Effect of adiponectin secreted from adipose-derived stem cells on bone-fat balance and bone defect healing
Shimao Yang
State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Department of Oral and Maxillofacial Surgery, Jinan Stomatology Hospital, Jinan, China
Search for more papers by this authorHanghang Liu
State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Search for more papers by this authorYao Liu
State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA
Search for more papers by this authorLi Liu
State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Search for more papers by this authorWenmei Zhang
Department of Oral and Maxillofacial Surgery, Jinan Stomatology Hospital, Jinan, China
Search for more papers by this authorCorresponding Author
En Luo
State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Correspondence
En Luo, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Section 3# 14 Renminnan Road, Chengdu, China.
Email: [email protected]
Search for more papers by this authorShimao Yang
State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Department of Oral and Maxillofacial Surgery, Jinan Stomatology Hospital, Jinan, China
Search for more papers by this authorHanghang Liu
State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Search for more papers by this authorYao Liu
State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA
Search for more papers by this authorLi Liu
State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Search for more papers by this authorWenmei Zhang
Department of Oral and Maxillofacial Surgery, Jinan Stomatology Hospital, Jinan, China
Search for more papers by this authorCorresponding Author
En Luo
State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
Correspondence
En Luo, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Section 3# 14 Renminnan Road, Chengdu, China.
Email: [email protected]
Search for more papers by this authorAbstract
The efficacy of adiponectin (APN) in regulating bone metabolism remains controversial. This study aimed to investigate the role of APN secreted from adipose-derived stem cells on adipogenesis and osteogenesis. Human APN gene was transfected via recombinant adenovirus into adipose derived stem cells (ASCs) in vitro and were cocultured with bone marrow mesenchymal stem cells (BMSCs) in using a transwell chamber. Adipogenesis was inhibited in APN-transfected ASCs; in BMSCs, adipogenesis was inhibited, but osteogenesis was promoted in coculture with APN-transfected ASCs. Next, the same adenovirus construct was transfected into the abdominal adipose tissue of a Sprague Dawley rat in vivo, and then a tibia defect was established in the same rat. We confirmed there was higher gene and protein expression of APN in ASCs and the abdominal adipose tissue of these rat models. Development of adipocytes in abdominal adipose tissue was suppressed, and less new bone was formed in the bone defect area. In conclusion, APN secreted from ASCs could directly inhibit adipogenesis in ASCs and BMSCs and promote osteogenesis in the latter. However, APN overexpression in adipose tissue was inversely associated with bone formation in tibia defects potentially due to decreased levels of circulating bone-activating hormones.
CONFLICT OF INTEREST
All authors state that they have no conflict of interest.
REFERENCES
- Abbott, M. J., Roth, T. M., Ho, L., Wang, L., O'Carroll, D., & Nissenson, R. A. (2015). Negative skeletal effects of locally produced adiponectin. PLoS ONE, 10, e0134290. https://doi.org/10.1371/journal.pone.0134290
- Abrahamsen, B., Rohold, A., Henriksen, J. E., & Beck-Nielsen, H. (2000). Correlations between insulin sensitivity and bone mineral density in non-diabetic men. Diabetic Medicine, 17, 124–129. https://doi.org/10.1046/j.1464-5491.2000.00234.x
- Achari, A. E., & Jain, S. K. (2017). Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. International Journal of Molecular Sciences, 18, E1321. https://doi.org/10.3390/ijms18061321
- Basurto, L., Galván, R., Cordova, N., Saucedo, R., Vargas, C., Campos, S., … Zárate, A. (2009). Adiponectin is associated with low bone mineral density in elderly men. European Journal of Endocrinology, 160, 289–293. https://doi.org/10.1530/EJE-08-0569
- Berg, A. H., Combs, T. P., Du, X., Brownlee, M., & Scherer, P. E. (2001). The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nature Medicine, 7, 947–953. https://doi.org/10.1038/90992
- Berner, H. S., Lyngstadaas, S. P., Spahr, A., Monjo, M., Thommesen, L., Drevon, C. A., … Reseland, J. E. (2004). Adiponectin and its receptors are expressed in bone-forming cells. Bone, 35, 842–849. https://doi.org/10.1016/j.bone.2004.06.008
- Challa, T. D., Rais, Y., & Ornan, E. M. (2010). Effect of adiponectin on ATDC5 proliferation, differentiation and signaling pathways. Molecular and Cellular Endocrinology, 323, 282–291. https://doi.org/10.1016/j.mce.2010.03.025
- Combs, T. P., Berg, A. H., Obici, S., Scherer, P. E., & Rossetti, L. (2001). Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. The Journal of Clinical Investigation, 108, 1875–1881. https://doi.org/10.1172/JCI14120
- Cornish, J., Callon, K. E., & Reid, I. R. (1996). Insulin increases histomorphometric indices of bone formation in vivo. Calcif Tissue Int, 59(6), 492–495.
