Cobalt Oxide-Based Electrocatalysts with Bifunctionality for High-Performing Rechargeable Zinc-Air Batteries
Protity Saha
Department of Chemistry, Jagannath University, Dhaka, 1100 Bangladesh
present address: Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka, 1216 Bnagladesh
Search for more papers by this authorSyed Shaheen Shah
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520 Japan
Search for more papers by this authorMuhammad Ali
Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorM. Nasiruzzaman Shaikh
Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorCorresponding Author
Md. Abdul Aziz
- [email protected]
- +966-13-860-3744 | Fax: +966-13-860-7264
Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorCorresponding Author
A. J. Saleh Ahammad
- [email protected]
- +880 2 226638838 | Fax: +880 2 7113713
Department of Chemistry, Jagannath University, Dhaka, 1100 Bangladesh
Search for more papers by this authorProtity Saha
Department of Chemistry, Jagannath University, Dhaka, 1100 Bangladesh
present address: Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka, 1216 Bnagladesh
Search for more papers by this authorSyed Shaheen Shah
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520 Japan
Search for more papers by this authorMuhammad Ali
Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorM. Nasiruzzaman Shaikh
Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorCorresponding Author
Md. Abdul Aziz
- [email protected]
- +966-13-860-3744 | Fax: +966-13-860-7264
Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorCorresponding Author
A. J. Saleh Ahammad
- [email protected]
- +880 2 226638838 | Fax: +880 2 7113713
Department of Chemistry, Jagannath University, Dhaka, 1100 Bangladesh
Search for more papers by this authorAbstract
In recent years, the rapid growth in renewable energy applications has created a significant demand for efficient energy storage solutions on a large scale. Among the various options, rechargeable zinc-air batteries (ZABs) have emerged as an appealing choice in green energy storage technology due to their higher energy density, sustainability, and cost-effectiveness. Regarding this fact, a spotlight is shaded on air electrode for constructing high-performance ZABs. Cobalt oxide-based electrocatalysts on the air electrode have gained significant attention due to their extraordinary features. Particularly, exploration and integration of bifunctional behavior for energy storage has remarkably promoted both ORR and OER to facilitate the overall performance of the battery. The plot of this review is forwarded towards in-depth analysis of the latest advancements in electrocatalysts that are based on cobalt oxide and possess bifunctional properties along with an introduction of the fundamental aspects of ZABs, Additionally, the topic entails an examination of the morphological variations and mechanistic details mentioning about the synthesis processes. Finally, a direction is provided for future research endeavors through addressing the challenges and prospects in the advancement of next-generation bifunctional electrocatalysts to empower high-performing ZABs with bifunctional cobalt oxide.
References
- 1Y. Zhang, Z. Jiang, J. Huang, L. Y. Lim, W. Li, J. Deng, D. Gong, Y. Tang, Y. Lai, Z. Chen, RSC Adv. 2015, 5, 79479–79510.
- 2I. Dincer, Renewable Sustainable Energy Rev. 2000, 4, 157–175.
- 3A. G. Olabi, M. A. Abdelkareem, Renewable Sustainable Energy Rev. 2022, 158, 112111.
- 4Y. Liu, T. E. Ko, W. X. Hong, W. H. Wang, Y. C. Fu, Y. Y. Li, J. Taiwan Inst. Chem. Eng. 2022, 140, 104559.
- 5J. Sun, L. Guo, X. Sun, J. Zhang, L. Hou, L. Li, S. Yang, C. Yuan, Batteries & Supercaps 2019, 2, 820–841.
- 6M. A. Aziz, S. S. Shah, Y. A. Mahnashi, W. Mahfoz, A. S. Alzahrani, A. S. Hakeem, M. N. Shaikh, Small 2023, 19, 2300258.
- 7S. S. Shah, S. M. Abu Nayem, N. Sultana, A. J. Saleh Ahammad, M. Abdul Aziz, ChemSusChem 2022, 15, e202101282.
- 8S. M. Abu Nayem, A. Ahmad, S. S. Shah, A. Saeed Alzahrani, A. J. Saleh Ahammad, M. A. Aziz, Chem. Rec. 2022, 22, e202281201.
