systematic review of the current literature. The American Journal of Surgery, 204(4), 510–517. https://doi.org/10.1016/j.amjsurg.2012.03.009
- Berndt, S., Turzi, A., Pittet-Cuénod, B., & Modarressi, A. (2019). Autologous platelet-rich plasma (CuteCell PRP) safely boosts in vitro human fibroblast expansion. Tissue Engineering A, 25(21–22), 1550–1563. https://doi.org/10.1089/ten.TEA.2018.0335
- Branco da Cunha, C., Klumpers, D. D., Li, W. A., Koshy, S. T., Weaver, J. C., Chaudhuri, O., … Granja, P. L., & Mooney, D. J. (2014). Influence of the stiffness of three-dimensional alginate/collagen-I interpenetrating networks on fibroblast biology. Biomaterials, 35(32), 8927–8936. https://doi.org/10.1016/j.biomaterials.2014.06.047
- Brinas, P., Chalret du Rieu, M., Tuyeras, G., Julio, C. H., Kirzin, S., Ghouti, L., & Carrere, N. (2018). Mid-term outcomes after biologic mesh use: Does their performance meet our expectations? Journal of Visceral Surgery, 155(5), 355–363. https://doi.org/10.1016/j.jviscsurg.2018.03.007
- Cezar, C. A., Roche, E. T., Vandenburgh, H. H., Duda, G. N., Walsh, C. J., & Mooney, D. J. (2016). Biologic-free mechanically induced muscle regeneration. Proceedings of the National Academy of Sciences of the United States of America, 113(6), 1534–1539. https://doi.org/10.1073/pnas.1517517113
- De Angelis, B., D'Autilio, M. F. L. M., Orlandi, F., Pepe, G., Garcovich, S., Scioli, M. G., Orlandi, A., Cervelli, V., & Gentile, P. (2019). Wound healing: In vitro and in vivo evaluation of a bio-functionalized scaffold based on hyaluronic Acid and platelet-rich plasma in chronic ulcers. Journal of Clinical Medicine, 8(9), 1486. https://doi.org/10.3390/jcm8091486
- Faramarzi, N., Yazdi, I. K., Nabavinia, M., Gemma, A., Fanelli, A., Caizzone, A., Ptaszek, L. M., Sinha, I., Khademhosseini, A., Ruskin, J. N., & Tamayol, A. (2018). Patient-specific bioinks for 3D bioprinting of tissue engineering scaffolds. Advanced Healthcare Materials, 7(11), e1701347. https://doi.org/10.1002/adhm.201701347
- Fernandez-Moure, J. S., Van Eps, J. L., Cabrera, F. J., Barbosa, Z., Medrano Del Rosal, G., Weiner, B. K., Ellsworth, W. A., & Tasciotti, E. (2017). Platelet-rich plasma: A biomimetic approach to enhancement of surgical wound healing. Journal of Surgical Research, 207, 33–44. https://doi.org/10.1016/j.jss.2016.08.063
- Fernandez-Moure, J. S., Van Eps, J. L., Menn, Z. K., Cabrera, F. J., Tasciotti, E., Weiner, B. K., & Ellsworth, W. A. (2015). Platelet rich plasma enhances tissue incorporation of biologic mesh. Journal of Surgical Research, 199(2), 412–419. https://doi.org/10.1016/j.jss.2015.06.034
- Fernandez-Moure, J. S., Van Eps, J. L., Peterson, L. E., Shirkey, B. A., Menn, Z. K., Cabrera, F. J., Karim, A., Tasciotti, E., Weiner, B. K., & Ellsworth, W. A. (2017). Cross-linking of porcine acellular dermal matrices negatively affects induced neovessel formation using platelet-rich plasma in a rat model of hernia repair. Wound Repair and Regeneration, 25(1), 98–108. https://doi.org/10.1111/wrr.12508
