Improving intraoperative storage conditions for autologous bone grafts: An experimental investigation in mice
Qiang Sun
Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA
Qiang Sun, Zhijun Li, and Bo Liu contributed equally.Search for more papers by this authorZhijun Li
Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA
Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
Qiang Sun, Zhijun Li, and Bo Liu contributed equally.Search for more papers by this authorBo Liu
Ankasa Regenerative Therapeutics, Inc., South San Francisco, CA
Qiang Sun, Zhijun Li, and Bo Liu contributed equally.Search for more papers by this authorXue Yuan
Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA
Search for more papers by this authorShu Guo
Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
Search for more papers by this authorCorresponding Author
Jill A. Helms
Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA
Ankasa Regenerative Therapeutics, Inc., South San Francisco, CA
Correspondence
Jill A. Helms, Stanford University, 1651 Page Mill Road, Palo Alto, CA 94304.
Email: [email protected]
Search for more papers by this authorQiang Sun
Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA
Qiang Sun, Zhijun Li, and Bo Liu contributed equally.Search for more papers by this authorZhijun Li
Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA
Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
Qiang Sun, Zhijun Li, and Bo Liu contributed equally.Search for more papers by this authorBo Liu
Ankasa Regenerative Therapeutics, Inc., South San Francisco, CA
Qiang Sun, Zhijun Li, and Bo Liu contributed equally.Search for more papers by this authorXue Yuan
Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA
Search for more papers by this authorShu Guo
Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
Search for more papers by this authorCorresponding Author
Jill A. Helms
Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA
Ankasa Regenerative Therapeutics, Inc., South San Francisco, CA
Correspondence
Jill A. Helms, Stanford University, 1651 Page Mill Road, Palo Alto, CA 94304.
Email: [email protected]
Search for more papers by this authorAbstract
Autologous bone grafts constitute the second most transplanted tissue in medicine today. The viability, and consequently the osteogenic capacity, of an autograft is directly impacted by the interval between harvest and transplantation, but how the temperature and the solution in which the graft is held intraoperatively affect viability is not clear. Using a syngeneic mouse model and in vivo bone-forming assays, these variables were tested for their effects on programmed cell death, osteoprogenitor cell proliferation, and the ability of the autograft to ultimately produce new bone in an ectopic site. Based on these results, the intraoperative treatment with a WNT protein therapeutic was tested for its effects on the viability and osteogenic capacity of an autograft. Viability, programmed cell death, mitotic activity, osteogenic protein expression, and bone-forming capacity were assessed. Experimental results demonstrated that the osteogenic capacity of an autograft is significantly improved by intraoperative storage in L-WNT3A at physiological temperature.
CONFLICT OF INTEREST
B.L and J.A.H. are employees of Ankasa Regenerative Therapeutics, a biopharmaceutic company developing L-WNT3A for commercial use.
Supporting Information
Filename | Description |
---|---|
term2970-sup-0001-Supplementary_Figure1.jpgJPEG image, 800.8 KB |
Data S1. Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Aghvami, M., Brunski, J. B., Serdar Tulu, U., Chen, C. H., & Helms, J. A. (2018). A thermal and biological analysis of bone drilling. Journal of Biomechanical Engineering, 140(10). https://doi.org/10.1115/1.4040312
10.1115/1.4040312 Google Scholar
- Albrektsson, T. (1980). The healing of autologous bone grafts after varying degrees of surgical trauma. A microscopic and histochemical study in the rabbit. Journal of Bone and Joint Surgery. British Volume (London), 62(3), 403–410.
- Almeida, M., Han, L., Bellido, T., Manolagas, S. C., & Kousteni, S. (2005). Wnt proteins prevent apoptosis of both uncommitted osteoblast progenitors and differentiated osteoblasts by beta-catenin-dependent and -independent signaling cascades involving Src/ERK and phosphatidylinositol 3-kinase/AKT. The Journal of Biological Chemistry, 280(50), 41342–41351. https://doi.org/10.1074/jbc. M502168200
- Atari, M., Chatakun, P., Ortiz, O., Manes, A., Gil-Recio, C., Navarro, M. F., … Giner-Tarrida, L. (2011). Viability of maxillary bone harvesting by using different osteotomy techniques. A pilot study. Histology and Histopathology, 26(12), 1575–1583. https://doi.org/10.14670/HH-26.1575
- Bassett, C. A. (1972). Clinical implications of cell function in bone grafting. Clinical Orthopaedics and Related Research, 87, 49–59.