- Cornish, J., Callon, K. E., Cooper, G. J. & Reid, I. R. (1995). Amylin stimulates osteoblast proliferation and increases mineralized bone volume in adult mice. Biochem Biophys Res Commun, 207(1), 133–139.
- Cornish, J., Callon, K. E., Bava, U., Watson, M., Xu, X., & Lin, J. M., (2007). Preptin, another peptide product of the pancreatic beta-cell, is osteogenic in vitro and in vivo. Am J Physiol Endocrinol Metab, 292(1), E117.
- Diez, J. J., & Iglesias, P. (2003). The role of the novel adipocyte derived hormoneadiponectin in human disease. European Journal of Endocrinology, 148, 293–300. https://doi.org/10.1530/eje.0.1480293
- Ealey, K. N., Kaludjerovic, J., Archer, M. C., & Ward, W. E. (2008). Adiponectin is a negative regulator of bone mineral and bone strength in growing mice. Experimental Biology and Medicine, 233, 1546–1553. https://doi.org/10.3181/0806-RM-192
- Friedenstein, A. J., Chailakhyan, R. K., & Gerasimov, U. V. (1987). Bone marrow osteogenic stem cells: In vitro cultivation and transplantation in diffusion chambers. Cell and Tissue Kinetics, 20, 263–272. https://doi.org/10.1111/j.1365-2184.1987.tb01309.x
- Fruebis, J., Tsao, T. S., Javorschi, S., Ebbets-Reed, D., Erickson, M. R., Yen, F. T., & Lodish, H. F. (2001). Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proceedings of the National Academy of Sciences of the United States of America, 98, 2005–2010. https://doi.org/10.1073/pnas.98.4.2005
- Hotta, K., Funahashi, T., Bodkin, N. L., Ortmeyer, H. K., Arita, Y., Hansen, B. C., & Matsuzawa, Y. (2001). Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes, 50, 1126–1133. https://doi.org/10.2337/diabetes.50.5.1126
- Hu, E., Liang, P., & Spiegelman, B. M. (1996). AdipoQ is a novel adipose-specific gene dysregulated in obesity. The Journal of Biological Chemistry, 271, 10697–10703. https://doi.org/10.1074/jbc.271.18.10697
- Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., … Verfaillie, C. M. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418, 41–49. https://doi.org/10.1038/nature00870
- Jin, H., Bae, Y., Kim, M., Kwon, S. J., Jeon, H., Choi, S., … Chang, J. (2013). Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. International Journal of Molecular Sciences, 14, 17986–18001. https://doi.org/10.3390/ijms140917986
- Kadowaki, T., Yamauchi, T., Kubota, N., Hara, K., Ueki, K., & Tobe, K. (2006). Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. The Journal of Clinical Investigation, 116, 1784–1792. https://doi.org/10.1172/JCI29126
- Kajimura, D., Lee, H. W., Riley, K. J., Arteaga-Solis, E., Ferron, M., Zhou, B., … Karsenty, G. (2013). Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1. Cell Metabolism, 17, 901–915. https://doi.org/10.1016/j.cmet.2013.04.009
- Kern, S., Eichler, H., Stoeve, J., Klüter, H., & Bieback, K. (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 24, 1294–1301. https://doi.org/10.1634/stemcells.2005-0342
- Kharroubi, I., Rasschaert, J., Eizirik, D. L., & Cnop, M. (2003). Expression of adiponectin receptors in pancreatic beta cells. Biochemical and Biophysical Research Communications, 312, 1118–1122. https://doi.org/10.1016/j.bbrc.2003.11.042
- Lee, H. W., Kim, S. Y., Kim, A. Y., Lee, E. J., Choi, J. Y., & , J. B. (2009). Adiponectin stimulates osteoblast differentiation through induction of COX2 in mesenchymal progenitor cells. Stem Cells, 27, 2254–2262. https://doi.org/10.1002/stem.144
