Differentiation of the human liver progenitor cell line (HepaRG) on a microfluidic-based biochip
Mi Jang
Department of system engineering, Saarland University, Saarbrücken, Germany
Microfluidics group, KIST Europe, Saarbrücken, Germany
Department of Neuroscience, Korea University College of Medicine, Seoul, Korea
Search for more papers by this authorAstrid Kleber
Rhineland Palantinate Centre of Excellence for climate Change Impacts, Trippstadt, Germany
Search for more papers by this authorThomas Ruckelshausen
Dynamic Biomaterial group, INM - Leibniz-Institut für Neue Materialien GmbH, Saarbrücken, Germany
Service and Support group, PicoQuant, Rudower Chaussee 29, Berlin, Germany
Search for more papers by this authorRalf Betzholz
School of Physics, Huazhong University of Science and Technology, Wuhan, China
Search for more papers by this authorCorresponding Author
Andreas Manz
Department of system engineering, Saarland University, Saarbrücken, Germany
Microfluidics group, KIST Europe, Saarbrücken, Germany
Correspondence
Andreas Manz, KIST Europe, Campus E7, Saarbrücken 66123, Germany.
Email: [email protected]
Search for more papers by this authorMi Jang
Department of system engineering, Saarland University, Saarbrücken, Germany
Microfluidics group, KIST Europe, Saarbrücken, Germany
Department of Neuroscience, Korea University College of Medicine, Seoul, Korea
Search for more papers by this authorAstrid Kleber
Rhineland Palantinate Centre of Excellence for climate Change Impacts, Trippstadt, Germany
Search for more papers by this authorThomas Ruckelshausen
Dynamic Biomaterial group, INM - Leibniz-Institut für Neue Materialien GmbH, Saarbrücken, Germany
Service and Support group, PicoQuant, Rudower Chaussee 29, Berlin, Germany
Search for more papers by this authorRalf Betzholz
School of Physics, Huazhong University of Science and Technology, Wuhan, China
Search for more papers by this authorCorresponding Author
Andreas Manz
Department of system engineering, Saarland University, Saarbrücken, Germany
Microfluidics group, KIST Europe, Saarbrücken, Germany
Correspondence
Andreas Manz, KIST Europe, Campus E7, Saarbrücken 66123, Germany.
Email: [email protected]
Search for more papers by this authorAbstract
HepaRG is a bipotent stem cell line that can be differentiated towards hepatocyte-like and biliary-like cells. The entire cultivation process requires 1 month and relies on the addition of 2% dimethyl sulfoxide (DMSO) to the culture. Our motivation in this research is to differentiate HepaRG cells (progenitor cells and undifferentiated cells) towards hepatocyte-like cells by minimizing the cultivation time and without using DMSO treatment by instead using a microfluidic device combined with the following strategies: (a) comparison of extracellular matrices (matrigel and collagen I), (b) types of flow (one or both sides), and (c) effects of DMSO. Our results demonstrate that matrigel promotes the differentiation of progenitor cells towards hepatocytes and biliary-like cells. Moreover, the frequent formation of HepaRG cell clusters was observed by a supply of both sides of flow, and the cell viability and liver specific functions were influenced by DMSO. Finally, differentiated HepaRG progenitor cells cultured in a microfluidic device for 14 days without DMSO treatment yielded 70% of hepatocyte-like cells with a highly polarized organization that reacted to stimulation with IL-6 to produce C-reactive protein (CRP). This culture model has high potential for investigating cell differentiation and liver pathophysiology research.
CONFLICT OF INTEREST
The authors have declared that there is no conflict of interest.
