Reconstructive urology and tissue engineering: Converging developmental paths
Corresponding Author
Jan Adamowicz
Chair of Urology, Department of Regenerative Medicine, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland
Correspondence
Jan Adamowicz, University Hospital, Nicolaus Copernicus University, Marii Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland.
Email: [email protected]
Search for more papers by this authorBlazej Kuffel
Chair of Urology, Department of Regenerative Medicine, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland
Search for more papers by this authorShane Vontelin Van Breda
Department of Biomedicine, University Hospital of Basel, Basel, Switzerland
Search for more papers by this authorMarta Pokrwczynska
Chair of Urology, Department of Regenerative Medicine, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland
Search for more papers by this authorTomasz Drewa
Chair of Urology, Department of Regenerative Medicine, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland
Search for more papers by this authorCorresponding Author
Jan Adamowicz
Chair of Urology, Department of Regenerative Medicine, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland
Correspondence
Jan Adamowicz, University Hospital, Nicolaus Copernicus University, Marii Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland.
Email: [email protected]
Search for more papers by this authorBlazej Kuffel
Chair of Urology, Department of Regenerative Medicine, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland
Search for more papers by this authorShane Vontelin Van Breda
Department of Biomedicine, University Hospital of Basel, Basel, Switzerland
Search for more papers by this authorMarta Pokrwczynska
Chair of Urology, Department of Regenerative Medicine, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland
Search for more papers by this authorTomasz Drewa
Chair of Urology, Department of Regenerative Medicine, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland
Search for more papers by this authorAbstract
Reconstructive urology is a complex and demanding branch of modern urology. Complicated cases, necessity of microsurgical approach, and constant exposure to urine make urinary reconstruction especially difficult. With impaired healing, excessive scarring, and recurring fibrosis, functional results are still not satisfying. For better, more successful outcomes, a novel tissue engineering technology-based solutions are being gradually investigated. The use of tissue engineering is the most promising strategy to improve results of reconstructive urology procedures due to possibility of designing organ-specific grafts. Moreover, targeted modification of healing environment by stem cells and growth factors is a unique opportunity that might bring reconstructive urology on molecular level. This review defined limitations and problems encountered in reconstructive urology and discussed relevant tissue engineering-based achievements in the field of urethra, urinary bladder, and ureter regeneration. The background justifying tissue engineering approach to urethra, urinary bladder, and ureter reconstruction was discussed. Then, the wide range of experimental methods utilising biomaterials and cell seeding was deliberated to show readers the current tools offered by tissue engineering. At the end, we characterised major challenges that are needed to be addressed before tissue entering would become standard technology in urological departments.
REFERENCES
- About the Center for Biologics Evaluation and Research http://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CBER
- Adamowicz, J., Drewa, T., Tworkiewicz, J., Kloskowski, T., Nowacki, M., & Pokrywczyńska, M. (2011). Schwann cells—A new hope in tissue engineered urinary bladder innervation. A Method of Cell Isolation. Cent European J Urol, 64, 87–89. https://doi.org/10.5173/ceju.2011.02.art8
- Adamowicz, J., Kowalczyk, T., & Drewa, T. (2013). Tissue engineering of urinary bladder—Current state of art and future perspectives. Cent European J Urol, 66, 202–206. https://doi.org/10.5173/ceju.2013.02.art23
- Adamowicz, J., Pokrywczyńska, M., Tworkiewicz, J., Kowalczyk, T., van Breda, S. V., Tyloch, D., … Drewa, T. (2016). New amniotic membrane based biocomposite for future application in reconstructive urology. PLoS One, 11(1), e0146012. https://doi.org/10.1371/journal.pone.0146012
- Adamowicz, J., Pokrywczynska, M., Van Breda, S. V., Kloskowski, T., & Drewa, T. (2017). Concise review: Tissue engineering of urinary bladder; we still have a long way to go? Stem Cells Translational Medicine, 6(11), 2033–2043. https://doi.org/10.1002/sctm.17-0101