10.1002/tcr.202281201 Google Scholar
- 9C. Sun, X. Zhang, C. Li, K. Wang, X. Sun, Y. Ma, Energy Storage Mater. 2020, 32, 497–516.
- 10P. Saha, A. Ali, S. M. A. Nayem, S. Shaheen Shah, M. A. Aziz, A. J. Saleh Ahammad, Chem. Rec. 2023, e202200310.
- 11Y. Li, J. Yang, J. Song, Renewable Sustainable Energy Rev. 2017, 71, 645–651.
- 12C. Daniel, JOM 2008, 60, 43–48.
- 13M. H. Han, E. Gonzalo, G. Singh, T. Rojo, Energy Environ. Sci. 2015, 8, 81–102.
- 14J. C. Pramudita, D. Sehrawat, D. Goonetilleke, N. Sharma, Adv. Energy Mater. 2017, 7, 1602911.
- 15Q. Guo, W. Zeng, S.-L. Liu, Y.-Q. Li, J.-Y. Xu, J.-X. Wang, Y. Wang, Rare Met. 2021, 40, 290–308.
- 16G. A. Elia, K. V. Kravchyk, M. V. Kovalenko, J. Chacón, A. Holland, R. G. A. Wills, J. Power Sources 2021, 481, 228870.
- 17Y. Li, J. Lu, ACS Energy Lett. 2017, 2, 1370–1377.
- 18S. M. A. Nayem, S. Islam, M. Mohamed, S. Shaheen Shah, A. J. S. Ahammad, M. A. Aziz, Chem. Rec. 2023, e202300017.
- 19J. Zhang, T. Wang, D. Xue, C. Guan, P. Xi, D. Gao, W. Huang, Energy Storage Mater. 2020, 25, 202–209.
- 20J. Lee, S. Tai Kim, R. Cao, N. Choi, M. Liu, K. T. Lee, J. Cho, Adv. Energy Mater. 2011, 1, 34–50.
- 21C. Wang, Y. Yu, J. Niu, Y. Liu, D. Bridges, X. Liu, J. Pooran, Y. Zhang, A. Hu, Appl. Sci. 2019, 9, 1–22.
- 22M. A. Rahman, X. Wang, C. Wen, J. Electrochem. Soc. 2013, 160, A1759.
- 23C. Li, Y. Sun, F. Gebert, S. Chou, Adv. Energy Mater. 2017, 7, 1700869.
- 24P. Goel, D. Dobhal, R. C. Sharma, J. Energy Storage 2020, 28, 101287.
- 25J.-N. Liu, C.-X. Zhao, J. Wang, D. Ren, B.-Q. Li, Q. Zhang, Energy Environ. Sci. 2022, 15, 4542–4553.
- 26J. Khan, H. Liu, J. Xiao, Y. Zhu, A. Hayat, H. Ullah, G. Ahmed, H. Zhang, Y. Sun, L. Han, J. Phys. Chem. Solids 2023, 175, 111220.
- 27S. Kumar, D. Kumar, B. Kishore, S. Ranganatha, N. Munichandraiah, N. S. Venkataramanan, Appl. Surf. Sci. 2017, 418, 79–86.
- 28T. Liu, L. Zhang, Y. Tian, J. Mater. Chem. A 2018, 6, 5935–5943.
- 29J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jonsson, J. Phys. Chem. B 2004, 108, 17886–17892.
- 30J. B. Gerken, J. G. McAlpin, J. Y. C. Chen, M. L. Rigsby, W. H. Casey, R. D. Britt, S. S. Stahl, J. Am. Chem. Soc. 2011, 133, 14431–14442.
- 31B. Tang, J. Yang, Z. Kou, L. Xu, H. L. Seng, Y. Xie, A. D. Handoko, X. Liu, Z. W. Seh, H. Kawai, Energy Storage Mater. 2019, 23, 1–7.
- 32B. Jiang, X. Ma, M. Liu, Q. Li, X. Xiao, J. Liu, X. Xu, Y. Yin, P. Qiao, L. Zhang, J. Mater. Chem. A 2023, 11, 16889–16899.
