Design of a new dual mesh with an absorbable nanofiber layer as a potential implant for abdominal hernia treatment
Mehmet Kaya
Department of Polymer Engineering, Yalova University Faculty of Engineering, Yalova, Turkey
Search for more papers by this authorZehra Betul Ahi
Department of Polymer Engineering, Yalova University Faculty of Engineering, Yalova, Turkey
Search for more papers by this authorEmre Ergene
Department of Biomedical Engineering, Ankara University Faculty of Engineering, Ankara, Turkey
Search for more papers by this authorPinar Yilgor Huri
Department of Biomedical Engineering, Ankara University Faculty of Engineering, Ankara, Turkey
Search for more papers by this authorCorresponding Author
Kadriye Tuzlakoglu
Department of Polymer Engineering, Yalova University Faculty of Engineering, Yalova, Turkey
Correspondence
Kadriye Tuzlakoglu, Department of Polymer Engineering, Yalova University Faculty of Engineering, Yalova, Turkey.
Email: [email protected]
Search for more papers by this authorMehmet Kaya
Department of Polymer Engineering, Yalova University Faculty of Engineering, Yalova, Turkey
Search for more papers by this authorZehra Betul Ahi
Department of Polymer Engineering, Yalova University Faculty of Engineering, Yalova, Turkey
Search for more papers by this authorEmre Ergene
Department of Biomedical Engineering, Ankara University Faculty of Engineering, Ankara, Turkey
Search for more papers by this authorPinar Yilgor Huri
Department of Biomedical Engineering, Ankara University Faculty of Engineering, Ankara, Turkey
Search for more papers by this authorCorresponding Author
Kadriye Tuzlakoglu
Department of Polymer Engineering, Yalova University Faculty of Engineering, Yalova, Turkey
Correspondence
Kadriye Tuzlakoglu, Department of Polymer Engineering, Yalova University Faculty of Engineering, Yalova, Turkey.
Email: [email protected]
Search for more papers by this authorAbstract
Dual meshes are often preferred in the treatment of umbilical and incisional hernias where the abdominal wall defect is large. These meshes are generally composed of either two nonabsorbable layers or a nonabsorbable layer combined with an absorbable one that degrades within the body upon healing of the defect. The most crucial point in the design of a dual mesh is to produce the respective layers based on the structure and requirements of the recipient site. We herein developed a dual mesh that consists of two layers: a nanofibrous layer made of poly (glycerol sebacate)/poly (caprolactone) (PGS/PCL) to support the healing of the abdominal wall defect and a nondegradable, nonadhesive smooth layer made of polycarbonateurethane (PU) with suitable properties to avoid the adhesion of the viscera to the mesh. To prepare the double-sided structure, PGS/PCL was directly electrospun onto the PU film. This processing approach provided a final product with well-integrated layers as observed by a scanning electron microscope. Tensile test performed at the dry state of the samples showed that the dual mesh has the ability to elongate seven times more as compared with the commercially available counterparts, mimicking the native tissue properties. The degradation test carried out at physiological conditions revealed that PGS started to degrade within the first 15 days. in vitro studies with human umbilical vein endothelial cells demonstrated the double function of the meshes, in which PU layer did not allow cell adhesion, whereas PGS/PCL layer has the ability to support cell adhesion and proliferation. Therefore, the material developed in this study has the potential to be an alternative to the existing hernia mesh products.
CONFLICT OF INTEREST
The authors have declared that there is no conflict of interest.
