Macrophage functions in wound healing
Corresponding Author
Malgorzata Kloc
Immunobiology, The Houston Methodist Research Institute, Houston, Texas, USA
Department of Surgery, The Houston Methodist Hospital, Houston, Texas, USA
MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
Correspondence
Malgorzata Kloc, The Houston Methodist Research Institute, Houston, Texas 77030, USA.
Email: [email protected]
Search for more papers by this authorRafik M. Ghobrial
Immunobiology, The Houston Methodist Research Institute, Houston, Texas, USA
Department of Surgery, The Houston Methodist Hospital, Houston, Texas, USA
Search for more papers by this authorJarek Wosik
Electrical and Computer Engineering Department, University of Houston, Houston, Texas, USA
Texas Center for Superconductivity, University of Houston, Houston, Texas, USA
Search for more papers by this authorAneta Lewicka
Laboratory of Epidemiology, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland
Search for more papers by this authorSławomir Lewicki
Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland
Search for more papers by this authorJacek Z. Kubiak
Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland
Cell Cycle Group, Faculty of Medicine, Univ Rennes, UMR 6290, CNRS, Institute of Genetics and Development of Rennes, Rennes, France
Search for more papers by this authorCorresponding Author
Malgorzata Kloc
Immunobiology, The Houston Methodist Research Institute, Houston, Texas, USA
Department of Surgery, The Houston Methodist Hospital, Houston, Texas, USA
MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
Correspondence
Malgorzata Kloc, The Houston Methodist Research Institute, Houston, Texas 77030, USA.
Email: [email protected]
Search for more papers by this authorRafik M. Ghobrial
Immunobiology, The Houston Methodist Research Institute, Houston, Texas, USA
Department of Surgery, The Houston Methodist Hospital, Houston, Texas, USA
Search for more papers by this authorJarek Wosik
Electrical and Computer Engineering Department, University of Houston, Houston, Texas, USA
Texas Center for Superconductivity, University of Houston, Houston, Texas, USA
Search for more papers by this authorAneta Lewicka
Laboratory of Epidemiology, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland
Search for more papers by this authorSławomir Lewicki
Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland
Search for more papers by this authorJacek Z. Kubiak
Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland
Cell Cycle Group, Faculty of Medicine, Univ Rennes, UMR 6290, CNRS, Institute of Genetics and Development of Rennes, Rennes, France
Search for more papers by this authorAbstract
Macrophages play a crucial role in regeneration and consecutive phases of wound healing. In this review, we summarise current knowledge on the ontogeny, origin, phenotypical heterogeneity, and functional exchangeability of macrophages participating in these processes. We also describe the genetic, pharmacologic, and bioengineering methods for manipulation of macrophage phenotype and functions and their potential for development of the novel, clinically applicable therapies.
CONFLICTS OF INTEREST
The authors have declared that there is no conflict of interest.
REFERENCES
- Ashcroft, G. S., Jeong, M.-J., Ashworth, J. J., Hardman, M., Jin, W., Moutsopoulos, N., … Wahl, S. H. (2012). TNFα is a therapeutic target for impaired cutaneous wound healing. Wound Repair and Regeneration, 20, 38–49. https://doi.org/10.1111/j.1524-475X.2011.00748.x
- Balaji, S., Keswani, S. G., & Crombleholme, T. M. (2012). The role of mesenchymal stem cells in the regenerative wound healing phenotype. Advances in Wound Care, 1, 159–165. https://doi.org/10.1089/wound.2012.0361
- Balaji, S., LeSaint, M., Bhattacharya, S. S., Moles, C., Dhamija, Y., Kidd, M., … Keswani, S. G. (2014). Adenoviral mediated gene transfer of IGF-1 enhances wound healing and induces angiogenesis. The Journal of Surgical Research, 190, 367–377. https://doi.org/10.1016/j.jss.2014.02.051
- Balaji, S., Watson, C. L., Ranjan, R., King, A., Bollyky, P. L., & Keswani, S. G. (2015). Chemokine involvement in fetal and adult wound healing. Advances in wound care Wound Healing, 4, 660–672. https://doi.org/10.1089/wound.2014.0564
- Bamberger, C., Schärer, A. M., Tychsen, B., Pankow, S., Müller, M., Rülicke, T., … Werner, A. (2005). Activin controls skin morphogenesis and wound repair predominantly via stromal cells and in a concentration-dependent manner via keratinocytes. The American Journal of Pathology, 167, 733–747. https://doi.org/10.1016/S0002-9440(10)62047-0
- Benson, R. M., Minter, L. M., Osborne, B. A., & Granowitz, E. V. (2003). Hyperbaric oxygen inhibits stimulus-induced proinflammatory cytokine synthesis by human blood-derived monocyte-macrophages. Clinical and Experimental Immunology, 134, 57–62.