- Fernandez-Moure, J. S., Van Eps, J. L., Scherba, J. C., Yazdi, I. K., Robbins, A., Cabrera, F., & Tasciotti, E. (2021). Addition of platelet-rich plasma supports immune modulation and improved mechanical integrity in Alloderm mesh for ventral hernia repair in a rat model. Journal of Tissue Engineering and Regenerative Medicine, 15(1), 3–13. https://doi.org/10.1002/term.3156
- Ferzoco, S. J. (2013). A systematic review of outcomes following repair of complex ventral incisional hernias with biologic mesh. International Surgery, 98(4), 399–408. https://doi.org/10.9738/intsurg-d-12-00002.1
- Freedman, B. R., & Mooney, D. J. (2019). Biomaterials to mimic and heal connective tissues. Advanced Materials, 31(19), 1806695, e1806695. https://doi.org/10.1002/adma.201806695
- Gentile, P., & Garcovich, S. (2021). Systematic review: Adipose-derived mesenchymal stem cells, platelet-rich plasma and biomaterials as new regenerative strategies in chronic skin wounds and soft tissue defects. International Journal of Molecular Sciences, 22(4), 1538. https://doi.org/10.3390/ijms22041538
- Giordano, S., Garvey, P. B., Baumann, D. P., Liu, J., & Butler, C. E. (2017). Primary fascial closure with biologic mesh reinforcement results in lesser complication and recurrence rates than bridged biologic mesh repair for abdominal wall reconstruction: A propensity score analysis. Surgery, 161(2), 499–508. https://doi.org/10.1016/j.surg.2016.08.009
- Golebiewska, E. M., & Poole, A. W. (2015). Platelet secretion: From haemostasis to wound healing and beyond. Blood Reviews, 29(3), 153–162. https://doi.org/10.1016/j.blre.2014.10.003
- Gurevich, D. B., Severn, C. E., Twomey, C., Greenhough, A., Cash, J., Toye, A. M., Mellor, H., & Martin, P. (2018). Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression. EMBO Journal, 37(13). https://doi.org/10.15252/embj.201797786
- Heffner, J. J., Holmes, J. W., Ferrari, J. P., Krontiris-Litowitz, J., Marie, H., Fagan, D. L., Perko, J. C., & Dorion, H. A. (2012). Bone marrow-derived mesenchymal stromal cells and platelet-rich plasma on a collagen matrix to improve fascial healing. Hernia, 16(6), 677–687. https://doi.org/10.1007/s10029-012-0941-2
- Huntington, C. R., Cox, T. C., Blair, L. J., Schell, S., Randolph, D., Prasad, T., Lincourt, A., Heniford, B. T., & Augenstein, V. A. (2016). Biologic mesh in ventral hernia repair: Outcomes, recurrence, and charge analysis. Surgery, 160(6), 1517–1527. https://doi.org/10.1016/j.surg.2016.07.008
- Ishihara, J., Ishihara, A., Starke, R. D., Peghaire, C. R., Smith, K. E., McKinnon, T. A. J., … Tabata, Y., Sasaki, K., White, M. J. V., Fukunaga, K., Laffan, M. A., Lutolf, M. P., Randi, A. M., & Hubbell, J. A. (2019). The heparin binding domain of von Willebrand factor binds to growth factors and promotes angiogenesis in wound healing. Blood, 133(24), 2559–2569. https://doi.org/10.1182/blood.2019000510
- Kim, M., Oommen, B., Ross, S. W., Lincourt, A. E., Matthews, B. D., Heniford, B. T., & Augenstein, V. A. (2014). The current status of biosynthetic mesh for ventral hernia repair. Surgical Technology International, 25, 114–121.