- Li, X., Cui, Q., Kao, C., Wang, G. J., & Balian, G. (2003). Lovastatin inhibits adipogenic and stimulates osteogenic differentiation by suppressing PPARγ2 and increasing Cbfa1/Runx2 expression in bone marrow mesenchymal cell cultures. Bone, 33, 652–659. https://doi.org/10.1016/S8756-3282(03)00239-4
- Lindenmaier, L. B., Philbrick, K. A., Branscum, A. J., Kalra, S. P., Turner, R. T., & Iwaniec, U. T. (2016). Hypothalamic leptin gene therapy reduces bone marrow adiposity in ob/ob mice fed regular and high-fat diets. Front Endocrinol (Lausanne), 7, 110. https://doi.org/10.3389/fendo.2016.00110
- Luo, X. H., Guo, L. J., Xie, H., Yuan, L. Q., Wu, X. P., Zhou, H. D., & Liao, E. Y. (2006). Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway. Journal of Bone and Mineral Research, 21, 1648–1656. https://doi.org/10.1359/jbmr.060707
- Mitsui, Y., Gotoh, M., Fukushima, N., shirachi, I., Otabe, S., Yuan, X., … Nagata, K. (2011). Hyperadiponectinemia enhances bone formation in mice. BMC Musculoskeletal Disorders, 12, 18. https://doi.org/10.1186/1471-2474-12-18
- Mohamed-Ali, V., Pinkney, J. H., & Coppack, S. W. (1998). Adipose tissue as an endocrine and paracrine organ. International Journal of Obesity and Related Metabolic Disorders, 22, 1145–1158. https://doi.org/10.1038/sj.ijo.0800770
- Naot, D., Watson, M., Callon, K. E., Tuari, D., Musson, D. S., Choi, A. J., … Cornish, J. (2016). Reduced bone density and cortical bone indices in female adiponectin-knockout mice. Endocrinology, 157, 3550–3561. https://doi.org/10.1210/en.2016-1059
- Oshima, K., Nampei, A., Matsuda, M., Iwaki, M., Fukuhara, A., Hashimoto, J., … Shimomura, I., (2005). Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochemical and Biophysical Research Communications, 331, 520-526. https://doi.org/10.1016/j.bbrc.2005.03.210
- Ouchi, N., Kihara, S., Arita, Y., Maeda, K., Kuriyama, H., Okamoto, Y., … Matsuzawa, Y. (1999). Novel modulator for endothelial adhesion molecules: Adipocyte-derived plasma protein adiponectin. Circulation, 100, 2473–2476. https://doi.org/10.1161/01.CIR.100.25.2473
- Reid, I.R., (2002). Relationships among Body Mass, Its Components, and Bone. Bone, 31, 547–555.
- Reid, I. R., Baldock, P. A., & Cornish, J. (2018). Effects of leptin on the skeleton. Endocrine Reviews, 39, 938–959. https://doi.org/10.1210/er.2017-00226
- Reid, I. R., Cornish, J., & Baldock, P. A. (2006). Nutrition-related peptides and bone homeostasis. Journal of Bone and Mineral Research, 21, 495–500. https://doi.org/10.1359/jbmr.051105
- Satoh, H., Nguyen, M. T., Miles, P. D., Imamura, T., Usui, I., & Olefsky, J. M. (2004). Adenovirus-mediated chronic “hyper-resistinemia” leads to in vivo insulin resistance in normal rats. Journal of Clinical Investigation, 114, 224–231. https://doi.org/10.1172/JCI200420785
- Saunders, T. J., Davidson, L. E., Janiszewski, P. M., Després, J.-P., Hudson, R., & Ross, R. (2009). Associations of the limb fat to trunk fat ratio with markers of cardiometabolic risk in elderly men and women. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 64, 1066–1070. https://doi.org/10.1093/gerona/glp079
- Scherer, P. E., Williams, S., Fogliano, M., Baldini, G., & Lodish, H. F. (1995). A novel serum protein similar to C1q, produced exclusively in adipocytes. The Journal of Biological Chemistry, 270, 26746–26749. https://doi.org/10.1074/jbc.270.45.26746
- Shinoda, Y., Yamaguchi, M., Ogata, N., Akune, T., Kubota, N., Yamauchi, T., … Kawaguchi, H. (2006). Regulation of bone formation by adiponectin through autocrine/paracrine and endocrine pathways. Journal of Cellular Biochemistry, 99, 196–208. https://doi.org/10.1002/jcb.20890