- Blakney, A. K., Swartzlander, M. D., & Bryant, S. J. (2012). The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly (ethylene glycol)-based hydrogels. Journal of Biomedical Materials Research. Part A, 100, 1375–1386. https://doi.org/10.1002/jbm.a.34104
- Boldogh, I. R., & Pon, L. A. (2006). Interactions of mitochondria with the actin cytoskeleton. Biochimica et Biophysica Acta, 1763, 450–462.
- Brancato, S. K., & Albina, J. E. (2011). Wound macrophages as key regulators of repair. The American Journal of Pathology, 178, 19–25.
- Brizhik, L., Ferroni, L., Gardin, C., & Fermi, E. (2016). On the mechanisms of wound healing by magnetic therapy: The working principle of therapeutic magnetic resonance. International Journal of Biophysics, 6, 27–43.
- Campbell, L., Saville, C. R., Murray, P. J., Cruickshank, S. M., & Hardman, M. J. (2013). Local arginase 1 activity is required for cutaneous wound healing. The Journal of Investigative Dermatology, 133(10), 2461–2470.
- Cash, J. L., Bass, M. D., Campbell, J., Barnes, M., Kubes, P., & Martin, P. (2014). Resolution mediator chemerin15 reprograms the wound microenvironment to promote repair and reduce scarring. Current Biology, 24, 1406–1414.
- Cha, B. H., Shin, S. R., Leijten, J., Li, Y. C., Singh, S., Liu, J. C., … Khademhosseini, A. (2017). Integrin-mediated interactions control macrophage polarization in 3D hydrogels. Adv. Healthc. Maternité, 6, 1–12.
- Chaqour, J., Lee, S., Ravichandra, A., & Chaqour, B. (2018). Abscisic acid: An antiangiogenic phytohormone that modulates the phenotypical plasticity of endothelial cells and macrophages. Journal of Cell Science. Jan 3. pii: jcs.210492. https://doi.org/10.1242/jcs.210492. [Epub ahead of print]
- Chen, L., Tredget, E. E., Wu, P. Y., & Wu, Y. (2008). Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One, 3, e1886.
- Chen, W., Chen, S., Chen, W., Li, X. C., Ghobrial, R. M., & Kloc, M. (2018). Screening RhoA/ROCK inhibitors for the ability to prevent chronic rejection of mouse cardiac allografts. Transplant Immunology. Jun 6. pii: S0966–3274(18)30029–7. https://doi.org/10.1016/j.trim.2018.06.002. [Epub ahead of print]
- Chen, W., Chen, W., Li, X. C., Ghobrial, R. M., & Kloc, M. (2018). Coinhibition of mTORC1/mTORC2 and RhoA/ROCK pathways prevents chronic rejection of rat cardiac allografts. Transplantation Reports. https://doi.org/10.1016/j.tpr.2018.09.002
10.1016/j.tpr.2018.09.002 Google Scholar
- Chen, W., Ghobrial, R. M., Li, X. C., & Kloc, M. (2018). Inhibition of RhoA and mTORC2/Rictor by Fingolimod (FTY720) induces p21-activated kinase 1, PAK-1 and amplifies podosomes in mouse peritoneal macrophages. Immunobiology. Jul 7. pii: S0171–2985(18)30046–9. https://doi.org/10.1016/j.imbio.2018.07.009. [Epub ahead of print]
- Chen, W., Li, X. C., Kubiak, J. Z., Ghobrial, R. M., & Kloc, M. (2017). Rho-specific guanine nucleotide exchange factors (Rho-GEFs) inhibition affects macrophage phenotype and disrupts Golgi complex. The International Journal of Biochemistry & Cell Biology, 93, 12–24.
- Chen, W., Sandoval, H., Kubiak, J. Z., Li, X. C., Ghobrial, R. M., & Kloc, M. (2018). The phenotype of peritoneal mouse macrophages depends on the mitochondria and ATP/ADP homeostasis. Cellular Immunology, 324, 1–7.
