Advancements in Perovskite-Based Cathode Materials for Solid Oxide Fuel Cells: A Comprehensive Review
Corresponding Author
Ayesha Samreen
Department of Physics, University of Peshawar, Peshawar, 25120 Pakistan
Search for more papers by this authorMuhammad Sudais Ali
Department of Physics, University of Peshawar, Peshawar, 25120 Pakistan
Search for more papers by this authorMuhammad Huzaifa
Department of Physics, University of Peshawar, Peshawar, 25120 Pakistan
Search for more papers by this authorNasir Ali
Research Center for Sensing Materials and Devices, Zhejiang Labs, Yuhang District, Nanhu, China
Search for more papers by this authorBilal Hassan
Department of Physics, University of Peshawar, Peshawar, 25120 Pakistan
Search for more papers by this authorFazl Ullah
Department of Physics, University of Peshawar, Peshawar, 25120 Pakistan
Search for more papers by this authorShahid Ali
Department of Physics, University of Peshawar, Peshawar, 25120 Pakistan
Search for more papers by this authorNor Anisa Arifin
Materials Engineering and Testing Group, TNB Research Sdn Bhd, No.1, Kawasan Institusi Penyelidikan, Jln Ayer Hitam, 43000 Kajang, Selangor, Malaysia
Search for more papers by this authorCorresponding Author
Ayesha Samreen
Department of Physics, University of Peshawar, Peshawar, 25120 Pakistan
Search for more papers by this authorMuhammad Sudais Ali
Department of Physics, University of Peshawar, Peshawar, 25120 Pakistan
Search for more papers by this authorMuhammad Huzaifa
Department of Physics, University of Peshawar, Peshawar, 25120 Pakistan
Search for more papers by this authorNasir Ali
Research Center for Sensing Materials and Devices, Zhejiang Labs, Yuhang District, Nanhu, China
Search for more papers by this authorBilal Hassan
Department of Physics, University of Peshawar, Peshawar, 25120 Pakistan
Search for more papers by this authorFazl Ullah
Department of Physics, University of Peshawar, Peshawar, 25120 Pakistan
Search for more papers by this authorShahid Ali
Department of Physics, University of Peshawar, Peshawar, 25120 Pakistan
Search for more papers by this authorNor Anisa Arifin
Materials Engineering and Testing Group, TNB Research Sdn Bhd, No.1, Kawasan Institusi Penyelidikan, Jln Ayer Hitam, 43000 Kajang, Selangor, Malaysia
Search for more papers by this authorAbstract
The high-temperature solid oxide fuel cells (SOFCs) are the most efficient and green conversion technology for electricity generation from hydrogen-based fuel as compared to conventional thermal power plants. Many efforts have been made to reduce the high operating temperature (>800 °C) to intermediate/low operating temperature (400 °C<T<800 °C) in SOFCs in order to extend their life span, thermal compatibility, cost-effectiveness, and ease of fabrication. However, the major challenges in developing cathode materials for low/intermediate temperature SOFCs include structural stability, catalytic activity for oxygen adsorption and reduction, and tolerance against contaminants such as chromium, boron, and sulfur. This research aims to provide an updated review of the perovskite-based state-of-the-art cathode materials LaSrMnO3 (LSM) and LaSrCOFeO3 (LSCF), as well as the recent trending Ruddlesden-Popper phase (RP) and double perovskite-structured materials SOFCs technology. Our review highlights various strategies such as surface modification, codoping, infiltration/impregnation, and composites with fluorite phases to address the challenges related to LSM/LSCF-based electrode materials and improve their electrocatalytic activity. Moreover, this study also offers insight into the electrochemical performance of the double perovskite oxides and Ruddlesden-Popper phase materials as cathodes for SOFCs.
References
- 1J. S. Park, J. Bae, Y. B. Kim, Ceram. Int. 2016, 42, 12853–12859.
- 2G. Suchaneck, E. Artiukh, Inorganics 2022, 10, 230.
- 3S. P. Jiang, Int. J. Hydrogen Energy 2019, 44, 7448–7493.
- 4A. H. Alami, A. Alashkar, M. A. Abdelkareem, H. Rezk, M. S. Masdar, A. G. Olabi, Membranes 2023, 13, 661.
- 5A. Ndubuisi, S. Abouali, K. Singh, V. Thangadurai, J. Mater. Chem. A 2022, 10, 2196–2227.
- 6E. K. Albrecht, A. J. Karttunen, Dalton Transactions 2023, 52, 12461–12469.
- 7A. Nikonov, K. Kuterbekov, K. Z. Bekmyrza, N. Pavzderin, Eurasian J. Phys. Funct. Mater. 2018, 2, 274–292.
- 8Y. Shi, N. Ni, Q. Ding, X. Zhao, J. Mater. Chem. A 2022, 10, 2256–2270.
- 9M. B. Hanif, M. Motola, S. Rauf, C.-J. Li, C. X. Li, Chem. Eng. J. 2022, 428, 132603.
- 10M. Choolaei, M. F. Vostakola, B. A. Horri, Crystals 2023, 13, 1008.
- 11V. Celorrio, A. S. Leach, H. Huang, S. Hayama, A. Freeman, D. W. Inwood, D. J. Fermin, A. E. Russell, ACS Catal. 2021, 11, 6431–6439.
