IDR-1018 induces cell proliferation, migration, and reparative gene expression in 2D culture and 3D human skin equivalents
Thuany Alencar-Silva
Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brazil
Search for more papers by this authorRobert Pogue
Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brazil
Search for more papers by this authorFelipe Saldanha-Araujo
Laboratório de Hematologia, Departamento de Ciências da Saúde, Universidade de Brasília, Brasilia, Brazil
Programa de Pós-graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil
Search for more papers by this authorSimoni Campos Dias
Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brazil
Pós-Graduação em Biologia Animal, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, Brazil
Search for more papers by this authorOctavio Luiz Franco
Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brazil
S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
Programa de Pós-graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil
Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
Search for more papers by this authorCorresponding Author
Juliana Lott Carvalho
Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brazil
OneSkin Technologies, San Francisco, CA, USA
Faculdade de Medicina, Universidade de Brasília, Brasilia, Brazil
Correspondence
Juliana Lott Carvalho, Faculdade de Medicina, Universidade de Brasília, Brasilia, DF, Brazil.
Email: [email protected]
Search for more papers by this authorThuany Alencar-Silva
Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brazil
Search for more papers by this authorRobert Pogue
Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brazil
Search for more papers by this authorFelipe Saldanha-Araujo
Laboratório de Hematologia, Departamento de Ciências da Saúde, Universidade de Brasília, Brasilia, Brazil
Programa de Pós-graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil
Search for more papers by this authorSimoni Campos Dias
Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brazil
Pós-Graduação em Biologia Animal, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, Brazil
Search for more papers by this authorOctavio Luiz Franco
Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brazil
S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
Programa de Pós-graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil
Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
Search for more papers by this authorCorresponding Author
Juliana Lott Carvalho
Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brazil
OneSkin Technologies, San Francisco, CA, USA
Faculdade de Medicina, Universidade de Brasília, Brasilia, Brazil
Correspondence
Juliana Lott Carvalho, Faculdade de Medicina, Universidade de Brasília, Brasilia, DF, Brazil.
Email: [email protected]
Search for more papers by this authorAbstract
Skin lesions are associated with functional/cosmetic problems for those afflicted. Scarless regeneration is a challenge, not limited to the skin, and focus of active investigation. Recently, the host defense peptide innate defense regulatory peptide 1018 (IDR-1018) has shown exciting regenerative properties. Nevertheless, literature regarding IDR-1018 regenerative potential is scarce and limited to animal models. Here, we evaluated the regenerative potential of IDR-1018 using human 2D and 3D human skin equivalents. First, we investigated IDR-1018 using human cells found in skin—primary fibroblasts, primary keratinocytes, and the MeWo melanocytes cell line. IDR-1018 promoted cell proliferation and expression of marker of proliferation Ki-67, matrix metalloproteinase 1, and hyaluronan synthase 2 by fibroblasts. In keratinocytes, a drastic increase in expression was observed for Ki-67, matrix metalloproteinase 1, C-X-C motif chemokine receptor type 4, C-X-C motif chemokine receptor type 7, fibroblast growth factor 2, hyaluronan synthase 2, vascular endothelial growth factor, and elastin, reflecting an intense stimulation of these cells. In melanocytes, increased migration and proliferation were observed following IDR-1018 treatment. The capacity of IDR-1018 to promote dermal contraction was verified using a dermal model. Finally, using a 3D human skin equivalent lesion model, we revealed that the regenerative potential of IDR1018, previously tested in mice and pigs, is valid for human skin tissue. Lesions closed faster in IDR-1018-treated samples, and the gene expression signature observed in 2D was reproduced in the 3D human skin equivalents. Overall, the present data show the regenerative potential of IDR-1018 in an experimental system comprising human cells, underscoring the potential application for clinical investigation.
CONFLICT OF INTEREST
Authors declare no conflict of interest. A. Z., D. F., M. G., and J. L. C. are collaborators and/or scientific advisors for OneSkin Technologies.