- 33L. Wu, S. Li, L. Li, H. Zhang, L. Tao, X. Geng, H. Yang, W. Zhou, C. Sun, D. Ju, Appl. Catal. B 2023, 324, 122250.
- 34G. Garcia, E. Ventosa, W. Schuhmann, ACS Appl. Mater. Interfaces 2017, 9, 18691–18698.
- 35Z. Wei, W. Huang, S. Zhang, J. Tan, J. Power Sources 2000, 91, 83–85.
- 36S. Eigler, Phys. Chem. Chem. Phys. 2014, 16, 19832–19835.
- 37D. Higgins, Z. Chen, D. U. Lee, Z. Chen, J. Mater. Chem. A 2013, 1, 2639–2645.
- 38D. U. Lee, H. W. Park, M. G. Park, V. Ismayilov, Z. Chen, ACS Appl. Mater. Interfaces 2015, 7, 902–910.
- 39R. Chen, R. Luo, Y. Huang, F. Wu, L. Li, Adv. Sci. 2016, 3, 1600051.
- 40K. W. Leong, Y. Wang, M. Ni, W. Pan, S. Luo, D. Y. C. Leung, Renewable Sustainable Energy Rev. 2022, 154, 111771.
- 41A. Abbasi, Y. Xu, R. Khezri, M. Etesami, C. Lin, S. Kheawhom, Y. Lu, Mater. Today Sustain. 2022, 18, 100126.
10.1016/j.mtsust.2022.100126 Google Scholar
- 42M. M. Hasan, T. Islam, A. Imran, B. Alqahtani, S. S. Shah, W. Mahfoz, M. R. Karim, H. F. Alharbi, M. A. Aziz, A. J. S. Ahammad, Electrochim. Acta 2021, 374, 137968.
- 43S. S. Shah, M. A. Alfasane, I. A. Bakare, M. A. Aziz, Z. H. Yamani, J. Energy Storage 2020, 30, 101562.
- 44S. S. Shah, H. T. Das, H. R. Barai, M. A. Aziz, Polymers (Basel). 2022, 14, 270.
- 45S. S. Shah, M. A. Aziz, A. R. Al-Betar, W. Mahfoz, Arab. J. Chem. 2022, 15, 104058.
- 46W. Mahfoz, H. T. Das, S. S. Shah, M. Sanhoob, A. Anjum, A. R. Al-Betar, M. A. Aziz, Chem. Asian J. 2023, 18, e202201223.
- 47B. Szubzda, A. Szmaja, M. Ozimek, S. Mazurkiewicz, Appl. Phys. A Mater. Sci. Process. 2014, 117, 1801–1809.
- 48N. Wang, G. Han, H. Song, Y. Xiao, Y. Li, Y. Zhang, H. Wang, J. Power Sources 2018, 395, 228–236.
- 49J. Lee, B. Hwang, M.-S. Park, K. Kim, Electrochim. Acta 2016, 199, 164–171.
- 50M. Xu, D. G. Ivey, Z. Xie, W. Qu, J. Power Sources 2015, 283, 358–371.
- 51J. Lee, G. Nam, J. Sun, S. Higashi, H. Lee, S. Lee, W. Chen, Y. Cui, J. Cho, Adv. Energy Mater. 2016, 6, 1601052.
- 52J. J. Xu, H. Ye, J. Huang, Electrochem. Commun. 2005, 7, 1309–1317.
- 53C. A. Nieto de Castro, M. J. V. Lourenço, A. P. C. Ribeiro, E. Langa, S. I. C. Vieira, P. Goodrich, C. Hardacre, J. Chem. Eng. Data 2010, 55, 653–661.
- 54X. Wang, Y. Chi, T. Mu, J. Mol. Liq. 2014, 193, 262–266.
- 55S. Zhang, N. Sun, X. He, X. Lu, X. Zhang, J. Phys. Chem. Ref. Data 2006, 35, 1475–1517.
- 56K. Liu, Z. Wang, L. Shi, S. Jungsuttiwong, S. Yuan, J. Energy Chem. 2021, 59, 320–333.
- 57J. Hwang, K. Matsumoto, C.-Y. Chen, R. Hagiwara, Energy Environ. Sci. 2021, 14, 5834–5863.