- 12S. Suresh, P. Vindhya, S. Devika, V. Kavitha, Mater. Today Commun. 2023, 36, 106657.
- 13S. A. Fatima, R. Shaheen, A. Mehmood, R. Riaz, K. Shahzad, J. Electroceram. 2023, 1–11.
- 14S. Paul, V. Anand, V. Duggal, Mater. Today: Proc. 2023, in press.
- 15X. Han, Y. Yang, Y. Fan, H. Ni, Y. Guo, Y. Chen, X. Ou, Y. Ling, Ceram. Int. 2021, 47, 17383–17390.
- 16S. Dwivedi, Int. J. Hydrogen Energy 2020, 45, 23988–24013.
- 17F. Van Heuveln, H. J. Bouwmeester, F. F. van Berkel, J. Electrochem. Soc. 1997, 144, 126.
- 18K. Cheng, H. Xu, L. Zhang, J. Zhou, X. Wang, Y. Du, M. Chen, Npj Comput. Mater. 2021, 7, 119.
- 19S. Manishanma, A. Dutta, Mater. Chem. Phys. 2023, 297, 127438.
- 20N. Li, L. Sun, Q. Li, T. Xia, L. Huo, H. Zhao, J. Eur. Ceram. Soc. 2023, 43, 5279–5287.
- 21L. Cabezas i Peñalva, Master Thesis, Universitat Politècnica de Catalunya (Spain), 2020.
- 22O. Agbede, K. Hellgardt, G. Kelsall, Mater. Today Chem. 2020, 16, 100252.
- 23M. A. Yatoo, F. Habib, A. H. Malik, M. J. Qazi, S. Ahmad, M. A. Ganayee, Z. Ahmad, MRS Commun. 2023, 13, 378–384.
- 24S. Paydar, I. Gholaminezad, H. Shirani-Faradonbeh, S. Imanlou, N. Akbar, M. Paydar, J. Mater. Sci. Mater. Electron. 2021, 32, 11129–11144.
- 25X. Lu, X. Yang, L. Jia, B. Chi, J. Pu, J. Li, Int. J. Hydrogen Energy 2019, 44, 16359–16367.
- 26L. Caizán-Juanarena, J. Zamudio-García, D. Marrero-López, Ceram. Int. 2023, 49, 33717–33724.
- 27M. G. Sahini, S. D. Lupyana, Mater. Sci. Eng., B 2023, 292, 116415.
- 28A. Hussain, R. H. Song, M. Z. Khan, T. H. Kim, J. E. Hong, D. W. Joh, H. A. Ishfaq, S. B. Lee, T. H. Lim, J. Power Sources 2023, 573, 233160.
- 29M. Z. Khan, A. Iltaf, H. A. Ishfaq, F. N. Khan, W. H. Tanveer, R. H. Song, M. T. Mehran, M. Saleem, A. Hussain, Z. Masaud, J. Asian Ceram. Soc. 2021, 9, 745–770.
- 30B. Koo, K. Kim, J. K. Kim, H. Kwon, J. W. Han, W. Jung, Joule 2018, 2, 1476–1499.
- 31J. Mizusaki, J. Tabuchi, T. Matsuura, S. Yamauchi, K. Fueki, J. Electrochem. Soc. 1989, 136, 2082.
- 32P. Jena, P. K. Patro, in Energy Materials: Structure, Properties and Applications, Springer, 2023, pp. 163–183.
- 33J. Mizusaki, Y. Yonemura, H. Kamata, K. Ohyama, N. Mori, H. Takai, H. Tagawa, M. Dokiya, K. Naraya, T. Sasamoto, Solid State Ionics 2000, 132, 167–180.
- 34M. Pajot, V. Duffort, E. Capoen, A. S. Mamede, R. N. Vannier, J. Power Sources 2020, 450, 227649.
- 35H. U. Anderson, Solid State Ionics 1992, 52, 33–41.
- 36N. Q. Minh, Soo 1993, 76, 563.
- 37S. Kuharuangrong, T. Dechakupt, P. Aungkavattana, Mater. Lett. 2004, 58, 1964–1970.
- 38S. Kuharuangrong, Ceram. Int. 2004, 30, 273–277.
- 39A. Jun, J. Kim, J. Shin, G. Kim, ChemElectroChem 2016, 3, 511–530.
- 40F. Tietz, Ionics 1999, 5, 129–139.
- 41S. Paydar, M. Shariat, S. Javadpour, Int. J. Hydrogen Energy 2016, 41, 23145–23155.
- 42B. Gharbage, F. Mandier, H. Lauret, C. Roux, T. Pagnier, Solid State Ionics 1995, 82, 85–94.
- 43S. R. Gajjala, Investigation of (La 1-X, Ca x(Ni 0.25 Fe 0.25 Cr 0.25 Co 0.25) O 3 for Solid Oxide Fuel Cells Cathode Materials. Editor, Southern Illinois University at Carbondale, 2017.
- 44S. Carter, A. Selcuk, R. Chater, J. Kajda, J. Kilner, a. B. Steele, Solid State Ionics 1992, 53, 597–605.
- 45R. Wandekar, B. Wani, S. Bharadwaj, Mater. Lett. 2005, 59, 2799–2803.
