Prevascularized hydrogels with mature vascular networks promote the regeneration of critical-size calvarial bone defects in vivo
Ramesh Subbiah
Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
Search for more papers by this authorGreeshma Thrivikraman
Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
Search for more papers by this authorS. Prakash Parthiban
Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
Search for more papers by this authorJames M. Jones
Center for Regenerative Medicine, Oregon Health and Science University, Portland, Oregon, USA
Search for more papers by this authorAvathamsa Athirasala
Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
Search for more papers by this authorHua Xie
Center for Regenerative Medicine, Oregon Health and Science University, Portland, Oregon, USA
Search for more papers by this authorCorresponding Author
Luiz E. Bertassoni
Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
Center for Regenerative Medicine, Oregon Health and Science University, Portland, Oregon, USA
Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
Cancer Early Detection Advanced Research (CEDAR) Center, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
Correspondence
Luiz E. Bertassoni, Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA.
Email: [email protected]
Search for more papers by this authorRamesh Subbiah
Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
Search for more papers by this authorGreeshma Thrivikraman
Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
Search for more papers by this authorS. Prakash Parthiban
Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
Search for more papers by this authorJames M. Jones
Center for Regenerative Medicine, Oregon Health and Science University, Portland, Oregon, USA
Search for more papers by this authorAvathamsa Athirasala
Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
Search for more papers by this authorHua Xie
Center for Regenerative Medicine, Oregon Health and Science University, Portland, Oregon, USA
Search for more papers by this authorCorresponding Author
Luiz E. Bertassoni
Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
Center for Regenerative Medicine, Oregon Health and Science University, Portland, Oregon, USA
Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
Cancer Early Detection Advanced Research (CEDAR) Center, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
Correspondence
Luiz E. Bertassoni, Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA.
Email: [email protected]
Search for more papers by this authorRamesh Subbiah, Greeshma Thrivikraman, and S. Prakash Parthiban contributed equally to this study.
Abstract
Adequate vascularization of scaffolds is a prerequisite for successful repair and regeneration of lost and damaged tissues. It has been suggested that the maturity of engineered vascular capillaries, which is largely determined by the presence of functional perivascular mural cells (or pericytes), plays a vital role in maintaining vessel integrity during tissue repair and regeneration. Here, we investigated the role of pericyte-supported-engineered capillaries in regenerating bone in a critical-size rat calvarial defect model. Prior to implantation, human umbilical vein endothelial cells and human bone marrow stromal cells (hBMSCs) were cocultured in a collagen hydrogel to induce endothelial cell morphogenesis into microcapillaries and hBMSC differentiation into pericytes. Upon implantation into the calvarial bone defects (8 mm), the prevascularized hydrogels showed better bone formation than either untreated controls or defects treated with autologous bone grafts (positive control). Bone formation parameters such as bone volume, coverage area, and vascularity were significantly better in the prevascularized hydrogel group than in the autologous bone group. Our results demonstrate that tissue constructs engineered with pericyte-supported vascular capillaries may approximate the regenerative capacity of autologous bone, despite the absence of osteoinductive or vasculogenic growth factors.
CONFLICT OF INTERESTS
The authors declare no potential conflicts of interest with respect to the authorship and/or publication of this article.