- Chiarini, A., Freddi, G., Liu, D., Armato, U., & Dal, P. I. (2016). Biocompatible silk noil-based three-dimensional carded-needled nonwoven scaffolds guide the engineering of novel skin connective tissue. Tissue Engineering. Part A, 22, 1047–1060.
- Cunniff, B., McKenzie, A. J., Heintz, N. H., & Howe, A. K. (2016). AMPK activity regulates trafficking of mitochondria to the leading edge during cell migration and matrix invasion. Molecular Biology of the Cell, 27, 2662–2674.
- Daley, J. M., Brancato, S. K., Thomay, A. A., Reichner, J. S., & Albina, J. E. (2010). The phenotype of murine wound macrophages. Journal of Leukocyte Biology, 87, 59–67.
- Davies, L. C., Jenkins, S. J., Allen, J. E., & Taylor, P. R. (2013). Tissue-resident macrophages nature immunology14 (pp. 986–995).
- DeLeon-Pennell, K. Y., Mouton, A. J., Ero, O. K., Ma, Y., Iyer, R. P., Flynn, E. R., … Lindsey, M. L. (2018). LXR/RXR signaling and neutrophil phenotype following myocardial infarction classify sex differences in remodeling. Basic Res Cardiol. 2018, 113(5), 40.
- Demyanenko, I. A., Zakharova, V. V., Ilyinskaya, O. P., Vasilieva, T. V., Fedorov, A. V., Manskikh, V. N., … Popova, E. N. (2017). Mitochondria-targeted antioxidant SkQ1 improves dermal wound healing in genetically diabetic mice. Oxidative Medicine and Cellular Longevity, 2017, 6408278. https://doi.org/10.1155/2017/6408278. Epub 2017 Jul 6
- Dings, R. P. M., Miller, M. C., Griffin, R. J., & Mayo, K. H. (2018). Galectins as molecular targets for therapeutic intervention. International Journal of Molecular Sciences, 19, 905.
- Dorsett-Martin, W. A. (2004). Rat models of skin wound healing: A review. Wound Repair and Regeneration, 12, 591.
- Duffield, J. S., Forbes, S. J., Constandinou, C. M., Clay, S., Partolina, M., Vuthoori, S., … Iredale, J. P. (2005). Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. The Journal of Clinical Investigation, 115, 56–65.
- Eming SA, Martin P, Tomic-Canic M (2014). Wound repair and regeneration: Mechanisms, signaling, and translation. Sci Transl Med. 6(265): 265 sr6.
- Epelman, S., Lavine, K. J., & Randolph, G. J. (2014). Origin and functions of tissue macrophages. Immunity, 41, 21–35.
- Escuin-Ordinas, H., Li, S., Xie, M. W., Sun, L., Hugo, W., Huang, R. R., … Ribas, A. (2016). Cutaneous wound healing through paradoxical MAPK activation by BRAF inhibitors. Nature Communications, 7, 12348.
- Feng, Y., Sanders, A. J., Ruge, F., Morris, C.-A., Harding, K. G., & Jiang, W. G. (2016). Expression of the SOCS family in human chronic wound tissues: Potential implications for SOCS in chronic wound healing. International Journal of Molecular Medicine, 38, 1349–1358.
- Ferrer, R. A., Saalbach, A., Grünwedel, M., Lohmann, N., Forstreuter, I., Saupe, S., … Franz, S. (2017). Dermal fibroblasts promote alternative macrophage activation improving impaired wound healing. The Journal of Investigative Dermatology, 137, 941–950.
- Frykberg, R. G., & Banks, J. (2015). Challenges in the treatment of chronic wounds. Advances in wound care Wound Healing, 4, 560–582.
- Fumagalli, M., Musso, T., Vermi, W., Scutera, S., Daniele, R., Alotto, D., … Castagnoli, C. (2007). Imbalance between activin A and follistatin drives postburn hypertrophic scar formation in human skin. Experimental Dermatology, 16, 600–610.
- Galván-Peña, S., & O'Neill, L. A. (2014). Metabolic reprograming in macrophage polarization. Frontiers in Immunology, 5, 420–426.
- Gindele, J. A., Mang, S., Pairet, N., Christ, I., Gantner, F., Schymeinsky, J., & Lamb, D. J. (2017). Opposing effects of in vitro differentiated macrophages sub-type on epithelial wound healing. PLoS One, 12, e0184386. https://doi.org/10.1371/journal.pone.0184386. eCollection 2017
- Ginhoux, F., Greter, M., Leboeuf, M., Nandi, S., See, P., Gokhan, S., … Merad, M. (2010). Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science, 330, 841–845.