Supporting Information
Filename | Description |
---|---|
term2802-sup-0001-st1.docxWord 2007 document , 12.4 KB |
Table S1. Albumin production and CYA1A induction fold change level in HepaRG 2D culture at 4 weeks of cultivation under fully differentiated condition supplemented by 2% of DMSO for 2 weeks. (The data represents the mean ± SD of 5 independent cultures.) |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Alexandrova, A. V., Pul'kova, N. V., & Sakharov, D. A. (2016). Complex approach to xenobiotics hepatotoxicity testing using a microfluidic system. Bulletin of Experimental Biology and Medicine, 161(1), 50–53. https://doi.org/10.1007/s10517-016-3342-1
- Anthérieu, S., Chesné, C., Li, R., Guguen-Guillouzo, C., & Guillouzo, A. (2012). Optimization of the HepaRG cell model for drug metabolism and toxicity studies. Toxicology In Vitro, 26(8), 1278–1285. https://doi.org/10.1016/j.tiv.2012.05.008
- Cerec, V., Glaise, D., Garnier, D., Morosan, S., Turlin, B., Drenou, B., … Corlu, A. (2007). Transdifferentiation of hepatocyte-like cells from the human hepatoma HepaRG cell line through bipotent progenitor. Hepatology, 45(4), 957–967. https://doi.org/10.1002/hep.21536
- Darnell, M., Schreiter, T., Zeilinger, K., Urbaniak, T., Soderdahl, T., Rossberg, I., … Andersson, T. B. (2011). Cytochrome P450 (CYP) dependent metabolism in HepaRG cells cultured in a dynamic three-dimensional (3D) bioreactor. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 39(7), 1131–1138. https://doi.org/10.1124/dmd.110.037721
- de Chaumont, F., Dallongeville, S., Chenouard, N., Hervé, N., Pop, S., Provoost, T., … Olivo-Marin, J.-C. (2012). Icy: An open bioimage informatics platform for extended reproducible research. Nature Methods, 9(7), 690–696. https://doi.org/10.1038/nmeth.2075
- Fabre, G., Combalbert, J., Berger, Y., & Cano, J.-P. (1990). Human hepatocytes as a keyin vitro model to improve preclinical drug development. European Journal of Drug Metabolism and Pharmacokinetics, 15(2), 165–171. https://doi.org/10.1007/BF03190200
- Freyer, N., Knöspel, F., Strahl, N., Amini, L., Schrade, P., Bachmann, S., … Zeilinger, K. (2016). Hepatic differentiation of human induced pluripotent stem cells in a perfused three-dimensional multicompartment bioreactor. BioResearch Open Access, 5(1), 235–248. https://doi.org/10.1089/biores.2016.0027
- Gerets, H. H. J., Tilmant, K., Gerin, B., Chanteux, H., Depelchin, B. O., Dhalluin, S., & Atienzar, F. A. (2012). Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biology and Toxicology, 28(2), 69–87. https://doi.org/10.1007/s10565-011-9208-4
- Gripon, P., Rumin, S., Urban, S., Le Seyec, J., Glaise, D., Cannie, I., … Guguen-Guillouzo, C. (2002). Infection of a human hepatoma cell line by hepatitis B virus. Proceedings of the National Academy of Sciences of the United States of America, 99(24), 15655–15660. https://doi.org/10.1073/pnas.232137699
- Gunness, P., Mueller, D., Shevchenko, V., Heinzle, E., Ingelman-Sundberg, M., & Noor, F. (2013). 3D organotypic cultures of human heparg cells: A tool for in vitro toxicity studies. Toxicological Sciences, 133(1), 67–78. https://doi.org/10.1093/toxsci/kft021
- Hart, S. N., Li, Y., Nakamoto, K., Subileau, E., Steen, D., & Zhong, X. (2010). A comparison of whole genome gene expression profiles of HepaRG cells and HepG2 cells to primary human hepatocytes and human liver tissues. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 38(6), 988–994. https://doi.org/10.1124/dmd.109.031831
- Heinrich, P. C., Castell, J. V., & Andus, T. (1990). Interleukin-6 and the acute phase response. Biochemical Journal, 265(3), 621–636. https://doi.org/10.1042/bj2650621
- Hoekstra, R., Nibourg, G. A. A., Van Der Hoeven, T. V., Ackermans, M. T., Hakvoort, T. B. M., Van Gulik, T. M., … Chamuleau, R. A. F. M. (2011). The HepaRG cell line is suitable for bioartificial liver application. International Journal of Biochemistry and Cell Biology, 43(10), 1483–1489. https://doi.org/10.1016/j.biocel.2011.06.011
- Huh, D., Hamilton, G. A., & Ingber, D. E. (2011). From 3D cell culture to organs-on-chips. Trends in Cell Biology, 21(12), 745–754. https://doi.org/10.1016/j.tcb.2011.09.005
- Jang, M., Neuzil, P., Volk, T., Manz, A., & Kleber, A. (2015). On-chip three-dimensional cell culture in phaseguides improves hepatocyte functions in vitro. Biomicrofluidics, 9(3), 34113. https://doi.org/10.1063/1.4922863
- Jossé, R., Aninat, C., Glaise, D., Dumont, J., Fessard, V., Morel, F., … Guillouzo, A. (2008). Long-term functional stability of human HepaRG hepatocytes and use for chronic toxicity and genotoxicity studies. Drug Metabolism and Disposition, 36(6), 1111–1118. https://doi.org/10.1124/dmd.107.019901