- 58X. Zhu, C. Hu, R. Amal, L. Dai, X. Lu, Energy Environ. Sci. 2020, 13, 4536–4563.
- 59C.-T. Lu, Z.-Y. Zhu, S.-W. Chen, Y.-L. Chang, K.-L. Hsueh, Batteries 2022, 8, 92.
- 60S. Zhu, Z. Chen, B. Li, D. Higgins, H. Wang, H. Li, Z. Chen, Electrochim. Acta 2011, 56, 5080–5084.
- 61Z. Huang, J. Wang, Y. Peng, C. Jung, A. Fisher, X. Wang, Adv. Energy Mater. 2017, 7, 1700544.
- 62X. Liu, G. Zhang, L. Wang, H. Fu, Small 2021, 17, 2006766.
- 63G. Wu, P. Zelenay, Acc. Chem. Res. 2013, 46, 1878–1889.
- 64K. Huang, Y. Sun, Y. Zhang, X. Wang, W. Zhang, S. Feng, Adv. Mater. 2019, 31, 1801430.
- 65R. Christensen, H. A. Hansen, C. F. Dickens, J. K. Nørskov, T. Vegge, J. Phys. Chem. C 2016, 120, 24910–24916.
- 66J. S. Kim, B. Kim, H. Kim, K. Kang, Adv. Energy Mater. 2018, 8, 1702774.
- 67J. Rossmeisl, Z.-W. Qu, H. Zhu, G.-J. Kroes, J. K. Nørskov, J. Electroanal. Chem. 2007, 607, 83–89.
- 68S. Hu, W.-X. Li, Science 2021, 374, 1360–1365.
- 69B. J. Rani, S. P. Keerthana, G. Ravi, R. Yuvakkumar, D. Velauthapillai, M. Thambidurai, C. Dang, Mater. Lett. 2020, 273, 127958.
10.1016/j.matlet.2020.127958 Google Scholar
- 70A. M. Couper, D. Pletcher, F. C. Walsh, Chem. Rev. 1990, 90, 837–865.
- 71P. Chen, Y. Tong, C. Wu, Y. Xie, Acc. Chem. Res. 2018, 51, 2857–2866.
- 72S. Li, C. Cheng, A. Thomas, Adv. Mater. 2017, 29, 1602547.
- 73D. Chen, P. Pei, Y. Li, P. Ren, Y. Meng, X. Song, Z. Wu, Energy Convers. Manage. 2022, 261, 115651.
- 74C. Liu, R. Li, W. Zhou, Y. Liang, Y. Shi, R. L. Li, Y. Ling, Y. Yu, J. Li, B. Zhang, ACS Catal. 2021, 11, 8958–8967.
- 75M. Batmunkh, M. J. Biggs, J. G. Shapter, Small 2015, 11, 2963–2989.
- 76S. S. Shah, M. A. A. Qasem, R. Berni, C. Del Casino, G. Cai, S. Contal, I. Ahmad, K. S. Siddiqui, E. Gatti, S. Predieri, J.-F. Hausman, S. Cambier, G. Guerriero, M. A. Aziz, Sci. Rep. 2021, 11, 6945.
- 77M. A. Aziz, S. S. Shah, S. Reza, A. S. Hakeem, W. Mahfoz, Chem. Asian J. 2022, 17, e202200869.
- 78S. More, B. Priyanka, M. Puja, K. Kalyani, no. June 2019, 302–305.
- 79C. Vanhaverbeke, M. Cauwe, A. Stockman, M. O. de Beeck, H. De Smet, Thin Solid Films 2019, 686, 137424.
- 80G. Maduraiveeran, M. Sasidharan, W. Jin, Prog. Mater. Sci. 2019, 106, 100574.
- 81J. S. Choi, C. H. Yo, Inorg. Chem. 1974, 13, 1720–1724.
- 82S. K. Singh, V. M. Dhavale, S. Kurungot, ACS Appl. Mater. Interfaces 2015, 7, 21138–21149.
- 83Y. Luo, M. Wen, J. Zhou, Q. Wu, G. Wei, Y. Fu, Small 2023, 2302925.