- Gomez Perdiguero, E., Klapproth, K., Schulz, C., Busch, K., Azzoni, E., Crozet, L., … Rodewald, H. R. (2015). Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature, 518, 547–551.
- Gordon, B. S., Kazi, A. A., Coleman, C. S., Dennis, M. D., Chau, V., Jefferson, L. S., & Kimball, S. R. (2014). RhoA modulates signaling through the mechanistic target of rapamycin complex 1 (mTORC1) in mammalian cells. Cellular Signalling, 26, 461–467.
- Goren, I., Müller, E., Schiefelbein, D., Christen, U., Pfeilschifter, J., Muhl, H., … Frank, S. (2007). Systemic anti-TNFalpha treatment restores diabetes-impaired skin repair in ob/ob mice by inactivation of macrophages. The Journal of Investigative Dermatology, 127, 2259–2267.
- Gulhati, P., Bowen, K. A., Liu, J., Stevens, P. D., Rychahou, P. G., Chen, M., … Evers, B. M. (2011). mTORC1 and mTORC2 regulate EMT, motility and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Research, 71, 3246–3256.
- Guo, S., & DiPietro, L. A. (2010). Factors affecting wound healing. Dent Res, 89, 219–229.
- Guo, Y., Lin, C., Xu, P., Wu, S., Fu, X., Xia, W., & Yao, M. (2016). AGEs induced autophagy impairs cutaneous wound healing via stimulating macrophage polarization to M1 in diabetes. Scientific Reports, 6, 36416.
- Hall, C. J., Boyle, R. H., Astin, J. W., Flores, M. V., Oehlers, S. H., Sanderson, L. E., … Crosier, P. S. (2013). Immunoresponsive gene 1 augments bactericidal activity of macrophage-lineage cells by regulating beta-oxidation dependent mitochondrial ROS production. Cell. Metabolism, 18, 265–278.
- Hashimoto, D., Chow, A., Noizat, C., Teo, P., Beasley, M. B., Leboeuf, M., … Merad, M. (2013). Tissue resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity, 8, 792–804.
- He, X. T., Li, X., Yin, Y., Wu, R. X., Xu, X. Y., & Chen, F. M. (2018). The effects of conditioned media generated by polarized macrophages on the cellular behaviours of bone marrow mesenchymal stem cells. Journal of Cellular and Molecular Medicine, 22, 1302–1315.
- Hoeffel, G., Wang, Y., Greter, M., See, P., Teo, P., Malleret, B., … Ginhoux, F. (2012). Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. The Journal of Experimental Medicine, 209, 1167–1181.
- Huang, S. C., Smith, A. M., Everts, B., Colonna, M., Pearce, E. L., Schilling, J. D., & Pearce, E. J. (2016). Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. Immunity, 45, 817–830.
- Ishida, Y., Gao, J. L., & Murphy, P. M. (2008). Chemokine receptor CX3CR1 mediates skin wound healing by promoting macrophage and fibroblast accumulation and function. Journal of Immunology, 180, 569–579.
- Jetten, N., Roumans, N., Gijbels, M. J., Romano, A., Post, M. J., de Winther, M. P., … Xanthoulea, S. (2014). Wound administration of M2-polarized macrophages does not improve murine cutaneous healing responses. PLoS One, e102994, 9.
- King, A., Balaji, S., Le, L. D., Crombleholme, T. M., & Keswani, S. G. (2014). Regenerative wound healing: The role of interleukin-10. Advances in wound care Wound Healing, 3, 315–323.
10.1089/wound.2013.0461 Google Scholar
- Krzyszczyk, P., Schloss, R., Palmer, A., & Berthiaume, F. (2018). The role of macrophages in the acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Frontiers in Physiology, 9, 419.
- Landén, N. X., Li, D., & Ståhle, M. (2016). Transition from inflammation to proliferation: A critical step during wound healing. Cellular and Molecular Life Sciences, 73, 3861–3885.
- Linder, S., & Wiesner, C. (2015). Tools of the trade: Podosomes as multipurpose organelles of monocytic cells. Cellular and Molecular Life Sciences, 72, 121–135.
