Screening and optimization of potential injection vehicles for storage of retinal pigment epithelial stem cell before transplantation
Yangzi Tian
Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York
Search for more papers by this authorRichard Davis
Department of Retina Research, Neural Stem Cell Institute, Rensselaer, New York
Search for more papers by this authorMichael R. Zonca Jr
Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York
Search for more papers by this authorJeffrey H. Stern
Department of Retina Research, Neural Stem Cell Institute, Rensselaer, New York
Search for more papers by this authorSally Temple
Department of Retina Research, Neural Stem Cell Institute, Rensselaer, New York
Search for more papers by this authorCorresponding Author
Yubing Xie
Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York
Correspondence
Yubing Xie, Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203.
Email: [email protected]
Search for more papers by this authorYangzi Tian
Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York
Search for more papers by this authorRichard Davis
Department of Retina Research, Neural Stem Cell Institute, Rensselaer, New York
Search for more papers by this authorMichael R. Zonca Jr
Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York
Search for more papers by this authorJeffrey H. Stern
Department of Retina Research, Neural Stem Cell Institute, Rensselaer, New York
Search for more papers by this authorSally Temple
Department of Retina Research, Neural Stem Cell Institute, Rensselaer, New York
Search for more papers by this authorCorresponding Author
Yubing Xie
Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York
Correspondence
Yubing Xie, Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203.
Email: [email protected]
Search for more papers by this authorAbstract
Retinal pigment epithelial (RPE) cells are highly specialized neural cells that have several functions essential for vision. Progressive deterioration of RPE cells in elderly individuals can result in visual impairment and ultimately the blinding disease age-related macular degeneration. Subretinal transplantation of stem cell-derived RPE cell suspensions is being explored as a strategy to recover the damaged retina and improve vision. This approach may be improved by developing a vehicle that increases postinjection cell viability and distribution and integration of RPE cells. In this study, Food and Drug Administration-approved natural polymers, including alginate, methylcellulose, and hyaluronic acid (HA), were examined for performance as cell vehicles for adult human RPE stem cells (RPESCs). We compared the effect of RPESC storage as a cell suspension in these delivery vehicles for 1–96 hr at different temperatures on subsequent cell performance in a cell culture model. RPESC survival, attachment, distribution, proliferation, and differentiation into RPE cells were monitored by microscopy over the course of 8 weeks. Our in vitro results demonstrate that RPESC suspension in a 0.2% HA solution promotes better initial cell distribution, proliferation, cobblestone formation, and expression of RPE cell markers (microphthalmia-associated transcription factor and orthodenticle homeobox 2) after 96 hr of storage. These data suggest that HA addition to the vehicle can significantly enhance RPESC performance in vitro and is a promising strategy to pursue an improved delivery vehicle supporting in vivo RPE cell transplantation.
CONFLICT OF INTEREST
The authors have no conflict of interest to declare.