10.1002/smll.202302925 Google Scholar
- 84N. K. Soliman, J. Mater. Res. Technol. 2019, 8, 2395–2407.
- 85S. S. Shah, M. A. Aziz, Curr. Nanosci. 2023, 310, 123101.
- 86K. Hayat, S. S. Shah, M. Yousaf, M. J. Iqbal, M. Ali, S. Ali, M. Ajmal, Y. Iqbal, Mater. Sci. Semicond. Process. 2016, 41, 364–369.
- 87S. S. Shah, K. Hayat, S. Ali, K. Rasool, Y. Iqbal, Mater. Sci. Semicond. Process. 2019, 90, 65–71.
- 88Y. Guo, Y. N. Chen, H. Cui, Z. Zhou, Chin. J. Catal. 2019, 40, 1298–1310.
- 89X. He, F. Yin, G. Li, Int. J. Hydrogen Energy 2015, 40, 9713–9722.
- 90J. Li, H. Chen, Y. Liu, R. Gao, X. Zou, J. Mater. Chem. A 2019, 7, 5288–5294.
- 91H.-J. Qiu, L. Liu, Y.-P. Mu, H.-J. Zhang, Y. Wang, Nano Res. 2015, 8, 321–339.
- 92T. Feng, Q. Zeng, S. Lu, M. Yang, S. Tao, Y. Chen, Y. Zhao, B. Yang, ACS Sustainable Chem. Eng. 2019, 7, 7047–7057.
- 93J. Zhao, Y. He, Z. Chen, X. Zheng, X. Han, D. Rao, C. Zhong, W. Hu, Y. Deng, ACS Appl. Mater. Interfaces 2019, 11, 4915–4921.
- 94T. T. Gebremariam, F. Chen, Q. Wang, J. Wang, Y. Liu, X. Wang, A. Qaseem, ACS Appl. Energ. Mater. 2018, 1, 1612–1625.
- 95J. Li, S. Lu, H. Huang, D. Liu, Z. Zhuang, C. Zhong, ACS Sustainable Chem. Eng. 2018, 6, 10021–10029.
- 96L. Ma, S. Chen, Z. Pei, H. Li, Z. Wang, Z. Liu, Z. Tang, J. A. Zapien, C. Zhi, ACS Nano 2018, 12, 8597–8605.
- 97X. Li, F. Dong, N. Xu, T. Zhang, K. Li, J. Qiao, ACS Appl. Mater. Interfaces 2018, 10, 15591–15601.
- 98Y. J. Li, L. Cui, P. F. Da, K. W. Qiu, W. J. Qin, W. Bin Hu, X. W. Du, K. Davey, T. Ling, S. Z. Qiao, Adv. Mater. 2018, 30, 1–8.
- 99P. Tan, B. Chen, H. Xu, W. Cai, W. He, M. Ni, Appl. Catal. B 2019, 241, 104–112.
- 100M. Ren, J. Zhang, J. M. Tour, Carbon 2018, 139, 880–887.
- 101Q. Nie, Y. Cai, N. Xu, L. Peng, J. Qiao, ChemElectroChem 2018, 5, 1976–1984.
- 102Q. Wang, H. Miao, S. Sun, Y. Xue, Z. Liu, Chem. A Eur. J. 2018, 24, 14816–14823.
- 103X. Yi, X. He, F. Yin, B. Chen, G. Li, H. Yin, Electrochim. Acta 2019, 295, 966–977.
- 104P. Tan, B. Chen, H. Xu, W. Cai, W. He, M. Ni, Energy 2019, 166, 1241–1248.
- 105Y. Tian, L. Xu, J. Bao, J. Qian, H. Su, H. Li, H. Gu, C. Yan, H. Li, J. Energy Chem. 2019, 33, 59–66.
- 106Z. Guo, F. Wang, Y. Xia, J. Li, A. G. Tamirat, Y. Liu, L. Wang, Y. Wang, Y. Xia, J. Mater. Chem. A 2018, 6, 1443–1453.
- 107X. Wang, Z. Liao, Y. Fu, C. Neumann, A. Turchanin, G. Nam, E. Zschech, J. Cho, J. Zhang, X. Feng, Energy Storage Mater. 2020, 26, 157–164.