- Liu, Y., Chen, W., Minze, L. J., Kubiak, J. Z., Li, X. C., Ghobrial, R. M., & Kloc, M. (2016). Dissonant response of M0/M2 and M1 bone marrow derived macrophages to RhoA pathway interference. Cell and Tissue Research, 366, 707–720.
- Liu, Y., Chen, W., Wu, C., Minze, L. J., Kubiak, J. Z., Li, X. C., … Ghobrial, R. M. (2017). Macrophage/monocyte-specific deletion of RhoA down-regulates fractalkine receptor and inhibits chronic rejection of mouse cardiac allografts. The Journal of Heart and Lung Transplantation, 36, 340–354.
- Liu, Y., Kloc, M., & Li, X. C. (2016). Macrophages as effectors of acute and chronic allograft injury. Current Transplantation Reports, 3, 303–312.
- Liu, Y., Kubiak, J. Z., Li, X. C., Ghobrial, R. M., & Kloc, M. (2017). Macrophages and RhoA pathway in transplanted organs. Results and Problems in Cell Differentiation, 62, 365–376.
- Liu, Y., Minze, L. J., Mumma, L., Li, X. C., Ghobrial, R. M., & Kloc, M. (2016). Mouse macrophage polarity and ROCK1 activity depend on RhoA and non-apoptotic Caspase 3. Experimental Cell Research, 341, 225–236.
- Liu, Y., Tejpal, N., You, J., Li, X. C., Ghobrial, R. M., & Kloc, M. (2016). ROCK inhibition impedes macrophage polarity and functions. Cellular Immunology, 300, 54–62.
- Lu, D., Chen, B., Liang, Z., Deng, W., Jiang, Y., Li, S., … Chen, S. (2011). Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: A double- blind, randomized, controlled trial. Diabetes Research and Clinical Practice, 92, 26–36.
- Madsen, D. H., Leonard, D., Masedunskas, A., Moyer, A., Jurgensen, H. J., Peters, D. E., … Bugge, T. H. (2013). M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway. The Journal of Cell Biology, 202, 951–966.
- Magatti, M., Vertua, E., De Munari, S., & Caro M2, Caruso M, Silini A, Delgado M, Parolini O. (2017). Human amnion favours tissue repair by inducing the M1-to-M2 switch and enhancing M2 macrophage features. Journal of Tissue Engineering and Regenerative Medicine, 11, 2895–2911.
- McWhorter, F. Y., Wang, T., Nguyen, P., Chung, T., & Liu, W. F. (2013). Modulation of macrophage phenotype by cell shape. Proceedings of the National Academy of Sciences of the United States of America, 110, 17253–17258.
- Mehta, M. M., Weinberg, S. E., & Chandel, N. S. (2017). Mitochondrial control of immunity: Beyond ATP. Nature Reviews. Immunology, (Jul 3. https://doi.org/10.1038/nri.2017.66. [Epub ahead of print]). Review
- Meschiari, C. A., Jung, M., Iyer, R. P., Yabluchanskiy, A., Toba, H., Garrett, M. R., & Lindsey, M. L. (2017). Macrophage overexpression of matrix metalloproteinase-9 in aged mice improves diastolic physiology and cardiac wound healing following myocardial infarction. American Journal of Physiology. Heart and Circulatory Physiology. Oct 13:ajpheart004532017. https://doi.org/10.1152/ajpheart.00453.2017. [Epub ahead of print]
- Mills, E. L., & O'Neill, L. A. (2016). Reprogramming mitochondrial metabolismin macrophages as an anti-inflammatory signal. European Journal of Immunology, 46, 13–21.
- Moore, A. L., Marshall, C. D., Barnes, L. A., Murphy, M. P., Ransom, R. C., & Longaker, M. T. (2018). Scarless wound healing: Transitioning from fetal research to regenerative healing. Wiley Interdiscip Rev. Developmental Biology. 2 Mar, 7(2). https://doi.org/10.1002/wdev.309. Epub 2018 Jan 9
- Munder, M., Mollinedo, F., Calafat, J., Canchado, J., Gil-Lamaignere, C., Fuentes, J. M., … Modolell, M. (2005). Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity. Blood, 105, 2549–2556.
- Nahrendorf, M., Swirski, F. K., Aikawa, E., Stangenberg, L., Wurdinger, T., Figueiredo, J. L., … Pittet, M. J. (2007). The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. The Journal of Experimental Medicine, 204, 3037–3304.