- 46S. He, Y. Zou, K. Chen, S. P. Jiang, Interdiscip. Mater. 2023, 2, 111–136.
- 47M. Balaguer, V. Vert, L. Navarrete, J. Serra, J. Power Sources 2013, 223, 214–220.
- 48H. S. Song, W. H. Kim, S. H. Hyun, J. Moon, J. Electroceram. 2006, 17, 759–764.
- 49W. K. Epting, Y. Lei, J. H. Mason, H. W. Abernathy, T. Kalapos, G. A. Hackett, ECS Trans. 2021, 103, 909.
- 50M. V. Ananyev, N. M. Porotnikova, V. A. Eremin, E. K. Kurumchin, ACS Catal. 2021, 11, 4247–4262.
- 51R. Wang, Z. Sun, Y. Lu, S. Gopalan, S. N. Basu, U. B. Pal, J. Power Sources 2020, 476, 228743.
- 52Q. Li, G. Cao, X. Zhang, G. Li, Acta Mater. 2020, 201, 278–285.
- 53D. Budáč, V. Miloš, M. Carda, M. Paidar, J. Fuhrmann, K. Bouzek, Electrochem. Acta 2023, 457, 142512.
- 54E. V. Hiraldo, A. F. S. Molouk, H. Tian, A. B. Abdallah, W. Li, X. Liu, J. Am. Ceram. Soc. 2023, 106, 133–156.
- 55Y. Chen, A. Hinerman, L. Liang, K. Gerdes, S. P. Navia, J. Prucz, X. Song, J. Power Sources 2018, 405, 45–50.
- 56B. M. Vieira, W. C. Nadaleti, S. R. Almeida, C. Eliker, S. da Silva Cava, C. W. Raubach, V. C. de Sousa, Environmental Progress & Sustainable Energy 2019, 38, e13243.
- 57H. K. Lee, Mater. Chem. Phys. 2003, 77, 639–646.
- 58A. O. Turky, M. M. Rashad, A. M. Hassan, E. M. Elnaggar, M. Bechelany, Particulate Science and Technology 2018, 36, 873–877.
- 59M. Ananyev, A. Farlenkov, V. Eremin, E. K. Kurumchin, Int. J. Hydrogen Energy 2018, 43, 951–959.
- 60T. Z. Sholklapper, C. Lu, C. P. Jacobson, S. J. Visco, L. C. De Jonghe, Electrochem. Solid-State Lett. 2006, 9, A376.
- 61Z. Jiang, L. Zhang, K. Feng, C. Xia, J. Power Sources 2008, 185, 40–48.
- 62J. Li, S. Wang, Z. Wang, R. Liu, T. Wen, Z. Wen, J. Power Sources 2008, 179, 474–480.
- 63Z. Jiang, C. Xia, F. Zhao, F. Chen, Electrochem. Solid-State Lett. 2009, 12, B91.
- 64Z. Jiang, L. Zhang, L. Cai, C. Xia, Electrochem. Acta 2009, 54, 3059–3065.
- 65J. Li, S. Wang, Z. Wang, R. Liu, T. Wen, Z. Wen, J. Power Sources 2009, 194, 625–630.
- 66Z. Jiang, Z. Lei, B. Ding, C. Xia, F. Zhao, F. Chen, Int. J. Hydrogen Energy 2010, 35, 8322–8330.
- 67K. T. Lee, D. W. Jung, H. S. Yoon, A. A. Lidie, M. A. Camaratta, E. D. Wachsman, J. Power Sources 2012, 220, 324–330.
- 68N. Ai, N. Li, S. He, Y. Cheng, M. Saunders, K. Chen, T. Zhang, J. Mater. Chem. A 2017, 5, 12149–12157.
- 69Y. L. Huang, C. Pellegrinelli, A. S. Painter, E. D. Wachsman, ECS Trans. 2017, 78, 573.
- 70S. J. Kim, A. M. Dayaghi, K. J. Kim, G. M. Choi, J. Power Sources 2017, 344, 218–222.
- 71A. S. Painter, Y. L. Huang, E. D. Wachsman, J. Power Sources 2017, 360, 391–398.
- 72J. W. Park, D. W. Joh, B. H. Yun, K. J. Samdani, K. T. Lee, Int. J. Hydrogen Energy 2017, 42, 6332–6337.
- 73J. W. Park, K. T. Lee, J. Ind. Eng. Chem. 2018, 60, 505–512.
- 74M. Dragan, S. Enache, M. Varlam, K. Petrov, in Cobalt Compounds and Applications, IntechOpen, 2019.
- 75S. Z. Golkhatmi, M. I. Asghar, P. D. Lund, Renew. Sust. Energ. Rev. 2022, 161, 112339.
- 76L. Shu, J. Sunarso, S. S. Hashim, J. Mao, W. Zhou, F. Liang, Int. J. Hydrogen Energy 2019, 44, 31275–31304.
- 77M. Zhang, G. Jeerh, P. Zou, R. Lan, M. Wang, H. Wang, S. Tao, Mater. Today 2021, 49, 351–377.
- 78L. Guo, L. Bo, Y. Li, Z. Jiang, Y. Tian, X. Li, Solid State Sciences 2021, 113, 106519.
- 79S. D. Safian, N. I. Abd Malek, Z. Jamil, S. W. Lee, C. J. Tseng, N. Osman, International Journal of Energy Research 2022, 46, 7101–7117.