- Kalitsky-Szirtes, J., Shayeganpour, A., Brocks, D. R., & Piquette-Miller, M. (2004). Suppression of drug-metabolizing enzymes and efflux transporters in the intestine of endotoxin-treated rats. Drug Metabolism and Disposition, 32(1), 20–27. https://doi.org/10.1124/dmd.32.1.20
- Kim, T. H., Bowen, W. C., Stolz, D. B., Runge, D., Mars, W. M., & Michalopoulos, G. K. (1998). Differential expression and distribution of focal adhesion and cell adhesion molecules in rat hepatocyte differentiation. Experimental Cell Research, 244(1), 93–104. https://doi.org/10.1006/excr.1998.4209
- Madan, A., Graham, R. A., Carroll, K. M., Mudra, D. R., Burton, L. A., Krueger, L. A., … Parkinson, A. (2003). Effects of prototypical microsomal enzyme inducers on cytochrome P450 expression in cultured human hepatocytes. Drug Metabolism and Disposition, 31(4), 421 LP–431. Retrieved from http://dmd.aspetjournals.org/content/31/4/421.abstract
- van der Helm, M. W., van der Meer, A. D., Eijkel, J. C. T., van den Berg, A., & Segerink, L. I. (2016). Microfluidic organ-on-chip technology for blood-brain barrier research. Tissue Barriers, 4(1), e1142493. https://doi.org/10.1080/21688370.2016.1142493
- Klein, M., Thomas, M., Hofmann, U., Seehofer, D., Damm, G., & Zanger, U. M. (2015). A systematic comparison of the impact of inflammatory signaling on absorption, distribution, metabolism, and excretion gene expression and activity in primary human hepatocytes and HepaRG Cells. Drug Metabolism and Disposition, 43(2), 273–283. https://doi.org/10.1124/dmd.114.060962
- Kotani, N., Maeda, K., Debori, Y., Camus, S., Li, R., Chesne, C., & Sugiyama, Y. (2012). Expression and transport function of drug uptake transporters in differentiated HepaRG cells. Molecular Pharmaceutics, 9(12), 3434–3441.
- Kumar, A., Sharma, P., & Sarin, S. K. (2008). Hepatic venous pressure gradient measurement: Time to learn! Indian Journal of Gastroenterology: Official Journal of the Indian Society of Gastroenterology, 27, 74–80. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18695309
- Lalor, P. F., & Adams, D. H. (1999). Adhesion of lymphocytes to hepatic endothelium. Journal of Clinical Pathology - Molecular Pathology, 52(4), 214–219. https://doi.org/10.1136/mp.52.4.214
- Leclerc, E., Kimura, K., Shinohara, M., Danoy, M., Le Gall, M., Kido, T., … Sakai, Y. (2017). Comparison of the transcriptomic profile of hepatic human induced pluripotent stem like cells cultured in plates and in a 3D microscale dynamic environment. Genomics, 109(1), 16–26. https://doi.org/10.1016/j.ygeno.2016.11.008
- Lee, P., Lin, R., Moon, J., & Lee, L. P. (2006). Microfluidic alignment of collagen fibers for in vitro cell culture. Biomedical Microdevices, 8(1), 35–41. https://doi.org/10.1007/s10544-006-6380-z
- Leite, S. B., Wilk-Zasadna, I., Zaldivar, J. M., Airola, E., Reis-Fernandes, M. A., Mennecozzi, M., … Coecke, S. (2012). Three-dimensional HepaRG model as an attractive tool for toxicity testing. Toxicological Sciences: An Official Journal of the Society of Toxicology, 130(1), 106–116. https://doi.org/10.1093/toxsci/kfs232
- Lin, T. Y., Ki, C. S., & Lin, C. C. (2014). Manipulating hepatocellular carcinoma cell fate in orthogonally cross-linked hydrogels. Biomaterials, 35(25), 6898–6906. https://doi.org/10.1016/j.biomaterials.2014.04.118
- Malinen, M. M., Kanninen, L. K., Corlu, A., Isoniemi, H. M., Lou, Y. R., Yliperttula, M. L., & Urtti, A. O. (2014). Differentiation of liver progenitor cell line to functional organotypic cultures in 3D nanofibrillar cellulose and hyaluronan-gelatin hydrogels. Biomaterials, 35(19), 5110–5121. https://doi.org/10.1016/j.biomaterials.2014.03.020
- Martinez-Hernandez, A., & Amenta, P. S. (1993). The hepatic extracellular matrix II. Ontogenesis, regeneration and cirrhosis. Virchows Archiv. A, Pathological Anatomy and Histopathology, 423(2), 77–84. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8212543. https://doi.org/10.1007/BF01606580
- Materne, E.-M., Wagner, I., Frädrich, C., Süßbier, U., Horland, R., Hoffmann, S., … Marx, U. (2013). Dynamic culture of human liver equivalents inside a micro-bioreactor for long-term substance testing. BMC Proceedings, 7(Suppl 6), P72. https://doi.org/10.1186/1753-6561-7-S6-P72
10.1186/1753?6561?7?S6?P72 Google Scholar
- Matsui, H., Takeuchi, S., Osada, T., Fujii, T., & Sakai, Y. (2012). Enhanced bile canaliculi formation enabling direct recovery of biliary metabolites of hepatocytes in 3D collagen gel microcavities. Lab on a Chip, 12(10), 1857. https://doi.org/10.1039/c2lc40046d–1864.