- Nunan, R., Harding, K. G., & Martin, P. (2014). Clinical challenges of chronic wounds: Searching for an optimal animal model to recapitulate their complexity. Disease Models & Mechanisms, 7, 1205–1213.
- Nuutila, K., Katayama, S., Vuola, J., & Kankuri, E. (2014). Human wound-healing research: Issues and perspectives for studies using wide-scale analytic platforms. Advances in wound care Wound Healing, 3, 264–271.
10.1089/wound.2013.0502 Google Scholar
- Nuutila, K., Siltanen, A., Peura, M., Bizik, J., Kaartinen, I., Kuokkanen, H., … Kankuri, E. (2012). Human skin transcriptome during superficial cutaneous wound healing. Wound Repair and Regeneration, 20, 830–839.
- Occleston, N. L., Laverty, H. G., O'Kane, S., & Ferguson, M. W. J. (2008). Prevention and reduction of scarring in the skin by transforming growth factor beta 3 (TGFbeta3): From laboratory discovery to clinical pharmaceutical. Biomaterials Science Polymer edition, 19, 1047–1063.
- Orkin, S. H., & Zon, L. I. (2008). Hematopoiesis: An evolving paradigm for stem cell biology. Cell, 132, 631–644.
- Pakyari, M., Farrokhi, A., Maharlooei, M. K., & Ghahary, A. (2013). Critical role of transforming growth factor beta in different phases of wound healing. Advances in wound care Wound Healing, 2, 215–224.
10.1089/wound.2012.0406 Google Scholar
- Parasa, V. R., Muvva, J. R., Rose, J. F., Braian, C., Brighenti, S., & Lerm, M. (2017). Inhibition of tissue matrix metalloproteinases interferes with mycobacterium tuberculosis-induced granuloma formation and reduces bacterial load in a human lung tissue model. Frontiers in Microbiology, 8, 2370.
- Quiros, M., Nishio, H., Neumann, P. A., Siuda, D., Brazil, J. C., Azcutia, V., … Nusrat, A. (2017). Macrophage-derived IL-10 mediates mucosal repair by epithelial WISP-1 signaling. The Journal of Clinical Investigation, 127, 3510–3520.
- Raes, G., Van den Bergh, R., De Baetselier, P., Ghassabeh, G. H., Scotton, C., Locati, M., … Sozzani, S. (2005). Arginase-1 and Ym1 are markers for murine, but not human, alternatively activated myeloid cells. Journal of Immunology, 174, 6561–6562.
- Rhett, J. M., Ghatnekar, G. S., Palatinus, J. A., O'Quinn, M., Yost, M. J., & Gourdie, R. G. (2008). Novel therapies for scar reduction and regenerative healing of skin wounds. Trends in Biotechnology, 26, 173–180.
- Rittié, L., Sachs, D. L., Orringer, J. S., Voorhees, J. J., & Fisher, G. J. (2013). Eccrine sweat glands are major contributors to reepithelialization of human wounds. The American Journal of Pathology, 182, 163–170.
- Roch, T., Akymenko, O., Krüger, A., Jung, F., Ma, N., & Lendlein, A. (2014). Expression pattern analysis and activity determination of matrix metalloproteinase derived from human macrophage subsets. Clinical Hemorheology and Microcirculation, 58, 147–158.
- Rodríguez-Prados, J. C., Través, P. G., Cuenca, J., Rico, D., Aragonés, J., Martín-Sanz, P., … Boscá, L. (2010). Substrate fate in activated macrophages: A comparison between innate, classic, and alternative activation. Journal of Immunology, 185, 605–614.
- Samokhvalov, I. M. (2014). Deconvoluting the ontogeny of hematopoietic stem cells. Cellular and Molecular Life Sciences, 71, 957–978.
- Schuler, M. H., Lewandowska, A., Caprio, G. D., Skillern, W., Upadhyayula, S., Kirchhausen, T., … Cunniff, B. (2017). Miro1-mediated mitochondrial positioning shapes intracellular energy gradients required for cell migration. Molecular Biology of the Cell, 282, 159–2169.
- Schulz, C., Gomez Perdiguero, E., Chorro, L., Szabo-Rogers, H., Cagnard, N., Kierdorf, K., … Geissmann, F. (2012). A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science, 336, 86–90.
- Seki, E., de Minicis, S., Inokuchi, S., Taura, K., Miyai, K., van Rooijen, N., … Brenner, D. A. (2009). CCR2 promotes hepatic fibrosis in mice. Hepatology, 50, 185–197.