REFERENCES
- Baylón, K., Rodríguez-Camarillo, P., Elías-Zúñiga, A., Díaz-Elizondo, J. A., Gilkerson, R., & Lozano, K. (2017). Past, present and future of surgical meshes: A review. Membranes, 7(3), 47. https://doi.org/10.3390/membranes7030047
- Bellon, J. M., Serrano, N., Rodriguez, M., Garcia-Honduvilla, N., Pascual, G., & Bujan, J. (2005). Composite prostheses used to repair abdominal wall defects: Physical or chemical adhesion barriers? Journal of Biomedical Materials Research Part B-Applied Biomaterials, 74b(2), 718–724. https://doi.org/10.1002/jbm.b.30248
- Bisgaard, T., Kehlet, H., Bay-Nielsen, M. B., Iversen, M. G., Wara, P., Rosenberg, J., … Jorgensen, L. N. (2009). Nationwide study of early outcomes after incisional hernia repair. The British Journal of Surgery, 96(12), 1452–1457. https://doi.org/10.1002/bjs.6728
- Brown, C. N., & Finch, J. G. (2010). Which mesh for hernia repair? Annals of the Royal College of Surgeons of England, 92(4), 272–278. https://doi.org/10.1308/003588410X12664192076296
- Burger, J. W., Luijendijk, R. W., Hop, W. C., Halm, J. A., Verdaasdonk, E. G., & Jeekel, J. (2004). Long-term follow-up of a randomized controlled trial of suture versus mesh repair of incisional hernia. Annals of Surgery, 240(4), 578–583; discussion 583-575. https://doi.org/10.1097/01.sla.0000141193.08524.e7
- Cassar, K., & Munro, A. (2002). Surgical treatment of incisional hernia. The British Journal of Surgery, 89(5), 534–545. https://doi.org/10.1046/j.1365-2168.2002.02083.x
- Chen, Q. Z., Bismarck, A., Hansen, U., Junaid, S., Tran, M. Q., Harding, S. E., … Boccaccini, A. R. (2008). Characterisation of a soft elastomer poly (glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials, 29(1), 47–57. https://doi.org/10.1016/j.biomaterials.2007.09.010
- Doctor, H. G. (2006). Evaluation of various prosthetic materials and newer meshes for hernia repairs. Journal of Minimal Access Surgery, 2(3), 110–116. https://doi.org/10.4103/0972-9941.27721
- East, B., Plencner, M., Kralovic, M., Rampichova, M., Sovkova, V., Vocetkova, K., … Hoch, J. (2018). A polypropylene mesh modified with poly-epsilon-caprolactone nanofibers in hernia repair: Large animal experiment. International Journal of Nanomedicine, 13, 3129–3143. https://doi.org/10.2147/ijn.s159480
- Emans, P., Schreinemacher, M., Gijbels, M., Beets, G., Greve, J. W., Koole, L., & Bouvy, N. (2009). Polypropylene meshes to prevent abdominal herniation. Can stable coatings prevent adhesions in the long term? Annals of Biomedical Engineering, 37(2), 410–418. https://doi.org/10.1007/s10439-008-9608-7
- Engelmayr, G. C., Cheng, M. Y., Bettinger, C. J., Borenstein, J. T., Langer, R., & Freed, L. E. (2008). Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nature Materials, 7(12), 1003–1010. https://doi.org/10.1038/nmat2316
- Fidkowski, C., Kaazempur-Mofrad, M. R., Borenstein, J., Vacanti, J. P., Langer, R., & Wang, Y. D. (2005). Endothelialized microvasculature based on a biodegradable elastomer. Tissue Engineering, 11(1-2), 302–309. https://doi.org/10.1089/ten.2005.11.302
- Giurgius, M., Bendure, L., Davenport, D. L., & Roth, J. S. (2012). The endoscopic component separation technique for hernia repair results in reduced morbidity compared to the open component separation technique. Hernia, 16(1), 47–51. https://doi.org/10.1007/s10029-011-0866-1
- den Hartog, D., Dur, A. H., Tuinebreijer, W. E., & Kreis, R. W. (2008). Open surgical procedures for incisional hernias. Cochrane Database of Systematic Reviews, 3, 1465-1858. CD006438. https://doi.org/10.1002/14651858.CD006438.pub2
- I.S.O. (2009). Biological evaluation of medical devices—Part 5: Tests for in vitro cytotoxicity. In (pp. 10993-10995).