Supporting Information
Filename | Description |
---|---|
TERM_2953-Supp_0001_T1-T3.pdfPDF document, 58.3 KB |
Table S1. Primers and Probes Table S2. qRT-PCR data in different skin cell types cultured as monolayers Table S3. qRT-PCR data of human skin equivalents (containing both epidermis and dermis layers). |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Achtman, A. H., Pilat, S., Law, C. W., Lynn, D. J., Janot, L., Mayer, M. L., … Schofield, L. (2012). Effective adjunctive therapy by an innate defense regulatory peptide in a preclinical model of severe malaria. Science Translational Medicine, 4(135), 135ra64-135ra64). https://doi.org/10.1126/scitranslmed.3003515
- Almine, J. F., Wise, S. G., & Weiss, A. S. (2012). Elastin signaling in wound repair. Birth Defects Research (Part C), 96, 248–257. https://doi.org/10.1002/bdrc.21016
- Amblard, M., Fehrentz, J.-A., Martinez, J., & Subra, G. (2006). Methods and protocols of modern solid phase peptide synthesis. Molecular Biotechnology, 33(3), 239–254. https://doi.org/10.1385/MB:33:3:239
- Bolouri, H., Sävman, K., Wang, W., Thomas, A., Maurer, N., Dullaghan, E., … Mallard, C. (2014). Innate defense regulator peptide 1018 protects against perinatal brain injury. Annals of Neurology, 75(3), 395–410. https://doi.org/10.1002/ana.24087
- Chiang, M. F., Yang, S. Y., Lin, I. Y., Hong, J. B., Lin, S. J., Ying, H. Y., … Lin, K. I. (2013). Inducible deletion of the Blimp-1 gene in adult epidermis causes granulocyte-dominated chronic skin inflammation in mice. Proceedings of the National Academy of Sciences of the United States of America, 110(16), 6476–6481. https://doi.org/10.1073/pnas.1219462110 Epub 2013 Apr 1
- Chipuk, J. E., Moldoveanu, T., Llambi, F., Parsons, M. J., & Green, D. R. (2010). The BCL-2 family reunion. Molecular Cell, 37(3), 299–310. https://doi.org/10.1016/j.molcel.2010.01.025
- Choe, H., Narayanan, A. S., Gandhi, D. A., Weinberg, A., Marcus, R. E., Lee, Z., … Greenfield, E. M. (2015). Immunomodulatory peptide IDR-1018 decreases implant infection and preserves osseointegration. Clinical Orthopaedics and Related Research. Springer US, 473(9), 2898–2907. https://doi.org/10.1007/s11999-015-4301-2
- Church, D., Elsayed, S., Reid, O., Winston, B., & Lindsay, R. (2006). Burn wound infections. Clinical Microbiology Reviews. American Society for Microbiology (ASM), 19(2), 403–434. https://doi.org/10.1128/CMR.19.2.403-434.2006
- Dechert, T. A., Ducale, A. E., Ward, S. I., & Yager, D. R. (2006). Hyaluronan in human acute and chronic dermal wounds. Wound Repair and Regeneration, 14(3), 252–258. https://doi.org/10.1111/j.1743-6109.2006.00119.x
- Demidova-Rice, T. N., Hamblin, M. R., & Herman, I. M. (2012). Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 2: Role of growth factors in normal and pathological wound healing: Therapeutic potential and methods of delivery. Advances in Skin & Wound Care, 25(8), 349–370. https://doi.org/10.1097/01.ASW.0000418541.31366.a3
- Eastwood, M., Porter, R., Khan, U., McGrouther, G., & Brown, R. (1996). Quantitative analysis of collagen gel contractile forces generated by dermal fibroblasts and the relationship to cell morphology. Journal of Cellular Physiology, 166(1), 33–42. https://doi.org/10.1002/(SICI)1097-4652(199601)166:1<33::AID-JCP4>3.0.CO;2-H
10.1002/(SICI)1097?4652(199601)166:1<33::AID?JCP4>3.0.CO;2?H CAS PubMed Web of Science® Google Scholar
- Ehrlich, P. H., & Moyer, K. E. (2013). Cell-populated collagen lattice contraction model for the investigation of fibroblast collagen interactions. Methods in Molecular Biology, 1037, 45–58. https://doi.org/10.1007/978-1-62703-505-7_3
- Freitas, C. G., Lima, S. M. F., Freire, M. S., Cantuária, A. P. C., Júnior, N. G. O., Santos, T. S., … Felipe, M. S. S. (2017). An Immunomodulatory peptide confers protection in an experimental candidemia murine model. Antimicrobial Agents and Chemotherapy, 61(8), e02518–e02516. https://doi.org/10.1128/AAC.02518-16
- Goldstein, N. B., Koster, M. I., Hoaglin, L. G., Spoelstra, N. S., Kechris, K. J., Robinson, S. E., … Birlea, S. A. (2015). Narrow band ultraviolet B treatment for human vitiligo is associated with proliferation, migration, and differentiation of melanocyte precursors. The Journal of Investigative Dermatology. NIH Public Access, 135(8), 2068–2076. https://doi.org/10.1038/jid.2015.126.