Supporting Information
Filename | Description |
---|---|
term2770-sup-0001-sf1-sf2.docxWord 2007 document , 902 KB |
Figure S1 Viability of RPESCs after storage in HA from Sigma-Aldrich at different temperatures, (A) Room temperature. (B) 12°C. (C) 4°C. * p < 0.05. ** p < 0.01. *** p < 0.001. **** p < 0.0001. Figure S2 Viability of RPESCs after storage in Provisc HA at different temperatures, (A) Room temperature. (B) 12°C. (C) 4°C. * p < 0.05. * p < 0.05. ** p < 0.01. *** p < 0.001. **** p < 0.0001. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Assawachananont, J., Mandai, M., Okamoto, S., Yamada, C., Eiraku, M., Yonemura, S., … Takahashi, M. (2014). Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice. Stem Cell Reports, 2, 662–674. https://doi.org/10.1016/j.stemcr.2014.03.011
- Ballios, B. G., Cooke, M. J., van der Kooy, D., & Shoichet, M. S. (2010). A hydrogel-based stem cell delivery system to treat retinal degenerative diseases. Biomaterials, 31, 2555–2564. https://doi.org/10.1016/j.biomaterials.2009.12.004
- Ballios, B. G., Cooke Michael, J., Donaldson, L., Coles Brenda, L. K., Morshead Cindi, M., van der Kooy, D., & Shoichet Molly, S. (2015). A hyaluronan-based injectable hydrogel improves the survival and integration of stem cell progeny following transplantation. Stem Cell Reports, 4, 1031–1045. https://doi.org/10.1016/j.stemcr.2015.04.008
- Bharti, K., Rao, M., Hull, S. C., Stronecek, D., Brooks, B. P., Feigal, E., … Miller, S. S. (2014). Developing cellular therapies for retinal degenerative diseases. Investigative Ophthalmology & Visual Science, 55(2), 1191–1202. https://doi.org/10.1167/iovs.13-13481
- Blenkinsop, T., Salero, E., Stern, J., & Temple, S. (2013). The culture and maintenance of functional retinal pigment epithelial monolayers from adult human eye. Methods in Molecular Biology, 945, 45–65. https://doi.org/10.1007/978-1-62703-125-7_4
- Blenkinsop, T. A., Saini, J. S., Maminishkis, A., Bharti, K., Wan, Q., Banzon, T., … Stern, J. H. (2015). Human adult retinal pigment epithelial stem cell-derived RPE monolayers exhibit key physiological characteristics of native tissue physiology of cultured adult human RPE. Investigative Ophthalmology & Visual Science, 56, 7085–7099. https://doi.org/10.1167/iovs.14-16246
- Carr, A. J., Vugler, A. A., Hikita, S. T., Lawrence, J. M., Gias, C., Chen, L. L., … Coffey, P. J. (2009). Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS One, 4, e8152. https://doi.org/10.1371/journal.pone.0008152
- Carr, A.-J. F., Smart, M. J. K., Ramsden, C. M., Powner, M. B., da Cruz, L., & Coffey, P. J. (2013). Development of human embryonic stem cell therapies for age-related macular degeneration. Trends in Neurosciences, 36, 385–395. https://doi.org/10.1016/j.tins.2013.03.006
- da Cruz, L., Chen, F. K., Ahmado, A., Greenwood, J., & Coffey, P. (2007). RPE transplantation and its role in retinal disease. Progress in Retinal and Eye Research, 26, 598–635. https://doi.org/10.1016/j.preteyeres.2007.07.001
- Davis, R. J., Alam, N. M., Zhao, C., Muller, C., Saini, J. S., Blenkinsop, T. A., … Stern, J. H. (2017). The developmental stage of adult human stem cell-derived retinal pigment epithelium cells influences transplant efficacy for vision rescue. Stem Cell Reports, 9, 42–49. https://doi.org/10.1016/j.stemcr.2017.05.016
- Davis, R. J., Blenkinsop, T. A., Campbell, M., Borden, S. M., Charniga, C. J., Lederman, P. L., … Stern, J. H. (2016). Human RPE stem cell-derived RPE preserves photoreceptors in the Royal College of Surgeons rat: Method for quantifying the area of photoreceptor sparing. Journal of Ocular Pharmacology and Therapeutics, 32, 304–309. https://doi.org/10.1089/jop.2015.0162
- Diniz, B., Thomas, P., Thomas, B., Ribeiro, R., Hu, Y., Brant, R., … Humayun, M. S. (2013). Subretinal implantation of retinal pigment epithelial cells derived from human embryonic stem cells: Improved survival when implanted as a monolayer. Investigative Ophthalmology & Visual Science, 54, 5087–5096. https://doi.org/10.1167/iovs.12-11239
- Flammer, J., Mozaffarieh, M., & Bebie, H. (2013). Basic sciences in ophthalmology: Physics and chemistry (p. 250). New York City: Springer. https://doi.org/10.1007/978-3-642-32261-7
- Heidari, R., Soheili, Z., Samiei, S., Ahmadieh, H., Davari, M., Nazemroaya, F., … Deezagi, A. (2015). Alginate as a cell culture substrate for growth and differentiation of human retinal pigment epithelial cells. Applied Biochemistry and Biotechnology, 175, 2399–2412. https://doi.org/10.1007/s12010-014-1431-z
- Ho, T. C., & Del Priore, L. V. (1997). Reattachment of cultured human retinal pigment epithelium to extracellular matrix and human Bruch's membrane. Investigative Ophthalmology & Visual Science, 38, 1110–1118.