- Israelsson, L. A. (2008). Parastomal hernias. The Surgical Clinics of North America, 88(1), 113–125, ix. https://doi.org/10.1016/j.suc.2007.10.003
- Jacob, B. P., Hogle, N. J., Durak, E., Kim, T., & Fowler, D. L. (2007). Tissue ingrowth and bowel adhesion formation in an animal comparative study: Polypropylene versus proceed versus parietex composite. Surgical Endoscopy, 21(4), 629–633. https://doi.org/10.1007/s00464-006-9157-9
- James, R., & Laurencin, C. T. (2016). Nanofiber technology: Its transformative role in nanomedicine. Nanomedicine, 11(12), 1499–1501. https://doi.org/10.2217/nnm.16.44
- Judge, T. W., Parker, D. M., & Dinsmore, R. C. (2007). Abdominal wall hernia repair: A comparison of sepramesh and parietex composite mesh in a rabbit hernia model. Journal of the American College of Surgeons, 204(2), 276–281. https://doi.org/10.1016/j.jamcollsurg.2006.11.003
- Kingsnorth, A., & LeBlanc, K. (2003). Hernias: Inguinal and incisional. Lancet, 362(9395), 1561–1571. https://doi.org/10.1016/S0140-6736(03)14746-0
- Ko, J., Mohtaram, N. K., Ahmed, F., Montgomery, A., Carlson, M., Lee, P. C. D., … Jun, M. B. G. (2014). Fabrication of poly (epsilon-caprolactone) microfiber scaffolds with varying topography and mechanical properties for stem cell-based tissue engineering applications. Journal of Biomaterials Science. Polymer Edition, 25(1), 1–17. https://doi.org/10.1080/09205063.2013.830913
- Korenkov, M., Sauerland, S., Arndt, M., Bograd, L., Neugebauer, E. A., & Troidl, H. (2002). Randomized clinical trial of suture repair, polypropylene mesh or autodermal hernioplasty for incisional hernia. The British Journal of Surgery, 89(1), 50–56. https://doi.org/10.1046/j.0007-1323.2001.01974.x
- Liu, M., Duan, X. P., Li, Y. M., Yang, D. P., & Long, Y. Z. (2017). Electrospun nanofibers for wound healing. Materials Science and Engineering C, 76, 1413–1423. https://doi.org/10.1016/j.msec.2017.03.034
- Luijendijk, R. W., Hop, W. C., van den Tol, M. P., de Lange, D. C., Braaksma, M. M., IJzermans, J. N., … Jeekel, J. (2000). A comparison of suture repair with mesh repair for incisional hernia. The New England Journal of Medicine, 343(6), 392–398. https://doi.org/10.1056/NEJM200008103430603
- Motlagh, D., Yang, J., Lui, K. Y., Webb, A. R., & Ameer, G. A. (2006). Hemocompatibility evaluation of poly (glycerol-sebacate) in vitro for vascular tissue engineering. Biomaterials, 27(24), 4315–4324. https://doi.org/10.1016/j.biomaterials.2006.04.010
- Nieuwenhuizen, J., Kleinrensink, G. J., Hop, W. C. J., Jeekel, J., & Lange, J. F. (2008). Indications for incisional hernia repair: An international questionnaire among hernia surgeons. Hernia, 12(3), 223–225. https://doi.org/10.1007/s10029-007-0322-4
- Paul, A., Korenkov, M., Peters, S., Kohler, L., Fischer, S., & Troidl, H. (1998). Unacceptable results of the Mayo procedure for repair of abdominal incisional hernias. European Journal of Surgery, 164(5), 361–367. https://doi.org/10.1080/110241598750004391
- Plencner, M., East, B., Tonar, Z., Otahal, M., Prosecka, E., Rampichova, M., … Amler, E. (2014). Abdominal closure reinforcement by using polypropylene mesh functionalized with poly-epsilon-caprolactone nanofibers and growth factors for prevention of incisional hernia formation. International Journal of Nanomedicine, 9, 3263–3277. https://doi.org/10.2147/ijn.s63095
- Qi, Z. H., Yu, H., Chen, Y. M., & Zhu, M. F. (2009). Highly porous fibers prepared by electrospinning a ternary system of nonsolvent/solvent/poly(L-lactic acid). Materials Letters, 63(3-4), 415–418. https://doi.org/10.1016/j.matlet.2008.10.059
- Radisic, M., Park, H., Gerecht, S., Cannizzaro, C., Langer, R., & Vunjak-Novakovic, G. (2007). Biomimetic approach to cardiac tissue engineering. Philosophical Transactions of the Royal Society, B: Biological Sciences, 362(1484), 1357–1368. https://doi.org/10.1098/rstb.2007.2121