- McGill, M. R., Yan, H.-M. M., Ramachandran, A., Murray, G. J., Rollins, D. E., & Jaeschke, H. (2011). HepaRG cells: A human model to study mechanisms of acetaminophen hepatotoxicity. Hepatology, 53(3), 974–982. https://doi.org/10.1002/hep.24132
- Miki, T., Ring, A., & Gerlach, J. (2011). Hepatic differentiation of human embryonic stem cells is promoted by three-dimensional dynamic perfusion culture conditions. Tissue Engineering. Part C, Methods, 17(5), 557–568. https://doi.org/10.1089/ten. TEC.2010.0437
- Miyajima, A., Tanaka, M., & Itoh, T. (2014). Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell, 14(5), 561–574. https://doi.org/10.1016/j.stem.2014.04.010
- Mohammadi-Bardbori, A., & Mohammadi-Bardbori, A. (2014). Assay for quantitative determination of CYP1A1 enzyme activity using 7-Ethoxyresorufin as standard substrate (EROD assay). Protocol Exchange. https://doi.org/10.1038/protex.2014.043
10.1038/protex.2014.043 Google Scholar
- Niiya, T., Murakami, M., Aoki, T., Murai, N., Shimizu, Y., & Kusano, M. (1999). Immediate increase of portal pressure, reflecting sinusoidal shear stress, induced liver regeneration after partial hepatectomy. Journal of Hepato-Biliary-Pancreatic Surgery, 6(3), 275–280. https://doi.org/90060275.534 [pii]. https://doi.org/10.1007/s005340050118
- Parent, R., Marion, M. J., Furio, L., Trépo, C., & Petit, M. A. (2004). Origin and characterization of a human bipotent liver progenitor cell line. Gastroenterology, 126(4), 1147–1156. https://doi.org/10.1053/j.gastro.2004.01.002
- Ramaiahgari, S. C., den Braver, M. W., Herpers, B., Terpstra, V., Commandeur, J. N. M., van de Water, B., & Price, L. S. (2014). A 3D in vitro model of differentiated HepG2 cell spheroids with improved liver-like properties for repeated dose high-throughput toxicity studies. Archives of Toxicology, 88, 1083–1095. https://doi.org/10.1007/s00204-014-1215-9
- Rashidi, H., Alhaque, S., Szkolnicka, D., Flint, O., & Hay, D. C. (2016). Fluid shear stress modulation of hepatocyte-like cell function. Archives of Toxicology, 90(7), 1757–1761. https://doi.org/10.1007/s00204-016-1689-8
- Rebelo, S. P., Costa, R., Estrada, M., Shevchenko, V., Brito, C., & Alves, P. M. (2015). HepaRG microencapsulated spheroids in DMSO-free culture: Novel culturing approaches for enhanced xenobiotic and biosynthetic metabolism. Archives of Toxicology, 89(8), 1347–1358. https://doi.org/10.1007/s00204-014-1320-9
- Rubin, K., Janefeldt, A., Andersson, L., Berke, Z., Grime, K., & Andersson, T. B. (2015). Heparg cells as human-relevant in vitro model to study the effects of inflammatory stimuli on cytochrome P450 isoenzymes. Drug Metabolism and Disposition, 43(1), 119–125. https://doi.org/10.1124/dmd.114.059246
- Sahu, S. C. (2016). Stems cells in toxicology and medicine. Germany: WILEY-VCH Verlag GmbH. Retrieved from https://books.google.de/books?id=QgdDDQAAQBAJ&pg=PA146&lpg=PA146&dq=hepatocyte+biliary+cell+ratio+hepaRG&source=bl&ots=GigaXcP5KX&sig=ebWLOcJPOYa0mFSxwy0bD9FOgLU&hl=de&sa=X&ved=0ahUKEwib2qva5brSAhXJSRoKHRWyBr4Q6AEITzAG#v=onepage&q=hepatocytebiliarycell
10.1002/9781119135449 Google Scholar