- Gurtner, G. C., Werner, S., Barrando, Y., & Longaker, M. T. (2012). Wound repair and regeneration. European Surgical Research, 49(1), 35–43. https://doi.org/10.1159/000339613
- Ikada, Y. (2006). Challenges in tissue engineering. Journal of the Royal Society, Interface. The Royal Society, 3(10), 589–601. https://doi.org/10.1098/rsif.2006.0124
- Kalailingam, P., Tan, H. B., Jain, N., Sng, M. K., Chan, J. S. K., Tan, N. S., & Thanabalu, T. (2017). Conditional knock out of N-WASP in keratinocytes causes skin barrier defects and atopic dermatitis-like inflammation. Scientific Reports, 7(1), 7311. https://doi.org/10.1038/s41598-017-07125-8
- Keira, S. M., Ferreira, L. M., Gragnani, A., Da, I., Duarte, S., & Barbosa, J. (2004). Experimental model for collagen estimation in cell culture. Acta Cirúrgica Brasileira, 19, 17–22. Available at: http://www.scielo.br/acb. (Accessed: 11 January 2018)
10.1590/S0102-86502004000700005 Google Scholar
- Liang, C.-C., Park, A. Y., & Guan, J.-L. (2007). In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nature Protocols, 2(2), 329–333. https://doi.org/10.1038/nprot.2007.30
- MacNeil, S. (2007). Progress and opportunities for tissue-engineered skin. Nature, 445(7130), 874–880. https://doi.org/10.1038/nature05664
- Mansour, S. C., de la Fuente-Núñez, C., & Hancock, R. E. W. (2015). Peptide IDR-1018: Modulating the immune system and targeting bacterial biofilms to treat antibiotic-resistant bacterial infections. Journal of Peptide Science, 21(5), 323–329. https://doi.org/10.1002/psc.2708
- Marin-Luevano, P., Trujillo, V., Rodriguez-Carlos, A., González-Curiel, I., Enciso-Moreno, J. A., Hancock, R. E. W., & Rivas-Santiago, B. (2018). Induction by innate defence regulator peptide 1018 of pro-angiogenic molecules and endothelial cell migration in a high glucose environment. Peptides, 101, 135–144. https://doi.org/10.1016/j.peptides.2018.01.010
- Mayer, M. L., Blohmke, C. J., Falsafi, R., Fjell, C. D., Madera, L., Turvey, S. E., & Hancock, R. E. W. (2013). Rescue of dysfunctional autophagy attenuates hyperinflammatory responses from cystic fibrosis cells. Journal of Immunology (Baltimore, Md. : 1950), 190(3), 1227–1238. https://doi.org/10.4049/jimmunol.1201404
- Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1–2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4
- Niyonsaba, F., Madera, L., Afacan, N., Okumura, K., Ogawa, H., & Hancock, R. E. W. (2013). The innate defense regulator peptides IDR-HH2, IDR-1002, and IDR-1018 modulate human neutrophil functions. Journal of Leukocyte Biology, 94(1), 159–170. https://doi.org/10.1189/jlb.1012497
- Nolan, T., Hands, R. E., & Bustin, S. A. (2006). Quantification of mRNA using real-time RT-PCR. Nature Protocols, 1(3), 1559–1582. https://doi.org/10.1038/nprot.2006.236
- Olczyk, P., Mencner, Ł., & Komosinska-Vassev, K. (2014). The role of the extracellular matrix components in cutaneous wound healing. BioMed Research International, 2014, 747584. https://doi.org/10.1155/2014/747584
-
Organisation for Economic Cooperation and Development. (2013). OECD TG 439—Test no. 439: In vitro skin irritation—Reconstructed human epidermis test method. OECD. doi: https://doi.org/10.1787/9789264203884-en.