- 80A. Safakas, G. Bampos, S. Bebelis, Appl. Catal. B: Environ. 2019, 244, 225–232.
- 81H. Ullmann, N. Trofimenko, F. Tietz, D. Stöver, A. Ahmad-Khanlou, Solid State Ionics 2000, 138, 79–90.
- 82H. Zhang, K. Xu, F. He, Y. Zhou, K. Sasaki, B. Zhao, Y. Choi, M. Liu, Y. Chen, Adv. Energy Mater. 2022, 12, 2200761.
- 83A. Petric, P. Huang, F. Tietz, Solid State Ionics 2000, 135, 719–725.
- 84L. W. Tai, M. Nasrallah, H. Anderson, D. Sparlin, S. Sehlin, Solid State Ionics 1995, 76, 259–271.
- 85H. Ullmann, N. Tro, Solid State Ionics 2000, 138, 79–90.
- 86Y. Teraoka, T. Nobunaga, K. Okamoto, N. Miura, N. Yamazoe, Solid State Ionics 1991, 48, 207–212.
- 87L. W. Tai, M. Nasrallah, H. Anderson, D. Sparlin, S. Sehlin, Solid State Ionics 1995, 76, 273–283.
- 88M. A. S. A. K. Abdul, A. Muchtar, J. Raharjo, D. S. Khaerudini, Int. J. Integr. Eng. 2022, 14, 121–137.
- 89A. Jun, S. Yoo, O.-h. Gwon, J. Shin, G. Kim, Electrochem. Acta 2013, 89, 372–376.
- 90G. C. Kostogloudis, C. Ftikos, Solid State Ionics 1999, 126, 143–151.
- 91A. Mineshige, J. Izutsu, M. Nakamura, K. Nigaki, J. Abe, M. Kobune, S. Fujii, T. Yazawa, Solid State Ionics 2005, 176, 1145–1149.
- 92Y.i. Kwon, G. D. Nam, G. Lee, S. Choi, J. H. Joo, Adv. Energy Sustainability Res. 2022, 3, 2200086.
- 93E. Venezia, M. Viviani, S. Presto, V. Kumar, R. I. Tomov, Nanomaterials 2019, 9, 654.
- 94J. H. Joo, K. S. Yun, Y. Lee, J. Jung, C. Y. Yoo, J. H. Yu, Chem. Mater. 2014, 26, 4387–4394.
- 95J. H. Kim, H. Kim, Ceram. Int. 2012, 38, 4669–4675.
- 96V. Dusastre, J. A. Kilner, Solid State Ionics 1999, 126, 163–174.
- 97W. G. Wang, M. Mogensen, Solid State Ionics 2005, 176, 457–462.
- 98Q. Liu, K. Khor, S. Chan, in Book Optimization of LSCF-GDC composite cathodes for thin film GDC electrolyte solid oxide fuel cells, ed., ed. by Editor, City, 2004, Chap. Chapter, pp. 657–666.
- 99A. J. Abd Aziz, N. A. Baharuddin, M. R. Somalu, A. Muchtar, Ceram. Int. 2020, 46, 23314–23325.
- 100D. Soysal, A. Ansar, Z. Ilhan, R. Costa, ECS Trans. 2011, 35, 2233.
- 101A. Samreen, M. Galvez-Sanchez, R. Steinberger-Wilckens, N. A. Arifin, S. Saher, S. Ali, A. Qamar, Int. J. Hydrogen Energy 2020, 45, 21714–21721.
- 102F. J. Loureiro, D. A. Macedo, R. M. Nascimento, M. R. Cesario, J. P. Grilo, A. A. Yaremchenko, D. P. Fagg, J. Eur. Ceram. Soc. 2019, 39, 1846–1853.
- 103R. M. d. Nascimento, F. J. Loureiro, D. A. d. Macedo, M. R. Cesário, J. P. d. F. Grilo, A. A. Yaremchenko, D. P. Fagg, J. Eur. Ceram. Soc. 2019, 39, 1846–1853.
- 104S. H. C. Yongjun Leng, Qinglin Liu, Int. J. Hydrogen Energy 2008, 33, 3808–3817.
- 105D. Zeng, K. Xu, F. Zhu, Y. Chen, Int. J. Hydrogen Energy 2023.
- 106K. Pei, Y. Zhou, Y. Ding, K. Xu, H. Zhang, W. Yuan, K. Sasaki, Y. Choi, M. Liu, Y. Chen, J. Power Sources 2021, 514, 230573.
- 107S. Chen, H. Zhang, C. Yao, H. Lou, M. Chen, X. Lang, K. Cai, Energy & Fuels 2023, 37, 3470–3487.
- 108M. Muranaka, K. Sasaki, A. Suzuki, T. Terai, J. Electrochem. Soc. 2009, 156, B743.
- 109G. Kim, S. Lee, J. Shin, G. Corre, J. Irvine, J. Vohs, R. J. Gorte, Electrochem. Solid-State Lett. 2009, 12, B48.
- 110M. Dudek, M. Mosiałek, G. Mordarski, R. Socha, A. Rapacz-Kmita, Arch. Metall. Mater. 2011, 56, 1249–1255.