- Agrawal, A., Lee, B. H., Irvine, S. A., An, J., Bhuthalingam, R., Singh, V., … Venkatraman, S. S. (2015). Smooth muscle cell alignment and phenotype control by melt spun polycaprolactone fibers for seeding of tissue engineered blood vessels. Int J Biomater, 2015, 1, 434876–8. https://doi.org/10.1155/2015/434876
- Ajalloueian, F., Zeiai, S., Fossum, M., & Hilborn, J. G. (2014). Constructs of electrospun PLGA compressed collagen and minced urothelium for minimally manipulated autologous bladder tissue expansion. Biomaterials, 35(22), 5741–5748. https://doi.org/10.1016/j.biomaterials.2014.04.002
- Andrich, D., & Mundy, A. (2001). The Barbagli procedure gives the best results for patch urethroplasty of the bulbar urethra. BJU International, 88, 385–389. 11564027, DOI: https://doi.org/10.1046/j.1464-410X.2001.02344.x
- Atala, A., Bauer, S. B., Soker, S., Yoo, J. J., & Retik, A. B. (2006). Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet, 15, 1241–1246. https://doi.org/10.1016/S0140-6736(06)68438-9
- Barbagli, G., Selli, C., di Cello, V., & Mottola, A. (1996). A one-stage dorsal free-graft urethroplasty for bulbar urethral strictures. BJU, 78, 929–932. PMID: 9014721, DOI: https://doi.org/10.1046/j.1464-410X.1996.23121.x
- Barnes, C. A., Brison, J., Michel, R., Brown, B. N., Castner, D. G., Badylak, S. F., & Ratner, B. D. (2011). The surface molecular functionality of decellularized extracellular matrices. Biomaterials, 32(1), 137–143. https://doi.org/10.1016/j.biomaterials.2010.09.007
- Basu J, Ludlow J (2012) Developments in tissue engineered and regenerative medicine products 1st edition: A practical approach ISBN 9781907568763
- Bonitz, R. P., & Hanna, M. K. (2016). Use of human acellular dermal matrix during classic bladder exstrophy repair. Journal of Pediatric Urology, 12(2), 114.e1–114.e5. https://doi.org/10.1016/j.jpurol.2015.10.005
- Borza, T., Jacobs, B. L., Montgomery, J. S., Weizer, A. Z., Morgan, T. M., Hafez, K. S., … Skolarus, T. A. (2017). No differences in population-based readmissions after open and robotic-assisted radical cystectomy: Implications for post-discharge care. Urology, 104, 77–83. https://doi.org/10.1016/j.urology.2017.01.042
- Brandt, A. S., von Rundstedt, F. C., Lazica, D. A., & Roth, S. (2010). Ureteral reconstruction after ureterorenoscopic injuries. Urologie, a, 49, 812–882. https://doi.org/10.1007/s00120-010-2333-5
- Brito-Juarez, M., Volkmer, B. G., Gschwend, J. E., Hautmann, R. E., & Bartsch, G. C. Jr. (2007). Tissue engineered venous matrices for potential applications in the urogenital tract. Tissue Engineering, 13(10), 2475–2482. https://doi.org/10.1089/ten.2006.0390
- Browne, B. M., & Vanni, A. J. (2017). Use of alternative techniques and grafts in urethroplasty. The Urologic Clinics of North America, 44(1), 127–140. https://doi.org/10.1016/j.ucl.2016.08.003
- Burks, F. N., & Santucci, R. A. (2014). Management of iatrogenic ureteral injury. Ther AdvUrol, 6(3), 115–124. https://doi.org/10.1177/1756287214526767
10.1177/1756287214526767 Google Scholar
- Buscarini, M., Pasin, E., & Stein, J. P. (2007). Complications of radical cystectomy. Minerva Urologica e Nefrologica, 59, 67–87. PMID: 17431372
- Chao, F., & Yue-min, X. (2012). Tissue engineering in low urinary tract reconstruction, tissue regeneration—From basic biology to clinical application. INTECH. https://doi.org/10.5772/27801
10.5772/27801 Google Scholar
- Chao, L., Yue-Min, X., Lu-Jie, S., Qiang, F., & Lei, C. (2008). Urethral reconstruction using oral keratinocyte seeded bladder acellular matrix grafts. In The Journal of Urology, 180(4), 1538–1542. https://doi.org/10.1016/j.juro.2008.06.013
- Chun, S. Y., Kim, B. S., Kwon, S. Y., Park, S. I., Song, P. H., Yoo, E. S., … Kim, H. T. (2015). Urethroplasty using autologous urethral tissue-embedded acellular porcine bladder submucosa matrix grafts for the management of long-segment urethral stricture in a rabbit model. Journal of Korean Medical Science, 30(3), 301–307. https://doi.org/10.3346/jkms.2015.30.3.301
- Clifford, T. G., Shah, S. H., Bazargani, S. T., Miranda, G., Cai, J., Wayne, K., … Daneshmand, S. (2016). Prospective evaluation of continence following radical cystectomy and orthotopic urinary diversion using a validated questionnaire. The Journal of Urology, 196, 1685–1691. https://doi.org/10.1016/j.juro.2016.05.093
- Davis, D. M. (1943). Intubated ureterotomy: A new operation for ureteral and ureteropelvic strictures. Surgery, Gynecology & Obstetrics, 76, 513–523.