REFERENCES
- Al-Moraissi, E. A., Oginni, F. O., Mahyoub Holkom, M. A., Mohamed, A. A. S., & Al-Sharani, H. M. (2020).Tissue-engineered bone using mesenchymal stem cells versus conventional bone grafts in the regeneration of maxillary alveolar bone: A systematic review and meta-analysis. The International Journal of Oral & Maxillofacial Implants, 35(1), 79–90. https://doi.org/10.11607/jomi.7682
- Annabi, N., Tamayol, A., Uquillas, J. A., Akbari, M., Bertassoni, L. E., Cha, C., … Khademhosseini, A. (2014). 25th Anniversary Article: Rational design and applications of hydrogels in regenerative medicine. Advanced Materials, 26(1), 85–124. https://doi.org/10.1002/adma.201303233
- Antoine, E. E., Vlachos, P. P., & Rylander, M. N. (2014). Review of collagen I hydrogels for bioengineered tissue microenvironments: Characterization of mechanics, structure, and transport. Tissue Engineering Part B Reviews, 20(6), 683–696. https://doi.org/10.1089/ten.teb.2014.0086
- Armulik, A., Abramsson, A., & Betsholtz, C. (2005). Endothelial/pericyte interactions. Circulation Research. 97(6), 512–523. https://doi.org/10.1161/01.RES.0000182903.16652.d7
- Attwell, D., Mishra, A., Hall, C. N., O'Farrell, F. M., & Dalkara, T. (2015). What is a pericyte? Journal of Cerebral Blood Flow and Metabolism, 36(2), 451–455. https://doi.org/10.1177/0271678x15610340
- Barabaschi, G. D. G., Manoharan, V., Li, Q., & Bertassoni, L. E. (2015). Engineering pre-vascularized scaffolds for bone regeneration. In L. E. Bertassoni, P. G. Coelho (Eds.), Engineering mineralized and load bearing tissues. (pp. 79–94). Springer International Publishing. https://doi.org/10.1007/978-3-319-22345-2_5
10.1007/978-3-319-22345-2_5 Google Scholar
- Ben-Shaul, S., Landau, S., Merdler, U., & Levenberg, S. (2019). Mature vessel networks in engineered tissue promote graft–host anastomosis and prevent graft thrombosis. Proceedings of the National Academy of Sciences of the United States of America, 116(8), 2955–2960. https://doi.org/10.1073/pnas.1814238116
- Bertassoni, L. E., Cecconi, M., Manoharan, V., Nikkhah, M., Hjortnaes, J., Cristino, A. L., … Khademhosseini, A. (2014). Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab on a Chip, 14(13), 2202–2211. https://doi.org/10.1039/c4lc00030g
- Chackartchi, T., Iezzi, G., Goldstein, M., Klinger, A., Soskolne, A., Piattelli, A., & Shapira, L. (2011). Sinus floor augmentation using large (1–2 mm) or small (0.25–1 mm) bovine bone mineral particles: A prospective, intra-individual controlled clinical, micro-computerized tomography and histomorphometric study. Clinical Oral Implants Research. 22(5), 473–480. https://doi.org/10.1111/j.1600-0501.2010.02032.x
- Chen, Y. C., Lin, R. Z., Qi, H., Yang, Y., Bae, H., Melero-Martin, J. M., & Khademhosseini, A. (2012). Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Advanced Functional Materials. 22(10), 2027–2039. https://doi.org/10.1002/adfm.201101662
- Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M., & Ingber, D. E. (1998). Micropatterned surfaces for control of cell shape, position, and function. Biotechnology Progress. 14(3), 356–363. https://doi.org/10.1021/bp980031m
- Cheng, P., Li, D., Gao, Y., Cao, T., Jiang, H., Wang, J., … Pei, G. (2018). Prevascularization promotes endogenous cell-mediated angiogenesis by upregulating the expression of fibrinogen and connective tissue growth factor in tissue-engineered bone grafts. Stem Cell Research & Therapy. 9(1), 176. https://doi.org/10.1186/s13287-018-0925-y
- Deleu, J., & Trueta, J. (1965). Vascularisation of bone grafts in the anterior chamber of the eye. The Journal of Bone and Joint Surgery, 47-B(2), 319–329. https://doi.org/10.1302/0301-620x.47b2.319
10.1302/0301-620x.47b2.319 Google Scholar