- 111S. Wang, T. Kato, S. Nagata, T. Honda, T. Kaneko, N. Iwashita, M. Dokiya, Solid State Ionics 2002, 146, 203–210.
- 112M. Mosiałek, M. Dudek, M. Tatko, E. Bielańska, G. Mordarski, Arch. Metall. Mater. 2013.
- 113Y. Sakito, A. Hirano, N. Imanishi, Y. Takeda, O. Yamamoto, Y. Liu, J. Power Sources 2008, 182, 476–481.
- 114J. Zhang, Y. Ji, H. Gao, T. He, J. Liu, J. Alloys Compd. 2005, 395, 322–325.
- 115S. H. Jun, Y. R. Uhm, R. H. Song, C. K. Rhee, Curr. Appl. Phys. 2011, 11, S305-S308.
- 116M. Sahibzada, S. Benson, R. Rudkin, J. Kilner, Solid State Ionics 1998, 113, 285–290.
- 117K. Sasaki, J. Tamura, H. Hosoda, T. Lan, K. Yasumoto, M. Dokiya, Solid State Ionics 2002, 148, 551–555.
- 118T. J. Huang, X. D. Shen, C. L. Chou, J. Power Sources 2009, 187, 348–355.
- 119S. Muhammed Ali, M. Anwar, N. A. Baharuddin, M. R. Somalu, A. Muchtar, J. Solid State Electrochem. 2018, 22, 263–273.
- 120V. A. Sadykov, V. S. Muzykantov, N. F. Yeremeev, V. V. Pelipenko, E. M. Sadovskaya, A. S. Bobin, Y. E. Fedorova, D. G. Amanbaeva, A. L. Smirnova, Catal. Sustainable Energy 2015, 2, 57–70.
- 121X. Qi, Y. Lin, S. Swartz, Industrial & engineering chemistry research 2000, 39, 646–653.
- 122Q. Sun, T. Liu, T. Wen, J. Yu, J. Eur. Ceram. Soc. 2022, 42, 5831–5841.
- 123M. A. N. Syafkeena, M. L. Zainor, O. H. Hassan, N. A. Baharuddin, M. H. D. Othman, C. J. Tseng, N. Osman, J. Alloys Compd. 2022, 918, 165434.
- 124A. Ahuja, M. Gautam, A. Sinha, J. Sharma, P. Patro, A. Venkatasubramanian, Bull. Mater. Sci. 2020, 43, 1–9.
- 125L. da Conceicao, A. M. Silva, N. F. Ribeiro, M. M. Souza, Mater. Res. Bull. 2011, 46, 308–314.
- 126L. Baqué, A. Caneiro, M. S. Moreno, A. Serquis, Electrochem. Commun. 2008, 10, 1905–1908.
- 127X. Xi, A. Kondo, M. Naito, Mater. Lett. 2015, 145, 212–215.
- 128S. Guo, H. Wu, F. Puleo, L. F. Liotta, Catalysts 2015, 5, 366–391.
- 129Y. Wang, F. Jin, X. Hao, B. Niu, P. Lyu, T. He, J. Alloys Compd. 2020, 829, 154470.
- 130S. Streule, A. Podlesnyak, D. Sheptyakov, E. Pomjakushina, M. Stingaciu, K. Conder, M. Medarde, M. Patrakeev, I. Leonidov, V. Kozhevnikov, Phys. Rev. B 2006, 73, 094203.
- 131J. Zhao, Y. Luo, J.-O. Wang, H. Qian, C. Liu, X. He, Q. Zhang, H. Huang, B. Zhang, S. Li, Sci. China Mater 2019, 62.
- 132F. Chen, D. Zhou, X. Xiong, J. Pan, D. Cai, Z. Wei, X. Chen, Y. Liu, N. Luo, J. Yan, J. Mater. 2023.
- 133L. Jiang, T. Wei, Y. Huang, J. Electrochem. Soc. 2022, 169, 064508.
- 134X. Bao, X. Su, S. Wang, B. Pan, L. Wang, L. Zhang, Z. Song, W. Long, C. Li, J. Alloys Compd. 2023, 965, 171391.
- 135P. Kaur, K. Singh, Ceram. Int. 2020, 46, 5521–5535.
- 136L. Zhou, P. Yin, C. Tan, Z. Li, E. Lovell, H. Liu, R. Liu, J. Yun, Appl. Catal. A-Gen. 2023, 119439.
- 137S. Pang, J. Xu, Y. Su, G. Yang, M. Zhu, M. Cui, X. Shen, C. Chen, Appl. Catal. B: Environ. 2020, 270, 118868.
- 138A. Olszewska, Y. Zhang, Z. Du, M. Marzec, K. Świerczek, H. Zhao, B. Dabrowski, Int. J. Hydrogen Energy 2019, 44, 27587–27599.
- 139K. Lee, A. Manthiram, Chem. Mater. 2006, 18, 1621–1626.
- 140Y. Dou, Y. Xie, X. Hao, T. Xia, Q. Li, J. Wang, L. Huo, H. Zhao, Appl. Catal. B: Environ. 2021, 297, 120403.
- 141Z. Ge, Y. Zhang, A. Sun, B. Guo, H. Li, Y. Tian, H. Ji, J. Solid State Chem. 2022, 309, 122958.