- De Filippo, R. E., Yoo, J. J., & Atala, A. (2002). Urethral replacement using cell seeded tubularized collagen matrices. The Journal of Urology, 168, 1789–1792. discussion 1792–3. DOI: https://doi.org/10.1097/01.ju.0000027662.69103.72
- Dorin, R. P., Pohl, H. G., De Filippo, R. E., Yoo, J. J., & Atala, A. (2008). Tubularized urethral replacement with unseeded matrices: What is the maximum distance for normal tissue regeneration. World Journal of Urology, 26, 323–326. https://doi.org/10.1007/s00345-008-0316-6
- Drewa, T., Adamowicz, J., & Sharma, A. (2012). Tissue engineering for the oncologic urinary bladder. Nature Reviews. Urology, 9, 561–572. https://doi.org/10.1038/nrurol.2012.158
- Dublin, N., & Stewart, L. H. (2004). Oral complications after buccal mucosal graft harvest for urethroplasty. BJU International, 94, 867–869. https://doi.org/10.1111/j.1464-410X.2004.05048.x
- El Kassaby, A. W., et al. (2008). Randomized comparaeve study between buccal mucosal and acellular bladder matrix grafts in complex anterior urethral strictures. The Journal of Urology, 179(4), 1432–1436. https://doi.org/10.1016/j.juro.2007.11.101
- El-Assmy, A., Hafez, A. T., El-Sherbiny, M. T., El-Hamid, M. A., Mohsen, T., et al. (2004). Use of single layer small intestinal submucosa for long segment ureteral replacement: A pilot study. The Journal of Urology, 171, 1939–1942. https://doi.org/10.1097/01.ju.0000121437.94629.ef
- EMEA/CHMP. (2006). Guideline on human cell-based medicinal products. In EMEA/CHMP/410869/2006. http://www.ema.europa.eu
- Engel, O., de Petriconi, R., Volkmer, B. G., Gust, K. M., Mani, J., Haferkamp, A., … Bartsch, G. (2014). The feasibility of ureteral tissue engineering using autologousveins: An orthotopic animal model with long term results. Journal of Negative Results in Biomedicine, 13, 17. https://doi.org/10.1186/1477-5751-13-17
- European Medicines Agency, Multidisciplinary: Cell therapy and tissue engineering http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/general/general_content_000405.jsp&mid=WC0b01ac058002958a
- Ferguson, M. W., & O'Kane, S. (2004). Scar-free healing: From embryonic mechanisms to adult therapeutic intervention. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 359(1445), 839–850. https://doi.org/10.1098/rstb.2004.1475
- Fiala, R., Vidlar, A., Vrtal, R., Belej, K., & Student, V. (2007). Porcine small intesenal submucosa graft for repair of anterior urethral strictures. European Urology, 51(6), 1702–1708. https://doi.org/10.1016/j.eururo.2007.01.099
- Gakis, G., & Stenzl, A. (2010). Ileal neobladder and its variants. European Urology Supplements, 9(10), 745–753. https://doi.org/10.1016/j.eursup.2010.10.001
- Gallentine, M. L., Morey, A. F., & Thompson, I. M. Jr. (2001). Hypospadias: A contemporary epidemiologic assessment. Urology, 57, 788–790. 11306407, DOI: https://doi.org/10.1016/S0090-4295(00)01105-5
- Hansen, M. H., Hayn, M., & Murray, P. (2016). The use of bowel in urologic reconstructive surgery. The Surgical Clinics of North America, 96(3), 567–582. https://doi.org/10.1016/j.suc.2016.02.011
- Hinman, F., & Baumann, F. W. (1973). Vesical and ureteral damage from voiding dysfunction in boys without neurologic or obstructive disease. The Journal of Urology, 109(4), 727–732. https://doi.org/10.1016/S0022-5347(17)60526-3