- Sakai, Y., Yamagami, S., & Nakazawa, K. (2010). Comparative analysis of gene expression in rat liver tissue and monolayer- and spheroid-cultured hepatocytes. Cells, Tissues, Organs, 191(4), 281–288. https://doi.org/10.1159/000272316
- Salerno, S., Piscioneri, A., Morelli, S., Al-Fageeh, M. B., Drioli, E., & De Bartolo, L. (2013). Membrane bioreactor for expansion and differentiation of embryonic liver cells. Industrial & Engineering Chemistry Research, 52(31), 10387–10395. https://doi.org/10.1021/ie400035d
- Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9(7), 676–682. https://doi.org/10.1038/nmeth.2019
- Schmelzer, E., Triolo, F., Turner, M. E., Thompson, R. L., Zeilinger, K., Reid, L. M., … Gerlach, J. C. (2010). Three-dimensional perfusion bioreactor culture supports differentiation of human fetal liver cells. Tissue Engineering. Part a, 16(6), 2007–2016. https://doi.org/10.1089/ten.tea.2009.0569
- Sumida, K., Igarashi, Y., Toritsuka, N., Matsushita, T., Abe-Tomizawa, K., Aoki, M., … Ohno, Y. (2011). Effects of DMSO on gene expression in human and rat hepatocytes. Human & Experimental Toxicology, 30(10), 1701–1709. https://doi.org/10.1177/0960327111399325
- Tanimizu, N., Saito, H., Mostov, K., & Miyajima, A. (2004). Long-term culture of hepatic progenitors derived from mouse Dlk+ hepatoblasts. Journal of Cell Science, 117(Pt 26), 6425–6434. https://doi.org/10.1242/jcs.01572
- Toivonen, S., Malinen, M. M., Küblbeck, J., Petsalo, A., Urtti, A., Honkakoski, P., & Otonkoski, T. (2016). Regulation of human pluripotent stem cell-derived hepatic cell phenotype by three-dimensional hydrogel models. Tissue Engineering. Part a, 22(13–14), 971–984. https://doi.org/10.1089/ten. TEA.2016.0127
- Trietsch, S. J., Israëls, G. D., Joore, J., Hankemeier, T., & Vulto, P. (2013). Microfluidic titer plate for stratified 3D cell culture. Lab on a Chip, 13(18), 3548–3554. https://doi.org/10.1039/c3lc50210d
- Troadec, M. B., Glaise, D., Lamirault, G., Le Cunff, M., Guérin, E., Le Meur, N., … Loréal, O. (2006). Hepatocyte iron loading capacity is associated with differentiation and repression of motility in the HepaRG cell line. Genomics, 87(1), 93–103. https://doi.org/10.1016/j.ygeno.2005.08.016
- Vulto, P., Podszun, S., Meyer, P., Hermann, C., Manz, A., & Urban, G. a. (2011). Phaseguides: A paradigm shift in microfluidic priming and emptying. Lab on a Chip, 11(9), 1596. https://doi.org/10.1039/c0lc00643b–1602.
- Wagner, I., Materne, E.-M., Brincker, S., Süssbier, U., Frädrich, C., Busek, M., … Marx, U. (2013). A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab on a Chip, 13(18), 3538–3547. https://doi.org/10.1039/c3lc50234a
- Westerink, W. M. A., & Schoonen, W. G. E. J. (2007). Phase II enzyme levels in HepG2 cells and cryopreserved primary human hepatocytes and their induction in HepG2 cells. Toxicology In Vitro, 21(8), 1592–1602. https://doi.org/10.1016/j.tiv.2007.06.017
- Xu, J. J., Diaz, D., & O'Brien, P. J. (2004). Applications of cytotoxicity assays and pre-lethal mechanistic assays for assessment of human hepatotoxicity potential. Chemico-Biological Interactions, 150(1), 115–128. https://doi.org/10.1016/j.cbi.2004.09.011