- 142H. Wang, Z. Lei, X. Wang, Y. Guo, L. Chen, P. Zhang, Z. Yang, Ceram. Int. 2023.
- 143K. Zhang, L. Ge, R. Ran, Z. Shao, S. Liu, Acta Mater. 2008, 56, 4876–4889.
- 144Y. Zhang, L. Shen, Y. Wang, Z. Du, B. Zhang, F. Ciucci, H. Zhao, J. Mater. Chem. A 2022, 10, 3495–3505.
- 145J. H. Kim, F. Prado, A. Manthiram, J. Electrochem. Soc. 2008, 155, B1023.
- 146J. Liu, F. Jin, X. Yang, B. Niu, Y. Li, T. He, Electrochem. Acta 2019, 297, 344–354.
- 147Y. Zhang, B. Yu, S. Lü, X. Meng, X. Zhao, Y. Ji, Y. Wang, C. Fu, X. Liu, X. Li, Electrochem. Acta 2014, 134, 107–115.
- 148R. E. Yagovitin, D. S. Tsvetkov, I. L. Ivanov, D. A. Malyshkin, V. V. Sereda, A. Y. Zuev, Membranes 2022, 13, 10.
- 149S. Yoo, A. Jun, Y. W. Ju, D. Odkhuu, J. Hyodo, H. Y. Jeong, N. Park, J. Shin, T. Ishihara, G. Kim, Angew. Chem. 2014, 126, 13280–13283.
- 150A. McKinlay, P. Connor, J. T. Irvine, W. Zhou, J. Phys. Chem. C 2007, 111, 19120–19125.
- 151K. Huang, H. Y. Lee, J. B. Goodenough, J. Electrochem. Soc. 1998, 145, 3220.
- 152J. Kim, S. Choi, S. Park, C. Kim, J. Shin, G. Kim, Electrochem. Acta 2013, 112, 712–718.
- 153J. H. Kim, A. Manthiram, Electrochem. Acta 2009, 54, 7551–7557.
- 154L. Liu, R. Guo, C. Wang, C. Zhang, Y. Yang, S. Wang, J. Solid State Electrochem. 2014, 18, 2771–2779.
- 155L. N. Xia, Z. P. He, X. Huang, Y. Yu, Ceram. Int. 2016, 42, 1272–1280.
- 156X. Jiang, Q. Xu, Y. Shi, X. Li, W. Zhou, H. Xu, Q. Zhang, Int. J. Hydrogen Energy 2014, 39, 10817–10823.
- 157F. Meng, T. Xia, J. Wang, Z. Shi, H. Zhao, J. Power Sources 2015, 293, 741–750.
- 158L. Zhang, G. Yao, Z. Song, B. Niu, W. Long, L. Zhang, T. He, Electrochem. Acta 2016, 212, 522–534.
- 159C. Yao, J. Yang, H. Zhang, S. Chen, X. Lang, J. Meng, K. Cai, J. Alloys Compd. 2021, 883, 160759.
- 160L. Zhang, S. Li, T. Xia, L. Sun, L. Huo, H. Zhao, Int. J. Hydrogen Energy 2018, 43, 3761–3775.
- 161S. Costilla-Aguilar, M. Escudero, R. Cienfuegos-Pelaes, J. Aguilar-Martínez, J. Alloys Compd. 2021, 862, 158025.
- 162B. Zhang, S. Zhang, H. Han, K. Tang, C. Xia, ACS Appl. Mater. Interfaces 2023, 15, 8253–8262.
- 163L. Xue, S. Li, S. An, X. Du, H. Ma, M. Li, Available at SSRN 4536203.
- 164H. Tong, M. Fu, Y. Yang, F. Chen, Z. Tao, Adv. Funct. Mater. 2022, 32, 2209695.
- 165B. S. Teketel, B. A. Beshiwork, X. Luo, D. Tian, S. Zhu, H. G. Desta, Q. Yang, Y. Chen, B. Lin, Ceram. Int. 2022, 48, 37232–37241.
- 166L. Li, F. Jin, Y. Shen, T. He, Electrochem. Acta 2015, 182, 682–692.
- 167R. Ren, Z. Wang, X. Meng, C. Xu, J. Qiao, W. Sun, K. Sun, ACS Appl. Mater. Interfaces 2020, 12, 23959–23967.
- 168S. S. Hashim, F. Liang, W. Zhou, J. Sunarso, ChemElectroChem 2019, 6, 3549–3569.
- 169S. Choi, S. Park, J. Shin, G. Kim, J. Mater. Chem. A 2015, 3, 6088–6095.
- 170D. Chen, F. Wang, H. Shi, R. Ran, Z. Shao, Electrochem. Acta 2012, 78, 466–474.
- 171H. Ding, D. Zhou, S. Liu, W. Wu, Y. Yang, Y. Yang, Z. Tao, Applied energy 2019, 233, 37–43.
- 172B. Zhang, Y. Wan, Z. Hua, K. Tang, C. Xia, ACS Applied Energy Materials 2021, 4, 8401–8409.
- 173C. Xu, K. Sun, X. Yang, M. Ma, R. Ren, J. Qiao, Z. Wang, S. Zhen, W. Sun, J. Power Sources 2020, 450, 227722.
- 174A. Manthiram, J. H. Kim, Y. N. Kim, K. T. Lee, J. Electroceram. 2011, 27, 93–107.