- Horn, P. A., Figueiredo, C., & Kiem, H. P. (2007). Gene therapy in the transplantation of allogeneic organs and stem cells. Current Gene Therapy, 7(6), 458–468. 18045105, DOI: https://doi.org/10.2174/156652307782793513
- Horst, M., Milleret, V., Nötzli, S., Madduri, S., Sulser, T., Gobet, R., & Eberli, D. (2014). Increased porosity of electrospun hybrid scaffolds improved bladder tissue regeneration. Journal of Biomedical Materials Research. Part A, 102(7), 2116–2124. https://doi.org/10.1002/jbm.a.34889
- Human Tissue Authority. (2017) Regenerative medicine and the regulation of advanced therapies medicinal products (2017) https://www.hta.gov.uk/policies/regenerative-medicine-and-regulation-advanced-therapies-medicinal-products-atmps Accessed October
- Jäger, W., Thomas, C., Haag, S., et al. (2011). Early vs delayed radical cystectomy for ‘high-risk’ carcinoma not invading bladder muscle: Delay of cystectomy reduces cancer-specific survival. BJU International, 108, E284–E288. https://doi.org/10.1111/j.1464-410X.2010.09980.x
- Jezior, J. R., & Schlossberg, S. M. (2002). Excision and primary anastomosis for anterior urethral stricture. The Urologic Clinics of North America, 29(2), 373–380. 12371228, DOI: https://doi.org/10.1016/S0094-0143(02)00035-6
- Joseph, D. B., Borer, J. G., De Filippo, R. E., Hodges, S. J., & McLorie, G. A. (2014). Autologous cell seeded biodegradable scaffold for augmentation cystoplasty: Phase II study in children and adolescents with spina bifida. The Journal of Urology, 19, 1389–1395. https://doi.org/10.1016/j.juro.2013.10.103
- Kates, M., Singh, A., Matsui, H., Steinberg, G. D., Smith, N. D., Schoenberg, M. P., & Bivalacqua, T. J. (2015). Tissue-engineered urinary conduits. Current Urology Reports, 16(3), 8. https://doi.org/10.1007/s11934-015-0480-3
- Kloskowski, T., Jundziłł, A., Kowalczyk, T., Nowacki, M., Bodnar, M., Marszałek, A., … Drewa, T. (2014). Ureter regeneration-the proper scaffold has to be defined. PLoS One, 9(8), e106023. https://doi.org/10.1371/journal.pone.0106023
- Kloskowski, T., Kowalczyk, T., Nowacki, M., & Drewa, T. (2012). Tissue engineering and ureter regeneration. Is it possible? The International Journal of Artificial Organs, 36, 392–405. https://doi.org/10.5301/ijao.5000130
- Kloskowski, T., Pokrywczyńska, M., & Drewa, T. (2015). Artificial urinary conduit construction using tissue engineering methods. Cent European J Urol, 68, 109–114. https://doi.org/10.5173/ceju.2015.01.448
- Koch, H., Hammer, N., Ossmann, S., Schierle, K., Sack, U., Hofmann, J., … Boldt, A. (2015). Tissue engineering of ureteral grafts: Preparation of biocompatible crosslinked ureteral scaffolds of porcine origin. Frontiers in Bioengineering and Biotechnology, 3, 89. https://doi.org/10.3389/fbioe.2015.00089
- Kollhoff, D. M., Cheng, E. Y., & Sharma, A. K. (2011). Urologic applications of engineered tissue. Regenerative Medicine, 6, 757–765. https://doi.org/10.2217/rme.11.91
- Kraima, A. C., Derks, M., Smit, N. N., van de Velde, C. J., Kenter, G. G., et al. (2016). Careful dissection of the distal ureter is highly important in nerve-sparing radical pelvic surgery: A 3D reconstruction and immunohistochemical characterization of the vesical plexus. International Journal of Gynecological Cancer, 26(5), 959–966. https://doi.org/10.1097/IGC.0000000000000709