10.1787/9789264203884?en Google Scholar
-
Organisation for Economic Cooperation and Development. (2015). OECD guideline 431 test no. 404: Acute dermal irritation/corrosion. OECD (OECD Guidelines for the Testing of Chemicals, Section 4). doi: https://doi.org/10.1787/9789264242678-en.
10.1787/9789264242678?en Google Scholar
- Palmieri, G., Balestrieri, M., Capuano, F., Proroga, Y. T. R., Pomilio, F., Centorame, P., … Anastasio, A. (2018). Bactericidal and antibiofilm activity of bactenecin-derivative peptides against the food-pathogen Listeria monocytogenes: New perspectives for food processing industry. International Journal of Food Microbiology. Elsevier, 279, 33–42. https://doi.org/10.1016/J.IJFOODMICRO.2018.04.039
- Pena, O. M., Afacan, N., Pistolic, J., Chen, C., Madera, L., Falsafi, R., … Hancock, R. E. W. (2013). Synthetic cationic peptide IDR-1018 modulates human macrophage differentiation. PLoS ONE, 8(1), 1–10. https://doi.org/10.1371/journal.pone.0052449
- Peng, Y., Wu, S., Tang, Q., Li, S., & Peng, C. (2019). KGF-1 accelerates wound contraction through the TGF-β1/Smad signaling pathway in a double-paracrine manner. The Journal of Biological Chemistry., 294, 8361–8370. https://doi.org/10.1074/jbc.RA118.006189
- Qu, Y., Mao, M., Li, X., Zhang, L., Huang, X., Yang, C., … Mu, D. (2008). Enhanced migration and CXCR4 over-expression in fibroblasts with telomerase reconstitution. Molecular and Cellular Biochemistry, 313(1–2), 45–52. https://doi.org/10.1007/s11010-008-9740-6
- Quan, C., Cho, M. K., Shao, Y., Mianecki, L. E., Liao, E., Perry, D., & Quan, T. (2015). Dermal fibroblast expression of stromal cell-derived factor-1 (SDF-1) promotes epidermal keratinocyte proliferation in normal and diseased skin. Protein & Cell, 6(12), 890–903. https://doi.org/10.1007/s13238-015-0198-5
- Rashighi, M., & Harris, J. E. (2017). Vitiligo pathogenesis and emerging treatments. Dermatologic Clinics, 35(2), 257–265. https://doi.org/10.1016/j.det.2016.11.014
- Rivas-Santiago, B., Castañeda-Delgado, J. E., Rivas Santiago, C. E., Waldbrook, M., González-Curiel, I., León-Contreras, J. C., … Hernandez-Pando, R. (2013). Ability of innate defence regulator peptides IDR-1002, IDR-HH2 and IDR-1018 to protect against mycobacterium tuberculosis infections in animal models. PLoS ONE. Edited by O. Neyrolles, 8(3), e59119. https://doi.org/10.1371/journal.pone.0059119
- Safferlin, K., Sütterlin, T., Westphal, K., Ernst, C., Breuhahn, K., James, M., … Grabe, N. (2013). Wound healing revised: A novel reepithelialization mechanism revealed by in vitro and in silico models. The Journal of Cell Biology, 203(4), 691–709. https://doi.org/10.1083/jcb.201212020
- Shi, X., Qin, Y. X., & Wan, X. Y. (2018). The research of the innate defense regulator peptide on the effects of methicillin resistant Staphylococcus aureus biofilm. Zhonghua Yi Xue Za Zhi, 98(4), 294–298. https://doi.org/10.3760/cma.j.issn.0376-2491.2018.04.011