- 175L. Thommy, M. Benamira, T. Jardiel, V. Günes, O. Joubert, M. Caldes, Mater. Chem. Phys. 2021, 268, 124724.
- 176Y. Cao, Z. Zhu, Y. Zhao, W. Zhao, Z. Wei, T. Liu, J. Power Sources 2020, 455, 227951.
- 177Y. Tian, C. Yang, Y. Wang, M. Xu, Y. Ling, J. Pu, F. Ciucci, J. T. Irvine, B. Chi, J. Mater. Chem. A 2022, 10, 16490–16496.
- 178X. Y. Jiao, A. Y. Geng, Y. Y. Xue, X. B. Wang, F. J. Jin, Y. H. Ling, Y. F. Tian, Tungsten 2023, 1–9.
- 179C. Liu, F. Wang, Y. Ni, S. Wang, B. Qian, Q. Ni, Y. Zheng, H. Chen, L. Ge, Int. J. Hydrogen Energy 2023, 48, 9812–9822.
- 180D. Huan, L. Zhang, S. Zhang, N. Shi, X. Li, K. Zhu, C. Xia, R. Peng, Y. Lu, J. Mater. Chem. A 2021, 9, 2706–2713.
- 181C. Lu, B. Niu, W. Yi, Y. Ji, B. Xu, Electrochem. Acta 2020, 358, 136916.
- 182L. Zhang, Y. Yin, Y. Xu, S. Yu, L. Bi, Science China Materials 2022, 65, 1485–1494.
- 183H. Dai, Y. Yin, X. Li, C. Ma, Z. Chen, M. Hua, L. Bi, Sustainable Mater. Technol. 2022, 32, e00409.
- 184J. Gao, Q. Li, L. Sun, L. Huo, H. Zhao, Ceram. Int. 2019, 45, 20226–20233.
- 185Q. Zhou, T. He, Y. Ji, J. Power Sources 2008, 185, 754–758.
- 186T. Zhuravleva, Russ. J. Electrochem. 2011, 47, 676–680.
- 187F. Jin, H. Xu, W. Long, Y. Shen, T. He, J. Power Sources 2013, 243, 10–18.
- 188I. R. De Larramendi, N. Ortiz-Vitoriano, I. B. Dzul-Bautista, T. Rojo, in Perovskite Materials-Synthesis, Characterisation, Properties, and Applications, IntechOpen, 2016.
- 189S. Afroze, A. Karim, Q. Cheok, S. Eriksson, A. K. Azad, Front. Energy 2019, 13, 770–797.
- 190X. Ding, X. Kong, H. Wu, Y. Zhu, J. Tang, Y. Zhong, Int. J. Hydrogen Energy 2012, 37, 2546–2551.
- 191J. Xue, Y. Shen, T. He, J. Power Sources 2011, 196, 3729–3735.
- 192D. Lee, H. N. Lee, Materials 2017, 10, 368.
- 193E. Filonova, E. Pikalova, Materials 2023, 16, 4967.
- 194Y. Song, Y. Chen, M. Xu, W. Wang, Y. Zhang, G. Yang, R. Ran, W. Zhou, Z. Shao, Adv. Mater. 2020, 32, 1906979.
- 195U. Kumar, S. Upadhyay, Green Energy: Solar Energy, Photovoltaics, and Smart Cities 2020, 221–250.
- 196P. Ding, W. Li, H. Zhao, C. Wu, L. Zhao, B. Dong, S. Wang, J.Phy.: Materials 2021, 4, 022002.
- 197T. Ghorbani-Moghadam, A. Kompany, M. Golmohammad, J. Alloys Compd. 2022, 900, 163382.
- 198S. Mohanty, S. Mukherjee, J. Alloys Compd. 2022, 892, 162204.
- 199X. Hu, M. Li, Y. Xie, Y. Yang, X. Wu, C. Xia, ACS Appl. Mater. Interfaces 2019, 11, 21593–21602.
- 200Z. Li, B. Yang, B. Qian, S. Wang, Y. Zheng, L. Ge, H. Chen, Sep. Purif. Technol. 2023, 308, 123002.
- 201L. Ma, J. Gong, C. Jin, D. Yang, J. Hou, J. Alloys Compd. 2023, 945, 169359.
- 202S. Zhao, C. Chen, H. Li, W. Zhang, New J. Chem. 2021, 45, 4219–4226.
- 203L. Yang, Y. Jiao, X. Xu, Y. Pan, C. Su, X. Duan, H. Sun, S. Liu, S. Wang, Z. Shao, ACS Sustainable Chem. Eng. 2022, 10, 1899–1909.
- 204S. Yang, G. Liu, Y. L. Lee, J. M. Bassat, J. Gamon, A. Villesuzanne, J. Pietras, X. D. Zhou, Y. Zhong, J. Power Sources 2023, 576, 233200.
- 205Y. Sadia, Y. Gelbstein, S. J. Skinner, J. Solid State Chem. 2020, 290, 121556.
- 206J. H. Kim, A. Manthiram, J. Mater. Chem. A 2015, 3, 24195–24210.
- 207W. Li, B. Guan, J. Yan, N. Zhang, X. Zhang, X. Liu, J. Power Sources 2016, 318, 178–183.