- Kristjansson, A., & Mansson, W. (2004). Renal function in the setting of urinary diversion. World Journal of Urology, 22(3), 172–177. https://doi.org/10.1007/s00345-004-0431-y
- Li, H. B., Xu, Y. M., Li, C., Song, L., Feng, C., Zhang, E., et al. (2013). Epithelial-differentiated adipose-derived stem cells seeded bladder acellular matrix grafts for urethral reconstruction: An animal model. Tissue Engineering. Part a, 189. https://doi.org/10.1089/ten.tea.2013.0122
10.1089/ten.tea.2013.0122 Google Scholar
- Liao, W., Yang, S., Song, C., Li, X., Li, Y., & Xiong, Y. (2013). Construction of ureteral grafts by seeding bone marrow mesenchymal stem cells and smooth muscle cells into bladder acellular matrix. Transplantation Proceedings, 45(2), 730–734. https://doi.org/10.1016/j.transproceed.2012.08.023
- Lumen, N., Oosterlinck, W., & Hoebeke, P. (2012). Urethral reconstruction using buccal mucosa or penile skin grafts: Systematic review and metaanalysis. Urologia Internationalis, 89, 387–394. https://www.karger.com/Article/FullText/341138. https://doi.org/10.1159/000341138
- Miftahof RN, Nam HG. (2013) Biomechanics of the human urinary bladder ISBN 978–3–642-36146-3
- Mundy, A. R. (2006). Management of urethral strictures. Postgraduate Medical Journal, 82, 489–493. https://doi.org/10.1136/pgmj.2005.042945
- Murrell, G. A., Francis, M. J., & Bromley, L. (1990). Modulation of fibroblast proliferation by oxygen free radicals. The Biochemical Journal, 265(3), 659–665. PMID: 2154966, DOI: https://doi.org/10.1042/bj2650659
- Olsson, C. A., & Norlén, L. J. (1986). Combined Boari bladder flap-psoas bladder hitch procedure in ureteral replacement. Scandinavian Journal of Urology and Nephrology, 20(4), 279–284. 3810057, DOI: https://doi.org/10.3109/00365598609024512
- Osman, Y., Shokeir, A., Gabr, M., El-Tabey, N., Mohsen, T., et al. (2004). Canine ureteral replacement with long acellular matrix tube: Is it clinically applicable? The Journal of Urology, 172, 1151–1514. https://doi.org/10.1097/01.ju.0000134886.44065.00
- Park, J., & Ahn, H. (2011). Radical cystectomy and orthotopic bladder substitution using ileum. Korean Journal of Urology, 52, 233–240. https://doi.org/10.4111/kju.2011.52.4.233
- Png, J. C., & Chapple, C. R. (2000). Principles of ureteric reconstruction. Current Opinion in Urology, 10(3), 207–212. PMID: 10858898
- Pokrywczynska, M., Adamowicz, J., Sharma, A. K., & Drewa, T. (2014). Human urinary bladder regeneration through tissue engineering—An analysis of 131 clinical cases. Experimental Biology and Medicine (Maywood, N.J.), 239, 264–271. https://doi.org/10.1177/1535370213517615
- Pokrywczynska, M., Czapiewska, M., Jundzill, A., Bodnar, M., Balcerczyk, D., Kloskowski, T., … Drewa, T. (2016). Optimization of porcine urothelial cell cultures: Best practices, recommendations, and threats. Cell Biology International, 40(7), 812–820. https://doi.org/10.1002/cbin.10614
- Raya-Rivera, A., Esquiliano, D. R., Yoo, J. J., Lopez-Bayghen, E., Soker, S., & Atala, A. (2011). Tissue-engineered autologous urethras for patients who need reconstruction: An observational study. Lancet, 377(9772), 1175–1182. https://doi.org/10.1016/S0140-6736(10)62354-9