- Serra, M. B., Barroso, W. A., da Silva, N. N., Silva, S. N., Borges, A. C. R., Abreu, I. C., & da Rocha Borges, M. O. (2017). From inflammation to current and alternative therapies involved in wound healing. International Journal of Inflammation, 2017, 3406215.
- Shi, Y., Shu, B., Yang, R., Xu, Y., Xing, B., Liu, J., … Xie, J. (2015). Wnt and Notch signaling pathway involved in wound healing by targeting c-Myc and Hes1 separately. Stem Cell Research & Therapy, 6(1), 120.
- Short, J. D., Downs, K., Tavakoli, S., & Asmis, R. (2016). Protein thiol redox signaling in monocytes and macrophages. Antioxidants & Redox Signaling, 25, 816–835.
- Song, Q., Xie, Y., Gou, Q., Guo, X., Yao, Q., & Gou, X. (2017). JAK/STAT3 and Smad3 activities are required for the wound healing properties of Periplaneta americana extracts. International Journal of Molecular Medicine, 40, 465–473.
- Sun, Q., Guo, S., Wang, C. C., Sun, X., Wang, D., Xu, N., … Li, K. Z. (2015 Jun 1). (2015). Cross-talk between TGF-β/Smad pathway and Wnt/β-catenin pathway in pathological scar formation. International Journal of Clinical and Experimental Pathology, 8(6), 7631–7639. eCollection 2015
- Takeo, M., Lee, W., & Ito, M. (2015). Wound healing and skin regeneration. Cold Spring Harbor Perspectives in Medicine, 5(1), a023267.
- Vats, D., Mukundan, L., Odegaard, J. I., Zhang, L., Smith, K. L., Morel, C. R., … Chawla, A. (2006). Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metabolism, 4, 13–24.
- Wang, Q., Zhu, G., Cao, X., Dong, J., Song, F., & Niu, Y. (2017). Blocking age-rage signaling improved functional disorders of macrophages in diabetic wound. Journal Diabetes Research, 2017, 1428537. https://doi.org/10.1155/2017/1428537
- Wilgus, T. A., Ferreira, A. M., Oberyszyn, T. A., Bergdall, V. K., & DiPietro, L. A. (2008). Regulation of scar formation by vascular endothelial growth factor. Laboratory Investigation, 88, 579–590.
- Wosik, J., Chen, W., Qin, K., Ghobrial, R. M., Kubiak, J. Z., & Kloc, M. (2018). Magnetic field changes macrophage phenotype. Biophysical Journal, 114, 2001–2013.
- Wu, C., Zhao, Y., Xiao, Z., Fan, Y., Kloc, M., Liu, W., … Li, X. C. (2016). Graft infiltrating macrophages adopt a M2 phenotype and are inhibited by P2x7 receptor antagonist in chronic rejection A. Journal of Transplantation, 16, 2563–2673.
- Wynn, T. A., & Vannella, K. M. (2016). Macrophages in tissue repair, regeneration, and fibrosis. Immunity, 44, 450–462.
- Yeh, C. J., Chen, C. C., Leu, Y. L., Lin, M. W., Chiu, M. M., & Wang, S. H. (2017).(2017). The effects of artocarpin on wound healing: In vitro and in vivo studies. Scientific Reports, 7(15599). Published online 2017 Nov 15. https://doi.org/10.1038/s41598-017-15876-7
10.1038/s41598?017?15876?7 Google Scholar
- Yu, D. J., Wang, X. J., Shi, Y. F., Jiang, C. Y., Zhao, R. Z., Zhu, Y. P., … Xia, S. J. (2017). Macrophages are targets of retinoic acid signaling during the wound-healing process after thulium laser resection of the prostate. Oncotarget, 8, 71996–72007.
- Zhang, Q. Z., Su, W. R., Shi, S. H., Wilder-Smith, P., Xiang, A. P., Wong, A., … Le, A. D. (2010). Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. In Stem cells 28 (pp. 1856–1868).
10.1002/stem.503 Google Scholar
- Zuloff-Shani, A., Kachel, E., Frenkel, O., Orenstein, A., Shinar, E., & Danon, D. (2004). Macrophage suspensions prepared from a blood unit for treatment of refractory human ulcers. Transfusion and Apheresis Science, 30, 163–167.