- 208S. Amira, M. Ferkhi, A. Khaled, F. Mauvy, J. Bassat, M. Cassir, J. Grenier, Mater. Res. Bull. 2023, 112400.
- 209L. Miao, J. Hou, Z. Gong, Z. Jin, W. Liu, Int. J. Hydrogen Energy 2019, 44, 7531–7537.
- 210A. Staykov, T. Nguyen, T. Akbay, T. Ishihara, J. Phys. Chem. C 2022, 126, 7390–7399.
- 211W. Xie, Y. L. Lee, Y. Shao-Horn, D. Morgan, J. Phys. Chem. Lett. 2016, 7, 1939–1944.
- 212Y. Wang, J. Chen, K. Liu, M. Wang, D. Song, K. Wang, Inorg. Chem. 2023, 62, 7574–7583.
- 213L. Minervini, R. W. Grimes, J. A. Kilner, K. E. Sickafus, J. Mater. Chem. 2000, 10, 2349–2354.
- 214D. Parfitt, A. Chroneos, J. A. Kilner, R. W. Grimes, Phys. Chem. Chem. Phys. 2010, 12, 6834–6836.
- 215M. Yatoo, PhD thesis, Imperial College London, 2019.
- 216G. Amow, I. Davidson, S. Skinner, Solid State Ionics 2006, 177, 1205–1210.
- 217S. Skinner, M. Yatoo, Z. Du, H. Zhao, Z. Yang, Crystals 2020, 10.
- 218J. M. Bassat, V. Vibhu, C. Nicollet, A. Flura, S. Fourcade, J. C. Grenier, A. Rougier, ECS Trans. 2017, 78, 655.
- 219A. C. Tomkiewicz, M. Tamimi, A. Huq, S. McIntosh, J. Mater. Chem. A 2015, 3, 21864–21874.
- 220A. P. Tarutin, J. G. Lyagaeva, D. A. Medvedev, L. Bi, A. A. Yaremchenko, J. Mater. Chem. A 2021, 9, 154–195.
- 221M. Rieu, R. Sayers, M. Laguna-Bercero, S. Skinner, P. Lenormand, F. Ansart, J. Electrochem. Soc. 2010, 157, B477.
- 222R. Sayers, M. Rieu, P. Lenormand, F. Ansart, J. Kilner, S. Skinner, Solid State Ionics 2011, 192, 531–534.
- 223R. Sharma, E. Djurado, J. Mater. Chem. A 2017, 5, 22277–22287.
- 224S. E. Wolf, F. E. Winterhalder, V. Vibhu, L. B. de Haart, O. Guillon, R. A. Eichel, N. H. Menzler, J. Mater. Chem. A 2023, 11, 17977–18028.
- 225S. R. Choi, J. I. Lee, H. Park, S. W. Lee, D. Y. Kim, W. Y. An, J. H. Kim, J. Kim, H. S. Cho, J. Y. Park, Chem. Eng. J. 2021, 409, 128226.
- 226M. A. Yatoo, Z. Du, Z. Yang, H. Zhao, S. J. Skinner, Crystals 2020, 10, 428.
- 227M. Morales-Zapata, A. Larrea, M. Laguna-Bercero, Electrochem. Acta 2023, 444, 141970.
- 228D. Kim, K. T. Lee, Ceram. Int. 2021, 47, 2493–2498.
- 229X. D. Zhou, J. W. Templeton, Z. Nie, H. Chen, J. W. Stevenson, L. R. Pederson, Electrochem. Acta 2012, 71, 44–49.
- 230K. Boulahya, D. Muñoz-Gil, A. Gómez-Herrero, M. T. Azcondo, U. Amador, J. Mater. Chem. A 2019, 7, 5601–5611.
- 231J. Han, K. Zheng, K. ŚWIERCZEK, Functional Materials Letters 2011, 4, 151–155.
- 232D. Huan, Z. Wang, Z. Wang, R. Peng, C. Xia, Y. Lu, ACS Appl. Mater. Interfaces 2016, 8, 4592–4599.
- 233C. N. Munnings, S. J. Skinner, G. Amow, P. S. Whitfield, I. J. Davidson, Solid State Ionics 2006, 177, 1849–1853.
- 234M. Al Daroukh, V. Vashook, H. Ullmann, F. Tietz, I. A. Raj, Solid State Ionics 2003, 158, 141–150.
- 235T. Nakamura, K. Yashiro, K. Sato, J. Mizusaki, Solid State Ionics 2010, 181, 292–299.
- 236E. Boehm, J. M. Bassat, P. Dordor, F. Mauvy, J. C. Grenier, P. Stevens, Solid State Ionics 2005, 176, 2717–2725.
- 237G. Yang, W. Jung, S. J. Ahn, D. Lee, Appl. Sci. 2019, 9, 1030.
- 238V. V. Kharton, A. V. Kovalevsky, M. Avdeev, E. V. Tsipis, M. V. Patrakeev, A. A. Yaremchenko, E. N. Naumovich, J. R. Frade, Chem. Mater. 2007, 19, 2027–2033.
- 239J. Kilner, C. Shaw, Solid State Ionics 2002, 154, 523–527.
- 240A. Tarancon, M. Burriel, J. Santiso, S. J. Skinner, J. A. Kilner, J. Mater. Chem. 2010, 20, 3799–3813.