- Köckerling, F., Alam, N. N., Antoniou, S. A., Daniels, I. R., Famiglietti, F., Fortelny, R. H., Heiss, M. M., Kallinowski, F., Kyle-Leinhase, I., Mayer, F., Miserez, M., Montgomery, A., Morales-Conde, S., Muysoms, F., Narang, S. K., Petter-Puchner, A., Reinpold, W., Scheuerlein, H., Smietanski, M., Stechemesser, B., Strey, C., Woeste, G., & Smart, N. J. (2018). What is the evidence for the use of biologic or biosynthetic meshes in abdominal wall reconstruction? Hernia, 22(2), 249–269. https://doi.org/10.1007/s10029-018-1735-y
- Koh, T. J., & DiPietro, L. A. (2011). Inflammation and wound healing: The role of the macrophage. Expert Reviews in Molecular Medicine, 13, e23. https://doi.org/10.1017/s1462399411001943
- Lalezari, S., Caparelli, M. L., & Allamaneni, S. (2017). Use of biologic mesh at ostomy takedown to prevent incisional hernia: A case series. International Journal of Surgery Case Reports, 41, 107–109. https://doi.org/10.1016/j.ijscr.2017.10.002
- Liang, C.-C., Park, A. Y., & Guan, J.-L. (2007). In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nature Protocols, 2(2), 329–333. https://doi.org/10.1038/nprot.2007.30
- Luijendijk, R. W., Hop, W. C. J., van den Tol, M. P., de Lange, D. C. D., Braaksma, M. M. J., IJzermans, J. N. M., Boelhouwer, R. U., de Vries, B. C., Salu, M. K. M., Wereldsma, J. C. J., Bruijninckx, C. M. A., & Jeekel, J. (2000). A comparison of suture repair with mesh repair for incisional hernia. New England Journal of Medicine, 343(6), 392–398. https://doi.org/10.1056/nejm200008103430603
- Madani, A., Niculiseanu, P., Marini, W., Kaneva, P. A., Mappin-Kasirer, B., Vassiliou, M. C., Khwaja, K., Fata, P., Fried, G. M., & Feldman, L. S. (2017). Biologic mesh for repair of ventral hernias in contaminated fields: Long-term clinical and patient-reported outcomes. Surgical Endoscopy, 31(2), 861–871. https://doi.org/10.1007/s00464-016-5044-1
- Mao, A. S., & Mooney, D. J. (2015). Regenerative medicine: Current therapies and future directions. Proceedings of the National Academy of Sciences of the United States of America, 112(47), 14452–14459. https://doi.org/10.1073/pnas.1508520112
- Maxwell, D. W., Hart, A. M., Keifer, O. P., Jr., Halani, S. H., & Losken, A. (2019). A comparison of acellular dermal matrices in abdominal wall reconstruction. Annals of Plastic Surgery, 82(4), 435–440. https://doi.org/10.1097/sap.0000000000001692
- Monteiro, G. A., Delossantos, A. I., Rodriguez, N. L., Patel, P., Franz, M. G., & Wagner, C. T. (2013). Porcine incisional hernia model: Evaluation of biologically derived intact extracellular matrix repairs. Journal of Tissue Engineering, 4, 204173141350877. https://doi.org/10.1177/2041731413508771
10.1177/2041731413508771 Google Scholar
- Murphy, M. B., Blashki, D., Buchanan, R. M., Yazdi, I. K., Ferrari, M., Simmons, P. J., & Tasciotti, E. (2012). Adult and umbilical cord blood-derived platelet-rich plasma for mesenchymal stem cell proliferation, chemotaxis, and cryo-preservation. Biomaterials, 33(21), 5308–5316. https://doi.org/10.1016/j.biomaterials.2012.04.007
- Murray, P. J., & Wynn, T. A. (2011). Protective and pathogenic functions of macrophage subsets. Nature Reviews Immunology, 11(11), 723–737. https://doi.org/10.1038/nri3073
- Novitsky, Y. W. (2013). Biology of biological meshes used in hernia repair. Surgical Clinics of North America, 93(5), 1211–1215. https://doi.org/10.1016/j.suc.2013.06.014
- Raimondo, T. M., & Mooney, D. J. (2018). Functional muscle recovery with nanoparticle-directed M2 macrophage polarization in mice. Proceedings of the National Academy of Sciences of the United States of America, 115(42), 10648–10653. https://doi.org/10.1073/pnas.1806908115