- Rai, R., Tallawi, M., Roether, J., Detsch, R., Barbani, N., Rosellini, E., … Boccaccini, A. (2013). Sterilization effects on the physical properties and cytotoxicity of poly (glycerol sebacate). Materials Letters, 105, 32–35. https://doi.org/10.1016/j.matlet.2013.04.024
- Redenti, S., Neeley, W. L., Rompani, S., Saigal, S., Yang, J., Klassen, H., … Young, M. J. (2009). Engineering retinal progenitor cell and scrollable poly (glycerol-sebacate) composites for expansion and subretinal transplantation. Biomaterials, 30(20), 3405–3414. https://doi.org/10.1016/j.biomaterials.2009.02.046
- Salehi, S., Bahners, T., Gutmann, J. S., Gao, S. L., Mader, E., & Fuchsluger, T. A. (2014). Characterization of structural, mechanical and nano-mechanical properties of electrospun PGS/PCL fibers. RSC Advances, 4(33), 16951–16957. https://doi.org/10.1039/C4RA01237B
- Salehi, S., Fathi, M., Javanmard, S. H., Bahners, T., Gutmann, J. S., Ergun, S., … Fuchsluger, T. A. (2014). Generation of PGS/PCL blend nanofibrous scaffolds mimicking corneal stroma structure. Macromolecular Materials and Engineering, 299(4), 455–469. https://doi.org/10.1002/mame.201300187
- Sant, S., Hwang, C. M., Lee, S. H., & Khademhosseini, A. (2011). Hybrid PGS-PCL microfibrous scaffolds with improved mechanical and biological properties. Journal of Tissue Engineering and Regenerative Medicine, 5(4), 283–291. https://doi.org/10.1002/term.313
- Sant, S., Iyer, D., Gaharwar, A. K., Patel, A., & Khademhosseini, A. (2013). Effect of biodegradation and de novo matrix synthesis on the mechanical properties of valvular interstitial cell-seeded polyglycerol sebacate-polycaprolactone scaffolds. Acta Biomaterialia, 9(4), 5963–5973. https://doi.org/10.1016/j.actbio.2012.11.014
- Santos, T. C., Marques, A. P., Horing, B., Martins, A. R., Tuzlakoglu, K., Castro, A. G., … Reis, R. L. (2010). In vivo short-term and long-term host reaction to starch-based scaffolds. Acta Biomaterialia, 6(11), 4314–4326. https://doi.org/10.1016/j.actbio.2010.06.020
- Selcan, G., Pezhman, H., & Murat, A. H. (2017). Hybrid aorta constructs via in situ crosslinking of poly (glycerol-sebacate) elastomer within a decellularized matrix. Tissue Engineering Part C: Methods, 23(1), 21–29. https://doi.org/10.1089/ten.tec.2016.0375
- Sundback, C. A., Shyu, J. Y., Wang, Y. D., Faquin, W. C., Langer, R. S., Vacanti, J. P., & Hadlock, T. A. (2005). Biocompatibility analysis of poly (glycerol sebacate) as a nerve guide material. Biomaterials, 26(27), 5454–5464. https://doi.org/10.1016/j.biomaterials.2005.02.004
- Tuzlakoglu, K., Santos, M. I., Neves, N., & Reis, R. L. (2011). Design of nano- and microfiber combined scaffolds by electrospinning of collagen onto starch-based fiber meshes: A man-made equivalent of natural extracellular matrix. Tissue Engineering. Part A, 17(3-4), 463–473. https://doi.org/10.1089/ten.TEA.2010.0178
- Vaquette, C., Kahn, C., Frochot, C., Nouvel, C., Six, J. L., De Isla, N., … Wang, X. (2010). Aligned poly(L-lactic-co-e-caprolactone) electrospun microfibers and knitted structure: A novel composite scaffold for ligament tissue engineering. Journal of Biomedical Materials Research Part A, 94a(4), 1270–1282. https://doi.org/10.1002/jbm.a.32801
- Velazquez, O. C. (2007). Angiogenesis and vasculogenesis: Inducing the growth of new blood vessels and wound healing by stimulation of bone marrow-derived progenitor cell mobilization and homing. Journal of Vascular Surgery, 45, A39–A47. https://doi.org/10.1016/j.jvs.2007.02.068
- Wang, Y., Ameer, G. A., Sheppard, B. J., & Langer, R. (2002). A tough biodegradable elastomer. Nature Biotechnology, 20(6), 602–606. https://doi.org/10.1038/nbt0602-602
- Wang, Y. D., Kim, Y. M., & Langer, R. (2003). In vivo degradation characteristics of poly (glycerol sebacate). Journal of Biomedical Materials Research Part A, 66a(1), 192–197. https://doi.org/10.1002/jbm.a.10534
- Xiaolong, Y., Xiaoyan, H., Bo, W., Jianglong, H., Xiaofeng, Y., Xiao, T., … Hongbo, W. (2018). Ventral hernia repair in rat using nanofibrous polylactic acid/polypropylene meshes. Nanomedicine, 13(17), 2187–2199. https://doi.org/10.2217/nnm-2018-0165