- Hollyfield, J. G. (1999). Hyaluronan and the functional organization of the interphotoreceptor matrix. Investigative Ophthalmology & Visual Science, 40, 2767–2769.
- Hollyfield, J. G., Rayborn, M. E., Tammi, M., & Tammi, R. (1998). Hyaluronan in the interphotoreceptor matrix of the eye: Species differences in content, distribution, ligand binding and degradation. Experimental Eye Research, 66, 241–248. https://doi.org/10.1006/exer.1997.0422
- Hsiung, J., Zhu, D., & Hinton, D. R. (2015). Polarized human embryonic stem cell-derived retinal pigment epithelial cell monolayers have higher resistance to oxidative stress-induced cell death than nonpolarized was used to further quacultures. Stem Cells Translational Medicine, 4, 10–20. https://doi.org/10.5966/sctm.2014-0205
- Hunt, N. C., Hallam, D., Karimi, A., Mellough, C. B., Chen, J., Steel, D. H. W., & Lako, M. (2017). 3D culture of human pluripotent stem cells in RGD-alginate hydrogel improves retinal tissue development. Acta Biomaterialia, 49, 329–343. https://doi.org/10.1016/j.actbio.2016.11.016
- Idelson, M., Alper, R., Obolensky, A., Ben-Shushan, E., Hemo, I., Yachimovich-Cohen, N., … Reubinoff, B. (2009). Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell, 5, 396–408. https://doi.org/10.1016/j.stem.2009.07.002
- Jeong, S. M., Kim, E. Y., Hwang, J. H., Lee, G. Y., Cho, S. J., Bae, J. Y., … Khang, G. (2011). A study on proliferation and behavior of retinal pigment epithelial cells on purified alginate films. Int J Stem Cells., 4, 105–112. https://doi.org/10.15283/ijsc.2011.4.2.105
- Kamao, H., Mandai, M., Okamoto, S., Sakai, N., Suga, A., Sugita, S., … Takahashi, M. (2014). Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Reports, 2, 205–218. https://doi.org/10.1016/j.stemcr.2013.12.007
- Krohne, T. U., Westenskow, P. D., Kurihara, T., Friedlander, D. F., Lehmann, M., Dorsey, A. L., … Friedlander, M. (2012). Generation of retinal pigment epithelial cells from small molecules and OCT4 reprogrammed human induced pluripotent stem cells. Stem Cells Translational Medicine, 1, 96–109. https://doi.org/10.5966/sctm.2011-0057
- Lee, A. S., Tang, C., Rao, M. S., Irving, L. W., & Wu, J. C. (2013). Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nature Medicine, 19, 998–1004. https://doi.org/10.1038/nm.3267
- Lu, B., Malcuit, C., Wang, S., Girman, S., Francis, P., Lemieux, L., … Lund, R. (2009). Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells, 27, 2126–2135. https://doi.org/10.1002/stem.149
- Mandai, M., Watanabe, A., Kurimoto, Y., Hirami, Y., Morinaga, C., Daimon, T., … Takahashi, M. (2017). Autologous induced stem-cell-derived retinal cells for macular degeneration. The New England Journal of Medicine, 376, 1038–1046. https://doi.org/10.1056/NEJMoa1608368
- M'Barek, K. B., Habeler, W., Plancheron, A., Jarraya, M., Regent, F., Terray, A., … Monville, C. (2017). Human ESC-derived retinal epithelial cell sheets potentiate rescue of photoreceptor cell loss in rats with retinal degeneration. Science Translational Medicine, 9(421), eaai7471. https://doi.org/10.1126/scitranslmed.aai7471
- Müller, C., Blenkinsop, A. T., Stern, H. J., Finnemann, C. S. (2016). Efficiency of membrane protein expression following infection with recombinant adenovirus of polarized non-transformed human retinal pigment epithelial cells. In: C Bowes Rickman, MM LaVail, ER Anderson, et al., eds. Retinal degenerative diseases: Mechanisms and experimental therapy. (p. 731–737). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-17121-0_97.