- Dimitriou, R., Jones, E., McGonagle, D., & Giannoudis, P. V. (2011). Bone regeneration: Current concepts and future directions. BMC Medicine, 9(1), 66. https://doi.org/10.1186/1741-7015-9-66
- Doube, M., Kłosowski, M. M., Arganda-Carreras, I., Cordelières, F. P., Dougherty, R. P., Jackson, J. S., … Shefelbine, S. J. (2010). BoneJ: Free and extensible bone image analysis in ImageJ. Bone. 47(6), 1076–1079. https://doi.org/10.1016/j.bone.2010.08.023
- Fan, H., Zeng, X., Wang, X., Zhu, R., & Pei, G. (2014). Efficacy of prevascularization for segmental bone defect repair using β-tricalcium phosphate scaffold in rhesus monkey, Biomaterials. 35(26), 7407–7415. https://doi.org/10.1016/j.biomaterials.2014.05.035
- Gaubys, A., Papeckys, V., & Pranskunas, M. (2018). Use of autologous stem cells for the regeneration of periodontal defects in animal studies: A systematic review and meta-analysis. Journal of Oral & Maxillofacial Research. 9(2), e3. https://doi.org/10.5037/jomr.2018.9203
- Gerhardt, H., & Betsholtz, C. (2003). Endothelial-pericyte interactions in angiogenesis. Cell and Tissue Research. 314(1), 15–23. https://doi.org/10.1007/s00441-003-0745-x
- Gurel Pekozer, G., Torun Kose, G., & Hasirci, V. (2016). Influence of co-culture on osteogenesis and angiogenesis of bone marrow mesenchymal stem cells and aortic endothelial cells. Microvascular Research. 108, 1–9. https://doi.org/10.1016/j.mvr.2016.06.005
- James, A. W., LaChaud, G., Shen, J., Asatrian, G., Nguyen, V., Zhang, X., … Soo, C. (2016). A review of the clinical side effects of bone morphogenetic protein-2. Tissue Engineering Part B Reviews. 22(4), 284–297. https://doi.org/10.1089/ten.TEB.2015.0357
- Koike, N., Fukumura, D., Gralla, O., Au, P., Schechner, J. S., & Jain, R. K. (2004). Tissue engineering: Creation of long-lasting blood vessels. Nature. 428(6979), 138–139. https://doi.org/10.1038/428138a
- Lee, J., Song, B., Subbiah, R., Chung, J. J., Choi, U. H., Park, K., … Oh, S. J. (2019). Effect of chain flexibility on cell adhesion: Semi-flexible model-based analysis of cell adhesion to hydrogels. Scientific Reports. 9(1), 2463. https://doi.org/10.1038/s41598-019-38951-7
- Miller, J. S., Stevens, K. R., Yang, M. T., Baker, B. M., Nguyen, D.-H. T., Cohen, D. M., … Chen, C. S. (2012). Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nature Materials, 11(9), 768–774. https://doi.org/10.1038/nmat3357
- Nör, J. E., Peters, M. C., Christensen, J. B., Sutorik, M. M., Linn, S., Khan, M. K., … Polverini, P. J. (2001). Engineering and characterization of functional human microvessels in immunodeficient mice. Laboratory Investigation. 81(4), 453–463. https://doi.org/10.1038/labinvest.3780253
- Nunes, S. S., Greer, K. A., Stiening, C. M., Chen, H. Y. S., Kidd, K. R., Schwartz, M. A., … Hoying, J. B. (2010). Implanted microvessels progress through distinct neovascularization phenotypes. Microvascular Research. 79(1), 10–20. https://doi.org/10.1016/j.mvr.2009.10.001
- Pape, H. C., Evans, A., & Kobbe, P. (2010). Autologous bone graft: Properties and techniques. Journal of Orthopaedic Trauma. 24, S36–S40. https://doi.org/10.1097/BOT.0b013e3181cec4a1
- Rivron, N. C., Liu, J., Rouwkema, J., de Boer, J., & van Blitterswijk, C. A. (2008). Engineering vascularised tissues in vitro. European Cells and Materials. 15, 27–40. https://doi.org/10.22203/eCM.v015a03
- Sheehy, E. J., Kelly, D. J., & O'Brien, F. J. (2019). Biomaterial-based endochondral bone regeneration: A shift from traditional tissue engineering paradigms to developmentally inspired strategies. Materials Today Bio. 3, 100009. doi:/06/01/. https://doi.org/10.1016/j.mtbio.2019.100009
- Shegarfi, H., & Reikeras, O. (2009). Review article: Bone transplantation and immune response. Journal of Orthopaedic Surgery. 17(2), 206–211. https://doi.org/10.1177/230949900901700218