- Spiegelman, B. M., & Flier, J. S. (2001). Obesity and the regulation of energy balance. Cell, 104, 531–543. https://doi.org/10.1016/S0092-8674(01)00240-9
- Thrailkill, K. M., Lumpkin, C. K. Jr., Bunn, R. C., Kemp, S. F., & Fowlkes, J. L. (2005). Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. American Journal of Physiology. Endocrinology and Metabolism, 289, E735–E745. https://doi.org/10.1152/ajpendo.00159.2005
- Ukkola, O., & Santaniemi, M. (2002). Adiponectin: A link between excess adiposity and associated comorbidities? Journal of Molecular Medicine (Berlin, Germany), 80, 696–702. https://doi.org/10.1007/s00109-002-0378-7
- Valenti, M. T., Garbin, U., Pasini, A., Zanatta, M., Stranieri, C., Manfro, S., … Dalle Carbonare, L. (2011). Role of Ox-PAPCs in the differentiation of mesenchymal stem cells (MSCs) and Runx2 and PPAR?2 expression in MSCs-like of osteoporotic patients. PLoS One, 6, e20363. https://doi.org/10.1371/journal.pone.0020363
- Wang, F., Wang, P. X., Wu, X. L., Dang, S. Y., Chen, Y., Ni, Y. Y., … Pang, X. F. (2013). Deficiency of adiponectin protects against ovariectomy-induced osteoporosis in mice. PLoS ONE, 8, e68497. https://doi.org/10.1371/journal.pone.0068497
- Wang, Q. P., Li, X. P., Wang, M., Zhao, L. L., Li, H., Xie, H., & Lu, Z. Y. (2014). Adiponectin exerts its negative effect on bone metabolism via OPG/RANKL pathway: an in vivo study. Endocrine, 47, 845–853. https://doi.org/10.1007/s12020-014-0216-z
- Wang, Y., Zhang, X., Shao, J., Liu, H., Liu, X., & Luo, E. (2017). Adiponectin regulates BMSC osteogenic differentiation and osteogenesis through the Wnt/β- catenin pathway. Scientific Reports, 17, 3652. https://doi.org/10.1038/s41598-017-03899-z
- Wu, Y., Tu, Q., Valverde, P., Zhang, J., Murray, D., Dong, L. Q., … Chen, J. (2014). Central adiponectin administration reveals new regulatory mechanisms of bone metabolism in mice: American journal of physiology. Endocrinology and Metabolism, 306, E1418–E1430. https://doi.org/10.1152/ajpendo.00048.2014
- Wu, Z., Shao, P., Dass, C. R., & Wei, Y. (2018). Systemic leptin administration alters callus VEGF levels and enhances bone fracture healing in wildtype and ob/ob mice. Injury, 49, 1739–1745. https://doi.org/10.1016/j.injury.2018.06.040
- Xu, J. C., Wu, G. H., Zhou, L. L., Yang, X. J., & Liu, J. T. (2016). Leptin improves osteoblast differentiation of human bone marrow stroma stem cells. European Review for Medical and Pharmacological Sciences, 20, 3507–3513.
- Yamauchi, T., Kamon, J., Ito, Y., Tsuchida, A., Yokomizo, T., Kita, S., … Kadowaki, T. (2003). Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature, 423, 762–769. https://doi.org/10.1038/nature01705
- Yamauchi, T., Kamon, J., Waki, H., Terauchi, Y., Kubota, N., Hara, K., … Kadowaki, T. (2001). The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nature Medicine, 8, 941–946. https://doi.org/10.1038/90984
- Zhang, X., Yang, M., Lin, L., Chen, P., Ma, K. T., Zhou, C. Y., & Ao, Y. F. (2006). Runx2 overexpression enhances osteoblastic differentiation and mineralization in adipose-derived stem cells in vitro and in vivo. Calcified Tissue International, 79, 169–178. https://doi.org/10.1007/s00223-006-0083-6
- Zheng, B., Jiang, J., Chen, Y., Lin, M., du, Z., Xiao, Y., … Yan, F. (2017). Leptin overexpression in bone marrow stromal cells promotes periodontal regeneration in a rat model of osteoporosis. Journal of Periodontology, 88, 808–818. https://doi.org/10.1902/jop.2017.170042