- 108X. Guo, X. Hu, D. Wu, C. Jing, W. Liu, Z. Ren, ACS Appl. Mater. Interfaces 2019, 11, 21506–21514.
- 109S. Chen, S. Chen, B. Zhang, J. Zhang, ACS Appl. Mater. Interfaces 2019, 11, 16720–16728.
- 110Y. Zhong, Z. Pan, X. Wang, J. Yang, Y. Qiu, S. Xu, Adv. Sci. 2019, 6, 1802243.
- 111D. Ji, L. Fan, L. Tao, Y. Sun, M. Li, G. Yang, T. Q. Tran, S. Ramakrishna, S. Guo, Angew. Chem. Int. Ed. 2019, 131, 13978–13982.
- 112D. Pengfei, M. Wu, K. Qiu, D. Yan, Y. Li, J. Mao, C. Dong, T. Ling, S. Qiao, Chem. Eng. Sci. 2018, 194, 127–133.
- 113Y. Song, W. Xie, S. Li, J. Guo, M. Shao, Front. Mater. 2019, 6, 1–11.
10.3389/fmats.2019.00001 Google Scholar
- 114L. Qiu, X. Han, Q. Lu, J. Zhao, Y. Wang, Z. Chen, Inorg. Chem. Front. 2019, 6, 3554–3561.
- 115M. Li, F. Luo, Q. Zhang, Z. Yang, Z. Xu, J. Catal. 2020, 381, 395–401.
- 116C. Shenghai, S. Liping, K. Fanhao, H. Lihua, Z. Hui, J. Power Sources 2019, 430, 25–31.
- 117J. Yin, J. Jin, H. Liu, B. Huang, M. Lu, J. Li, H. Liu, 2020, 32, 2001651.
- 118Y. Li, Z. Zhou, G. Cheng, S. Han, J. Zhou, J. Yuan, M. Sun, L. Yu, Electrochim. Acta 2020, 341, 135997.
- 119L. Li, L. Fu, R. Wang, J. Sun, X. Li, C. Fu, L. Fang, W. Zhang, Electrochim. Acta 2020, 344, 136145.
- 120K. Huang, R. Wang, S. Zhao, P. Du, H. Wang, H. Wei, Y. Long, B. Deng, M. Lei, B. Ge, H. Gou, R. Zhang, H. Wu, Energy Storage Mater. 2020, 29, 156–162.
- 121C. Wang, K. Hung, T. Ko, S. Hosseini, Y. Li, J. Power Sources 2020, 452, 227841.
- 122C. Liu, P. Zuo, Y. Jin, X. Zong, D. Li, Y. Xiong, J. Power Sources 2020, 473, 228604.
- 123L. Yan, Z. Xu, W. Hu, J. Ning, Y. Zhong, Y. Hu, Nano Energy 2020, 82, 105710.
10.1016/j.nanoen.2020.105710 Google Scholar
- 124N. Yu, C. Wu, W. Huan, Y. Chen, D. Ruan, K. Bao, H. Chen, Y. Zhang, Y. Zhu, Q. Huang, W. Lai, Y. Wang, H. Liao, S. Sun, Y. Wu, J. Wang, Nano Energy 2020, 77, 105200.
- 125L. Gui, Y. Liu, J. Zhang, B. He, Q. Wang, L. Zhao, J. Mater. Chem. A 2020, 8, 19946–19953.
- 126J. S. Sanchez, R. Maça, A. Pendashteh, V. Etacheri, A. De Peña, M. Castillo-rodríguez, J. Palma, R. Marcilla, Catal. Sci. Technol. 2020, 10, 1444–1457.
- 127H. Lei, S. Tan, L. Ma, Y. Liu, Y. Liang, M. S. Javed, Z. Wang, Z. Zhu, W. Mai, ACS Appl. Mater. Interfaces 2020, 12, 44639–44647.
- 128Y. Niu, M. Xiao, J. Zhu, T. Zeng, J. Li, W. Zhang, J. Mater. Chem. A 2020, 8, 9177–9184.