- Rosen, M. J., Bauer, J. J., Harmaty, M., Carbonell, A. M., Cobb, W. S., Matthews, B., Goldblatt, M. I., Selzer, D. J., Poulose, B. K., Hansson, B. M. E., Rosman, C., Chao, J. J., & Jacobsen, G. R. (2017). Multicenter, prospective, longitudinal study of the recurrence, surgical site infection, and quality of life after contaminated ventral hernia repair using biosynthetic absorbable mesh. Annals of Surgery, 265(1), 205–211. https://doi.org/10.1097/sla.0000000000001601
- Sbitany, H., Kwon, E., Chern, H., Finlayson, E., Varma, M. G., & Hansen, S. L. (2015). Outcomes analysis of biologic mesh use for abdominal wall reconstruction in clean-contaminated and contaminated ventral hernia repair. Annals of Plastic Surgery, 75(2), 201–204. https://doi.org/10.1097/sap.0000000000000030
- Shah, N. J., Najibi, A. J., Shih, T.-Y., Mao, A. S., Sharda, A., Scadden, D. T., & Mooney, D. J. (2020). A biomaterial-based vaccine eliciting durable tumour-specific responses against acute myeloid leukaemia. Nature Biomedical Engineering, 4(1), 40–51. https://doi.org/10.1038/s41551-019-0503-3
- Shih, T.-Y., Blacklow, S. O., Li, A. W., Freedman, B. R., Bencherif, S., Koshy, S. T., Darnell, M. C., & Mooney, D. J. (2018). Injectable, tough alginate cryogels as cancer vaccines. Advanced Healthcare Materials, 7(10), 1701469, e1701469. https://doi.org/10.1002/adhm.201701469
- Smith, O. J., Jell, G., & Mosahebi, A. (2019). The use of fat grafting and platelet-rich plasma for wound healing: A review of the current evidence. International Wound Journal, 16(1), 275–285. https://doi.org/10.1111/iwj.13029
- Van Eps, J., Fernandez-Moure, J., Cabrera, F., Wang, X., Karim, A., Corradetti, B., Chan, P., Dunkin, B., Tasciotti, E., Weiner, B., & Ellsworth, W. (2016). Decreased hernia recurrence using autologous platelet-rich plasma (PRP) with Strattice mesh in a rodent ventral hernia model. Surgical Endoscopy, 30(8), 3239–3249. https://doi.org/10.1007/s00464-015-4645-4
- Van Eps, J. L., Chaudhry, A., Fernandez-Moure, J. S., Boada, C., Chegireddy, V., Cabrera, F. J., , Tang, S., Tasciotti, E., & Righetti, R. (2019). Ultrasound shear wave elastography effectively predicts integrity of ventral hernia repair using acellular dermal matrix augmented with platelet-rich plasma (PRP). Surgical Endoscopy, 33(9), 2802–2811. https://doi.org/10.1007/s00464-018-6571-8
- Vining, K. H., Scherba, J. C., Bever, A. M., Alexander, M. R., Celiz, A. D., & Mooney, D. J. (2018). Synthetic light-curable polymeric materials provide a supportive niche for dental pulp stem cells. Advanced Materials, 30(4), 1704486. https://doi.org/10.1002/adma.201704486
- Wang, H., & Mooney, D. J. (2018). Biomaterial-assisted targeted modulation of immune cells in cancer treatment. Nature Materials, 17(9), 761–772. https://doi.org/10.1038/s41563-018-0147-9
- Weyrich, A. S., Schwertz, H., Kraiss, L. W., & Zimmerman, G. A. (2009). Protein synthesis by platelets: Historical and new perspectives. Journal of Thrombosis and Haemostasis, 7(2), 241–246. https://doi.org/10.1111/j.1538-7836.2008.03211.x
- Yan, W., Liu, H., Deng, X., Jin, Y., Wang, N., & Chu, J. (2018). Acellular dermal matrix scaffolds coated with connective tissue growth factor accelerate diabetic wound healing by increasing fibronectin through PKC signalling pathway. Journal of Tissue Engineering and Regenerative Medicine, 12(3), e1461–e1473. https://doi.org/10.1002/term.2564
- Zielins, E. R., Atashroo, D. A., Maan, Z. N., Duscher, D., Walmsley, G. G., Hu, M., Senarath-Yapa, K., McArdle, A., Tevlin, R., Wearda, T., Paik, K. J., Duldulao, C., Hong, W. X., Gurtner, G. C., & Longaker, M. T. (2014). Wound healing: An update. Regenerative Medicine, 9(6), 817–830. https://doi.org/10.2217/rme.14.54