10.1007/978-3-319-17121-0_97 Google Scholar
- Najafabadi, H. S., Soheili, Z.-S., & Ganji, S. M. (2015). Behavior of a spontaneously arising human retinal pigment epithelial cell line cultivated on thin alginate film. Journal of Ophthalmic & Vision Research, 10, 286–294. https://doi.org/10.4103/2008-322X.170357
- Nakano-Okuno, M., Borah, B. R., & Nakano, I. (2014). Ethics of iPSC-based clinical research for age-related macular degeneration: Patient-centered risk–benefit analysis. Stem Cell Reviews, 10, 743–752. https://doi.org/10.1007/s12015-014-9536-x
- Pan, C. K., Heilweil, G., Lanza, R., & Schwartz, S. D. (2013). Embryonic stem cells as a treatment for macular degeneration. Expert Opinion on Biological Therapy, 13, 1125–1133. https://doi.org/10.1517/14712598.2013.793304
- Rabin, D. M., Rabin, R. L., Blenkinsop, T. A., Temple, S., & Stern, J. H. (2013). Chronic oxidative stress upregulates Drusen-related protein expression in adult human RPE stem cell-derived RPE cells: A novel culture model for dry AMD. Aging, 5, 51–66. https://doi.org/10.18632/aging.100516
- Sachdeva, M. M., & Eliott, D. (2016). Stem cell-based therapy for diseases of the retinal pigment epithelium: From bench to bedside. Seminars in Ophthalmology, 31, 25–29. https://doi.org/10.3109/08820538.2015.1115253
- Saini, S. J., Temple, S., Stern, H. J. (2016). Human retinal pigment epithelium stem cell (RPESC). In: C Bowes Rickman, MM LaVail, ER Anderson, et al., eds. Retinal degenerative diseases: Mechanisms and experimental therapy. (p. 557–562). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-17121-0_74.
10.1007/978-3-319-17121-0_74 Google Scholar
- Salero, E., Blenkinsop, T., Corneo, B., Harris, A., Rabin, D., Stern, J., & Temple, S. (2012). Adult human RPE can be activated into a multipotent stem cell that produces mesenchymal derivatives. Cell Stem Cell, 10, 88–95. https://doi.org/10.1016/j.stem.2011.11.018
- Schwartz, S., Hubschman, J., Heilwell, G., Franco-Cardenas, V., Pan, C., Ostrick, R., … Lanza, R. (2012). Embryonic stem cell trials for macular degeneration: A preliminary report. Lancet, 379, 713–720. https://doi.org/10.1016/S0140-6736(12)60028-2
- Schwartz, S. D., Regillo, C. D., Lam, B. L., Eliott, D., Rosenfeld, P. J., Gregori, N. Z., … Lanza, R. (2015). Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: Follow-up of two open-label phase 1/2 studies. Lancet, 385, 509–516. https://doi.org/10.1016/S0140-6736(14)61376-3
- Schwartz, S. D., Tan, G., Hosseini, H., & Nagiel, A. (2016). Subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium for the treatment of macular degeneration: An assessment at 4 years hESC-RPE transplantation. Invest Ophthalmol Vis Sci., 57. ORSFc1-ORSFc9. doi: https://doi.org/10.1167/iovs.15-18681
- Sheridan, C. M., Mason, S., Pattwell, D. M., Kent, D., Grierson, I., & Williams, R. (2009). Replacement of the RPE monolayer. Eye, 23, 1910–1915. https://doi.org/10.1038/eye.2008.420
- Song, W. K., Park, K.-M., Kim, H.-J., Lee, J. H., Choi, J., Chong, S. Y., … Lanza, R. (2015). Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: Preliminary results in Asian patients. Stem Cell Reports, 4, 860–872. https://doi.org/10.1016/j.stemcr.2015.04.005