- Ribeiro-Filho, L. A., & Sievert, K. D. (2015). Acellular matrix in urethral reconstruction. In Advanced Drug Delivery Reviews, 82–83, 38–46. https://doi.org/10.1016/j.addr.2014.11.019
- Roelofs, L. A. J., de Jonge, P. K. J. D., Oosterwijk, E., Tiemessen, D. M., Kortmann, B. B. M., de Gier, R. P. E., … Feitz, W. F. J. (2017). Bladder regeneration using multiple acellular scaffolds with growth factors in a bladder. Tissue Engineering. Part A 2018 Jan, 24(1–2), 11–20. https://doi.org/10.1089/ten.TEA.2016.0356
- Shafik, A., & Doss, S. (1999). Surgical anatomy of the somatic terminal innervation to the anal and urethral sphincters: Role in anal and urethral surgery. The Journal of Urology, 161(1), 85–89. 10037375, DOI: https://doi.org/10.1016/S0022-5347(01)62072-X
- Shah, A. P., Mevcha, A., Wilby, D., Alatsatianos, A., Hardman, J. C., Jacques, S., & Wilton, J. C. (2014). Continence and micturition: An anatomical basis. Clinical Anatomy, 27(8), 1275–1283. https://doi.org/10.1002/ca.22388
- Shakhssalim, N., Rasouli, J., Moghadasali, R., Aghdas, F. S., Naji, M., & Soleimani, M. (2013). Bladder smooth muscle cells interaction and proliferation on PCL/PLLA electrospun nanofibrous scaffold. The International Journal of Artificial Organs, 36(2), 113–120. https://doi.org/10.5301/ijao.5000175
- Shakhssalim, N., Soleimani, M., Dehghan, M. M., Rasouli, J., Taghizadeh-Jahed, M., Torbati, P. M., & Naji, M. (2017). Bladder smooth muscle cells on electrospun poly(ε-caprolactone)/poly(l-lactic acid) scaffold promote bladder regeneration in a canine model. Materials Science & Engineering. C, Materials for Biological Applications, 75, 877–884. https://doi.org/10.1016/j.msec.2017.02.064
- Shariat, S. F., Milowsky, M., & Droller, M. J. (2009). Bladder cancer in the elderly. Urologic Oncology, 27, 653–667. https://doi.org/10.1016/j.urolonc.2009.07.020
- Siegel, J., Simhan, J., Tausch, T. J., & Morey, A. F. (2014). Ureteral strictures and reconstruction in the cancer survivor. Current Opinion in Urology, 24(4), 421–426. https://doi.org/10.1097/MOU.0000000000000067
- Sievert KD (2017) Tissue engineering of the urethra: Solid basic research and farsighted planning are required for clinical application, European Urology, Volume 72, Issue 4, Pages 607–609 https://doi.org/10.1016/j.eururo.2017.04.025
10.1016/j.eururo.2017.04.025 Google Scholar
- Sievert, K. D., et al. (2001). Heterologous acellular matrix graft for reconstruction of the rabbit urethra: Histological and functional evaluation. The Journal of Urology, 165(6), 2096–2102. https://doi.org/10.1097/00005392-200106000-00077
- Singh, V., Yadav, R., Sinha, R. J., & Gupta, D. K. (2014). Prospective comparison of quality-of-life outcomes between ileal conduit urinary diversion and orthotopic neobladder reconstruction after radical cystectomy: A statistical model. BJU International, 113, 726–732. https://doi.org/10.1111/bju.12440
- Sofer, M., Rowe, E., Forder, D. M., & Denstedt, J. D. (2002). Ureteral segment replacement using multilayer porcine small-intestinal submucosa. Journal of Endourology, 16, 27–31. https://doi.org/10.1089/089277902753483682
- van Hemelrijck, M., Thorstenson, A., Smith, P., Adolfsson, J., & Akre, O. (2013). Risk of in-hospital complications after radical cystectomy for urinary bladder carcinoma: Population-based follow-up study of 7608 patients. BJU International, 112, 1113–1120. https://doi.org/10.1111/bju.12239