- Shepherd, B. R., Hoying, J. B., & Williams, S. K. (2007). Microvascular transplantation after acute myocardial infarction. Tissue Engineering. 13(12), 2871–2879. https://doi.org/10.1089/ten.2007.0025
- Subbiah, R., Cheng, A., Ruehle, M. A., Hettiaratchi, M. H., Bertassoni, L. E., & Guldberg, R. E. (2020a). Effects of controlled dual growth factor delivery on bone regeneration following composite bone-muscle injury. Acta Biomaterialia, 114, 63–75. https://doi.org/10.1016/j.actbio.2020.07.026
- Subbiah, R., Du, P., Hwang, M. P., Kim, I. G., Van, S. Y., Noh, Y. K., … Park, K. (2014). Dual growth factor-loaded core-shell polymer microcapsules can promote osteogenesis and angiogenesis. Macromolecular Research. 22(12), 1320–1329. https://doi.org/10.1007/s13233-014-2183-x
- Subbiah, R., & Guldberg, R. E. (2019). Materials science and design principles of growth factor delivery systems in tissue engineering and regenerative medicine. Advanced Healthcare Materials. 8(1), 1801000. https://doi.org/10.1002/adhm.201801000
10.1002/adhm.201801000 Google Scholar
- Subbiah, R., Hipfinger, C., Tahayeri, A., Athirasala, A., Horsophonphong, S., Thrivikraman, G., … Bertassoni, L. E. (2020b). 3D printing of microgel-loaded modular microcages as instructive scaffolds for tissue engineering. Advanced Materials, 32(36), 2001736. https://doi.org/10.1002/adma.202001736
10.1002/adma.202001736 Google Scholar
- Subbiah, R., Hwang, M. P., Van, S. Y., Do, S. H., Park, H., Lee, K., … Park, K. (2015). Osteogenic/angiogenic dual growth factor delivery microcapsules for regeneration of vascularized bone tissue. Advanced Healthcare Materials. 4(13), 1982–1992. https://doi.org/10.1002/adhm.201500341
- Sweeney, M., & Foldes, G. (2018). It takes two: Endothelial-perivascular cell cross-talk in vascular development and disease. Frontiers in Cardiovascular Medicine. 5, 154. https://doi.org/10.3389/fcvm.2018.00154
- Tattersall, I. W., Du, J., Cong, Z., Cho, B. S., Klein, A. M., Dieck, C. L., … Kitajewski, J. (2016). In vitro modeling of endothelial interaction with macrophages and pericytes demonstrates Notch signaling function in the vascular microenvironment. Angiogenesis. 19(2), 201–215. https://doi.org/10.1007/s10456-016-9501-1
- Thomlinson, R. H., & Gray, L. H. (1955). The histological structure of some human lung cancers and the possible implications for radiotherapy. British Journal of Cancer. 9(4), 539–549. https://doi.org/10.1038/bjc.1955.55
- Thrivikraman, G., Athirasala, A., Gordon, R., Zhang, L., Bergan, R., Keene, D. R., … Bertassoni, L. E. (2019). Rapid fabrication of vascularized and innervated cell-laden bone models with biomimetic intrafibrillar collagen mineralization. Nature Communications. 10(1), 3520. https://doi.org/10.1038/s41467-019-11455-8
- Tonetto, A., Lago, P. W., Borba, M., & Rosa, V. (2016). Effects of chrondro-osseous regenerative compound associated with local treatments in the regeneration of bone defects around implants: An in vivo study. Clinical Oral Investigations. 20(2), 267–274. https://doi.org/10.1007/s00784-015-1509-1
- Tsigkou, O., Pomerantseva, I., Spencer, J. A., Redondo, P. A., Hart, A. R., O'Doherty, E., … Neville, C. (2010). Engineered vascularized bone grafts. Proceedings of the National Academy of Sciences of the United States of America. 107(8), 3311–3316. https://doi.org/10.1073/pnas.0905445107
- Usami, K., Mizuno, H., Okada, K., Narita, Y., Aoki, M., Kondo, T., … Ueda, M. (2009). Composite implantation of mesenchymal stem cells with endothelial progenitor cells enhances tissue-engineered bone formation. Journal of Biomedical Materials Research Part A. 90A(3), 730–741. https://doi.org/10.1002/jbm.a.32142
- Yamada, M., & Egusa, H. (2018). Current bone substitutes for implant dentistry. Journal of Prosthodontic Research. 62(2), 152–161. https://doi.org/10.1016/j.jpor.2017.08.010