- Sowden, J. C. (2014). ESC-derived retinal pigmented epithelial cell transplants in patients: So far, so good. Cell Stem Cell, 15, 537–538. https://doi.org/10.1016/j.stem.2014.10.008
- Sparrrow, J. R., Hicks, D., & Hamel, C. P. (2010). The retinal pigment epithelium in health and disease. Current Molecular Medicine, 10, 802–823. https://doi.org/10.2174/156652410793937813
- Stanzel, B. V., Liu, Z., Somboonthanakij, S., Wongsawad, W., Brinken, R., Eter, N., … Blenkinsop, T. A. (2014). Human RPE stem cells grown into polarized RPE monolayers on a polyester matrix are maintained after grafting into rabbit subretinal space. Stem Cell Reports, 2, 64–77. https://doi.org/10.1016/j.stemcr.2013.11.005
- Strauss, O. (2005). The retinal pigment epithelium in visual function. Physiological Reviews, 85, 845–881. https://doi.org/10.1152/physrev.00021.2004
- Sugino, I. K., Sun, Q., Wang, J., Nunes, C. F., Cheewatrakoolpong, N., Rapista, A., … Zarbin, M. A. (2011). Comparison of FRPE and human embryonic stem cell-derived RPE behavior on aged human Bruch's membrane. Investigative Ophthalmology & Visual Science, 52, 4979–4997. https://doi.org/10.1167/iovs.10-5386
- Tate, D. J. Jr., Oliver, P. D., Miceli, M. V., Stern, R., Shuster, S., & Newsome, D. A. (1993). Age-dependent change in the hyaluronic acid content of the human chorioretinal complex. Archives of Ophthalmology, 111, 963–967. https://doi.org/10.1001/archopht.1993.01090070083023
- Wang, Q., Stern, J., & Temple, S. (2016). Regenerative medicine: Solution in sight. Advances in Experimental Medicine and Biology, 854, 543–548. https://doi.org/10.1007/978-3-319-17121-0_72
- Wang, S., Lu, B., Wood, P., & Lund, R. D. (2005). Grafting of ARPE-19 and Schwann cells to the subretinal space in RCS rats. Investigative Ophthalmology & Visual Science, 46, 2552–2560. https://doi.org/10.1167/iovs.05-0279
- Westenskow, P. D., Bucher, F., Bravo, S., Kurihara, T., Feitelberg, D., Paris, L. P., … Friedlander, M. (2016). iPSC-derived retinal pigment epithelium allografts do not elicit detrimental effects in rats: A follow-up study. Stem Cells International, 2016, 1, 8470263–8. https://doi.org/10.1155/2016/8470263
- Wikström, J., Elomaa, M., Syväjärvi, H., Kuokkanen, J., Yliperttula, M., Honkakoski, P., & Urtti, A. (2008). Alginate-based microencapsulation of retinal pigment epithelial cell line for cell therapy. Biomaterials, 29, 869–876. https://doi.org/10.1016/j.biomaterials.2007.10.056
- Wongpichedchai, S., Weiter, J. J., Weber, P., & Dorey, C. K. (1992). Comparison of external and internal approaches for transplantation of autologous retinal pigment epithelium. Investigative Ophthalmology & Visual Science, 33, 3341–3352.
- Xian, B., & Huang, B. (2015). The immune response of stem cells in subretinal transplantation. Stem Cell Research & Therapy, 6, 1–7. https://doi.org/10.1186/s13287-015-0167-1
- Zhao, J., Yoneda, M., Takeyama, M., Miyaishi, O., Inoue, Y., Kataoka, T., … Zako, M. (2008). Characterization of a motif for specific binding to hyaluronan in chicken SPACR. Journal of Neurochemistry, 106, 1117–1124. https://doi.org/10.1111/j.1471-4159.2008.05468.x