- Bouxsein, M. L., Boyd, S. K., Christiansen, B. A., Guldberg, R. E., Jepsen, K. J., & Muller, R. (2010). Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. Journal of Bone and Mineral Research, 25(7), 1468–1486. https://doi.org/10.1002/jbmr.141
- Brockmann, J., Reddy, S., Coussios, C., Pigott, D., Guirriero, D., Hughes, D., … Friend, P. J. (2009). Normothermic perfusion: A new paradigm for organ preservation. Annals of Surgery, 250(1), 1–6. https://doi.org/10.1097/SLA.0b013e3181a63c10
- Chen, T., Li, J., Cordova, L. A., Liu, B., Mouraret, S., Sun, Q., … Helms, J. (2018). A WNT protein therapeutic improves the bone-forming capacity of autografts from aged animals. Scientific Reports, 8(1), 119. https://doi.org/10.1038/s41598-017-18375-x
- Clarke, A., & Fraser, K. P. P. (2004). Why does metabolism scale with temperature? Functional Ecology. https://doi.org/10.1111/j.0269-8463.2004.00841.x
10.1111/j.0269?8463.2004.00841.x Google Scholar
- Colnot, C., Lu, C., Hu, D., & Helms, J. A. (2004). Distinguishing the contributions of the perichondrium, cartilage, and vascular endothelium to skeletal development. Developmental Biology, 269(1), 55–69. https://doi.org/10.1016/j.ydbio.2004.01.011
- Crowley, L. C., Marfell, B. J., Christensen, M. E., & Waterhouse, N. J. (2016). Measuring cell death by trypan blue uptake and light microscopy. Cold Spring Harbor Protocols, 2016(7), pdb prot087155). https://doi.org/10.1101/pdb.prot087155
10.1101/pdb.prot087155 Google Scholar
- Cunha, G. R., & Baskin, L. (2016). Use of sub-renal capsule transplantation in developmental biology. Differentiation, 91(4-5), 4–9. https://doi.org/10.1016/j.diff.2015.10.007
- Dhamdhere, G. R., Fang, M. Y., Jiang, J., Lee, K., Cheng, D., Olveda, R. C., … Helms, J. A. (2014). Drugging a stem cell compartment using Wnt3a protein as a therapeutic. PLoS ONE, 9(1), e83650. https://doi.org/10.1371/journal.pone.0083650
- Furukawa, H., Todo, S., Imventarza, O., Casavilla, A., Wu, Y. M., Scotti-Foglieni, C., … Starzl, T. E. (1991). Effect of cold ischemia time on the early outcome of human hepatic allografts preserved with UW solution. Transplantation, 51(5), 1000–1004.
- Gordon, S., & Ham, A. (1950). Essays in Surgery (p. 296). Toronto: University of Toronto Press.
- Gray, J. C., & Elves, M. W. (1981). Osteogenesis in bone grafts after short-term storage and topical antibiotic treatment. An experimental study in rats. Journal of Bone and Joint Surgery. British Volume (London), 63-B(3), 441–445.
- Gruskin, E., Doll, B. A., Futrell, F. W., Schmitz, J. P., & Hollinger, J. O. (2012). Demineralized bone matrix in bone repair: History and use. Advanced Drug Delivery Reviews, 64(12), 1063–1077. https://doi.org/10.1016/j.addr.2012.06.008
- Ham, A., & Gordon, S. (1952). The origin of bone that forms in association with cancellous chips transplanted into muscle. British Journal of Plastic Surgery, 5(3), 154–160. https://doi.org/10.1016/s0007-1226(52)80015-3
- Harding, A. K., Aspenberg, P., Kataoka, M., Bylski, D., & Tagil, M. (2008). Manipulating the anabolic and catabolic response in bone graft remodeling: Synergism by a combination of local BMP7 and a single systemic dosis of zoledronate. Journal of Orthopaedic Research, 26(9), 1245–1249. https://doi.org/10.1002/jor.20625
- Hassanein, A. H., Greene, A. K., Arany, P. R., & Padwa, B. L. (2012). Intraoperative cooling of iliac bone graft: An experimental evaluation of cell viability. Journal of Oral and Maxillofacial Surgery, 70(7), 1633–1635. https://doi.org/10.1016/j.joms.2011.07.005
- Herford, A. S., Stoffella, E., & Tandon, R. (2011). Reconstruction of mandibular defects using bone morphogenic protein: Can growth factors replace the need for autologous bone grafts? A systematic review of the literature. Plastic surgery international, 2011, 165824. https://doi.org/10.1155/2011/165824
- Hosokawa, R., Kubo, T., Wadamoto, M., Sato, Y., & Kimoto, T. (1999). Direct bone induction in the subperiosteal space of rat calvaria with demineralized bone allografts. The Journal of Oral Implantology, 25(1), 30–34. https://doi.org/10.1563/1548-1336(1999)025<0030:DBIITS>2.3.CO;2
- Jensen, H. S. (1984). Skin viability studies in vitro. Scandinavian Journal of Plastic and Reconstructive Surgery, 18(1), 55–59.