- Sobecki, M., Mrouj, K., Colinge, J., Gerbe, F., Jay, P., Krasinska, L., … Fisher, D. (2017). Cell-cycle regulation accounts for variability in Ki-67 expression levels. Cancer Research, 77(10), 2722–2734. https://doi.org/10.1158/0008-5472.CAN-16-0707
- Spradling, K. D., McDaniel, A. E., Lohi, J., & Pilcher, B. K. (2001). Epsin 3 is a novel extracellular matrix-induced transcript specific to wounded epithelia. Journal of Biological Chemistry, 276, 29257–29267. https://doi.org/10.1074/jbc.M101663200
- Steinstraesser, L., Hirsch, T., Schulte, M., Kueckelhaus, M., Jacobsen, F., Mersch, E. A., … Kindrachuk, J. (2012). Innate defense regulator peptide 1018 in wound healing and wound infection. PLoS ONE, 7(8), 1–7. https://doi.org/10.1371/journal.pone.0039373
- Thurlow, L. R., Hanke, M. L., Fritz, T., Angle, A., Aldrich, A., Williams, S. H., … Kielian, T. (2011). Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. The Journal of Immunology, 186(11), 6585–6596. https://doi.org/10.4049/jimmunol.1002794
- Van De Loosdrecht, A. A., Nennie, E., Ossenkoppele, G. J., Beelen, R. H. J., & Langenhuijsen, M. M. A. C. (1991). Cell mediated cytotoxicity against U 937 cells by human monocytes and macrophages in a modified colorimetric A methodological study. Journal of Immunological Methods, 141, 15–22. https://doi.org/10.1016/0022-1759(91)90205-T
- Wang, Z., de la Fuente-Núñez, C., Shen, Y., Haapasalo, M., & Hancock, R. E. W. (2015). Treatment of oral multispecies biofilms by an anti-biofilm peptide. PLoS ONE. Edited by Z. Wen, 10(7), e0132512. https://doi.org/10.1371/journal.pone.0132512
- Wieczorek, M., Jenssen, H., Kindrachuk, J., Scott, W. R. P., Elliott, M., Hilpert, K., … Straus, S. K. (2010). Structural studies of a peptide with immune modulating and direct antimicrobial activity. Chemistry and Biology, 17(9), 970–980. https://doi.org/10.1016/j.chembiol.2010.07.007
- Yamauchi, A., Hadjur, C., Takahashi, T., Suzuki, I., Hirose, K., & Mahe, Y. F. (2013). Human skin melanocyte migration towards stromal cell-derived factor-1α demonstrated by optical real-time cell mobility assay: Modulation of their chemotactic ability by α-melanocyte-stimulating hormone. Experimental Dermatology, 22(10), 664–667. https://doi.org/10.1111/exd.12232
- Yanashima, K., Chieosilapatham, P., Yoshimoto, E., Okumura, K., Ogawa, H., & Niyonsaba, F. (2017). Innate defense regulator IDR-1018 activates human mast cells through G protein-, phospholipase C-, MAPK- and NF-ĸB-sensitive pathways. Immunologic Research, 65(4), 920–931. https://doi.org/10.1007/s12026-017-8932-0
- Yang, E.-J., & Bang, S.-I. (2017). Effects of conditioned medium from LL-37 treated adipose stem cells on human fibroblast migration. Experimental and Therapeutic Medicine, 14(1), 723–729. https://doi.org/10.3892/etm.2017.4558
- Zomer, H. D., & Trentin, A. G. (2018). Skin wound healing in humans and mice: Challenges in translational research. Journal of Dermatological Science, 90(1), 3–12. https://doi.org/10.1016/j.jdermsci.2017.12.009