- Versteegden, L. R., de Jong, P. K., et al. (2017). Tissue engineering of the urethra: A systematic review and meta-analysis of preclinical and clinical studies. European Urology, 72, 594–606. https://doi.org/10.1016/j.eururo.2017.03.026
- Versteegden, L. R., van Kampen, K. A., Janke, H. P., Tiemessen, D. M., & Hoogenkamp, H. R. (2017). Tubular collagen scaffolds with radial elasticity for hollow organ regeneration. Acta Biomaterialia, 52, 1–8. https://doi.org/10.1016/j.actbio.2017.02.005
- Wallace, D. M., Rothwell, D. L., & Williams, D. I. (1978). The long-term follow-up of surgically treated vesicoureteric reflux. British Journal of Urology, 50(7), 479–484. https://doi.org/10.1111/j.1464-410X.1978.tb06195.x
- Wallace, M. E., & Spickett, S. G. (1967). Hydronephrosis in mouse, rat, and man. Journal of Medical Genetics, 4(2), 73–82. https://doi.org/10.1136/jmg.4.2.73
- Watterson, J. D., Mahoney, J. E., Futter, N. G., & Gaffield, J. (1998). Iatrogenic ureteric injuries: Approaches to etiology and management. Canadian Journal of Surgery, 41(5), 379–382. PMID: 9793505
- Wiesner, C., & Thüroff, J. W. (2004). Techniques for uretero-intestinal reimplantation. Current Opinion in Urology, 14(6), 351–355. 15626878, DOI: https://doi.org/10.1097/00042307-200411000-00010
- Witjes, J. A., Compérat, E., Cowan, N. C., de Santis, M., Gakis, G., Lebret, T., … Sherif, A. (2014). European Association of Urology. EAU guidelines on muscle-invasive and metastatic bladder cancer: Summary of the 2013 guidelines. European Urology, 65, 778–792. https://doi.org/10.1016/j.eururo.2013.11.046
- Witjes, J. A., Lebret, T., Compérat, E. M., et al. (2017). Updated 2016 EAU guidelines on muscle-invasive and metastatic bladder cancer. European Urology, 71, 462–475. https://doi.org/10.1016/j.eururo.2016.06.020
- Wood, D. N., Allen, S. E., Andrich, D. E., Greenwell, T. J., & Mundy, A. R. (2004). The morbidity of buccal mucosal graft harvest for urethroplasty and the effect of nonclosure of the graft harvest site on postoperative pain. The Journal of Urology, 172(2), 580–583. https://doi.org/10.1097/01.ju.0000132846.01144.9f
- Xie, Y., Xue, W., Shao, X., Che, X., Xu, W., Ni, Z., & Mou, S. (2014). Analysis of a urinary biomarker panel for obstructive nephropathy and clinical outcomes. PLoS One, 9(11), e112865. https://doi.org/10.1371/journal.pone.0112865
- Zhang, F., Sones, W. D., Guo, M., Xu, X. Z., Buncke, H. J., Dorsett-Martin, W., & Lineaweaver, W. C. (2001). Reconstruction of ureteral defects with microvascular vein grafts in a rat model. Journal of Reconstructive Microsurgery, 17, 179–183. https://doi.org/10.1055/s-2001-14349
- Zhang, M., Xu, M. X., Zhou, Z., Zhang, K., Zhou, J., Zhao, Y., … Lu, M. J. (2014). The differentiation of human adipose-derived stem cells towards a urothelium-like phenotype in vitro and the dynamic temporal changes of related cytokines by both paracrine and autocrine signal regulation. PLoS One, 9(4). https://doi.org/10.1371/journal.pone.0095583
- Zhao, Z., Yu, H., Xiao, F., Wang, X., Yang, S., & Li, S. (2012). Differentiation of adipose-derived stem cells promotes regeneration of smooth muscle for ureteral tissue engineering. The Journal of Surgical Research, 178(1), 55–62. https://doi.org/10.1016/j.jss.2012.01.047