- Jing, W., Smith, A. A., Liu, B., Li, J., Hunter, D. J., Dhamdhere, G., … Helms, J. A. (2015). Reengineering autologous bone grafts with the stem cell activator WNT3A. Biomaterials, 47, 29–40. https://doi.org/10.1016/j.biomaterials.2014.12.014
- Kerbel, R. S. (2015). A decade of experience in developing preclinical models of advanced- or early-stage spontaneous metastasis to study antiangiogenic drugs, metronomic chemotherapy, and the tumor microenvironment. Cancer Journal, 21(4), 274–283. https://doi.org/10.1097/PPO.0000000000000134
- Krajewski, S., & Wechsler, W. (1991). Development of subrenal capsule tumours following transplantation of rat RN6 multicell spheroids. Journal of Neuro-Oncology, 10(3), 219–231.
- Laursen, M., Christensen, F. B., Bunger, C., & Lind, M. (2003). Optimal handling of fresh cancellous bone graft: Different peroperative storing techniques evaluated by in vitro osteoblast-like cell metabolism. Acta Orthopaedica Scandinavica, 74(4), 490–496. https://doi.org/10.1080/00016470310017848
- Leimbruckner, B. D., Dielert, E., & Stock, W. (1993). Histological evaluation of free revascularized iliac crest bone after transplantation for mandibular reconstruction. Microsurgery, 14(4), 272–275. https://doi.org/10.1002/micr.1920140411
- Leucht, P., Jiang, J., Cheng, D., Liu, B., Dhamdhere, G., Fang, M. Y., … Helms, J. A. (2013). Wnt3a reestablishes osteogenic capacity to bone grafts from aged animals. The Journal of Bone and Joint Surgery. American Volume, 95(14), 1278–1288. https://doi.org/10.2106/JBJS.L.01502
- Levin, R. H., & Freireich, E. J. (1964). Effect of storage up to 48 hours on response to transfusions of platelet rich plasma. Transfusion, 4, 251–256. https://doi.org/10.1111/j.1537-2995.1964.tb02867.x
- Li, J., Yin, X., Huang, L., Mouraret, S., Brunski, J. B., Cordova, L., … Helms, J. A. (2017). Relationships among bone quality, implant osseointegration, and Wnt signaling. Journal of Dental Research, 96(7), 822–831. https://doi.org/10.1177/0022034517700131
- Maus, U., Andereya, S., Gravius, S., Siebert, C. H., Schippmann, T., Ohnsorge, J. A., & Niedhart, C. (2008). How to store autologous bone graft perioperatively: An in vitro study. Archives of Orthopaedic and Traumatic Surgery, 128(9), 1007–1011. https://doi.org/10.1007/s00402-008-0616-8
- McAnulty, J. F. (1999). Effect of various short-term storage methods on viability of cancellous bone fragments. American Journal of Veterinary Research, 60(1), 63–67.
- Minear, S., Leucht, P., Jiang, J., Liu, B., Zeng, A., Fuerer, C., … Helms, J. A. (2010). Wnt proteins promote bone regeneration. Science Translational Medicine, 2(29), 29ra30. https://doi.org/10.1126/scitranslmed.3000231
- Miron, R. J., Gruber, R., Hedbom, E., Saulacic, N., Zhang, Y., Sculean, A., … Buser, D. (2013). Impact of bone harvesting techniques on cell viability and the release of growth factors of autografts. Clinical Implant Dentistry and Related Research, 15(4), 481–489. https://doi.org/10.1111/j.1708-8208.2012.00440.x
- Movat, H. Z. (1955). Demonstration of all connective tissue elements in a single section; pentachrome stains. A.M.A. Archives of Pathology, 60(3), 289–295.
- Nade, S. (1970). Bone-graft surgery reappraised: The contribution of the cell to ultimate success. The British Journal of Surgery, 57(10), 752–756. https://doi.org/10.1002/bjs.1800571014
- Nasralla, D., Coussios, C. C., Mergental, H., Akhtar, M. Z., Butler, A. J., Ceresa, C. D. L., … Consortium for Organ Preservation in, E (2018). A randomized trial of normothermic preservation in liver transplantation. Nature, 557(7703), 50–56. https://doi.org/10.1038/s41586-018-0047-9
- Pape, H. C., Evans, A., & Kobbe, P. (2010). Autologous bone graft: Properties and techniques. Journal of Orthopaedic Trauma, 24(Suppl 1), S36–S40. https://doi.org/10.1097/BOT.0b013e3181cec4a1
- Pepper, F. J. (1954). Studies on the viability of mammalian skin autografts after storage at different temperatures. British Journal of Plastic Surgery, 6(4), 250–256.
- Ravikumar, R., Jassem, W., Mergental, H., Heaton, N., Mirza, D., Perera, M. T., … Friend, P. J. (2016). Liver transplantation after ex vivo normothermic machine preservation: A phase 1 (first-in-man) clinical trial. American Journal of Transplantation, 16(6), 1779–1787. https://doi.org/10.1111/ajt.13708
- Rocha, F. S., Batista, J. D., Zanetta-Barbosa, D., & Dechichi, P. (2013). Effect of different storage media on the regenerative potential of autogenous bone grafts: A histomorphometrical analysis in rabbits. The Journal of Oral Implantology, 39(6), 635–642. https://doi.org/10.1563/AAID-JOI-D-11-00020
- Rogers, G. F., & Greene, A. K. (2012). Autogenous bone graft: Basic science and clinical implications. The Journal of Craniofacial Surgery, 23(1), 323–327. https://doi.org/10.1097/SCS.0b013e318241dcba
- Sakkas, A., Wilde, F., Heufelder, M., Winter, K., & Schramm, A. (2017). Autogenous bone grafts in oral implantology-is it still a "gold standard"? A consecutive review of 279 patients with 456 clinical procedures. International journal of implant dentistry, 3(1), 23. https://doi.org/10.1186/s40729-017-0084-4
- Schlegel, A., Kron, P., Graf, R., Dutkowski, P., & Clavien, P. A. (2014). Warm vs. cold perfusion techniques to rescue rodent liver grafts. Journal of Hepatology, 61(6), 1267–1275. https://doi.org/10.1016/j.jhep.2014.07.023
- Socaciu, C., Bojarski, P., Aberle, L., & Diehl, H. (2002). Different ways to insert carotenoids into liposomes affect structure and dynamics of the bilayer differently. Biophysical Chemistry, 99(1), 1–15. https://doi.org/10.1016/s0301-4622(02)00111-4
- Sohn, H. S., Heo, J. S., Kim, H. S., Choi, Y., & Kim, H. O. (2013). Duration of in vitro storage affects the key stem cell features of human bone marrow-derived mesenchymal stromal cells for clinical transplantation. Cytotherapy, 15(4), 460–466. https://doi.org/10.1016/j.jcyt.2012.10.015
- Soleimani, M., & Nadri, S. (2009). A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nature Protocols, 4(1), 102–106. https://doi.org/10.1038/nprot.2008.221
- Steiner, M., & Ramp, W. K. (1988). Short-term storage of freshly harvested bone. Journal of Oral and Maxillofacial Surgery, 46(10), 868–871.
- Sultan, S. M., Davidson, E. H., Butala, P., Schachar, J. S., Witek, L., Szpalski, C., … Warren, S. M. (2011). Interval cranioplasty: Comparison of current standards. Plastic and Reconstructive Surgery, 127(5), 1855–1864. https://doi.org/10.1097/PRS.0b013e31820e89a5
- Szot, G. L., Koudria, P., & Bluestone, J. A. (2007). Transplantation of pancreatic islets into the kidney capsule of diabetic mice. Journal of Visualized Experiments, 9, 404. https://doi.org/10.3791/404
- Tomoda, H., Kishimoto, Y., & Lee, Y. C. (1989). Temperature effect on endocytosis and exocytosis by rabbit alveolar macrophages. The Journal of Biological Chemistry, 264(26), 15445–15450.
- Wang, L., Aghvami, M., Brunski, J., & Helms, J. (2017). Biophysical regulation of osteotomy healing: An animal study. Clinical Implant Dentistry and Related Research, 19(4), 590–599. https://doi.org/10.1111/cid.12499
- Xu, H., Berendsen, T., Kim, K., Soto-Gutierrez, A., Bertheium, F., Yarmush, M. L., & Hertl, M. (2012). Excorporeal normothermic machine perfusion resuscitates pig DCD livers with extended warm ischemia. The Journal of Surgical Research, 173(2), e83–e88. https://doi.org/10.1016/j.jss.2011.09.057
- Yin, X., Li, J., Salmon, B., Huang, L., Lim, W. H., Liu, B., … Helms, J. A. (2015). Wnt signaling and its contribution to craniofacial tissue homeostasis. Journal of Dental Research, 94(11), 1487–1494. https://doi.org/10.1177/0022034515599772