- 129Y. Rao, S. Chen, Q. Yue, Y. Kang, ACS Catal. 2021, 11, 8097–8103.
- 130Z. Zhu, J. Zhang, X. Peng, Y. Liu, T. Cen, Z. Ye, D. Yuan, Energy Fuels 2021, 35, 4550–4558.
- 131H. Pan, X. Huang, Z. Lu, Z. Zhang, B. An, D. Wu, T. Wang, X. Chen, F. Cheng, Chem. Eng. J. 2021, 419, 129619.
- 132D. Wang, Y. Deng, Y. Zhang, Y. Zhao, G. Zhou, L. Shui, Y. Hu, M. Shakouri, X. Wang, Z. Chen, Energy Storage Mater. 2021, 41, 427–435.
- 133I. Kone, Z. Ahmad, A. Xie, L. Kong, Y. Tang, Y. Sun, Y. Chen, X. Yang, P. Wan, Energy Technology 2021, 9, 2001117.
- 134D. Chen, L. Pan, P. Pei, S. Huang, Energy 2021, 224, 120142.
- 135Y. Chen, C. Gong, Z. Shi, D. Chen, X. Chen, Q. Zhang, B. Pang, J. Feng, L. Yu, L. Dong, J. Colloid Interface Sci. 2021, 596, 206–214.
- 136Y. Tan, W. Zhu, Z. Zhang, W. Wu, R. Chen, S. Mu, H. Lv, N. Cheng, Nano Energy 2021, 83, 105813.
- 137L. Wei, J. Wang, Z. Zhao, X. Yang, S. Jiao, F. Cao, S. Tang, X. Zhang, G. Qin, Q. Liang, S. Li, Chem. Eng. J. 2022, 427, 130931.
- 138T. Qin, Y. Ding, R. Zhang, X. Gao, Z. Tang, Y. Liu, D. Gao, FlatChem 2022, 32, 100343.
- 139H. Zhao, H. Yao, S. Wang, Y. Cao, Z. Lu, J. Xie, J. Hu, A. Hao, J. Colloid Interface Sci. 2022, 626, 475–485.
- 140Q. Huang, X. Zhong, Q. Zhang, X. Wu, M. Jiao, B. Chen, J. Sheng, G. Zhou, J. Energy Chem. 2022, 68, 679–687.
- 141T. Li, Z. He, X. Liu, M. Jiang, Q. Liao, R. Ding, S. Liu, C. Zhao, W. Guo, S. Zhang, Surfaces and Interfaces 2022, 33, 102270.
- 142P. Leng, F. Luo, M. Li, S. Ma, X. Long, Z. Yang, Electrochim. Acta 2022, 413, 140158.
- 143P. Leng, H. Wang, B. Wu, L. Zhao, Y. Deng, J. Cui, H. Wan, L. Lv, Sustainability 2022, 14, 13417.
- 144M.-R. Zamani-Meymian, K. Khanmohammadi Chenab, H. Pourzolfaghar, ACS Appl. Mater. Interfaces 2022, 14, 55594–55607.
- 145X. Zhang, Q. Liu, S. Liu, E. Wang, Electrochim. Acta 2023, 437, 141477.
- 146X. Deng, Y. Mi, Y. Liu, Y. Sun, Y. Cheng, W. Wang, Int. J. Hydrogen Energy 2023, 48, 13452–13459.
- 147A. Li, Y. Wang, C. Cheng, Mater. Today 2023, 100339.
- 148J. Mei, T. Liao, G. A. Ayoko, J. Bell, Z. Sun, Prog. Mater. Sci. 2019, 103, 596–677.
- 149S. A. Makhlouf, J. Magn. Magn. Mater. 2002, 246, 184–190.
- 150R. Bhargava, S. Khan, N. Ahmad, M. M. N. Ansari, AIP Conf. Proc. 2018, 1953, 30034.
10.1063/1.5032369 Google Scholar
- 151W. Shang, W. Yu, X. Xiao, Y. Ma, C. Cheng, Y. Dai, P. Tan, M. Ni, Electrochim. Acta 2020, 353, 136535.
- 152C. Tomon, S. Sarawutanukul, D. Salatan, A. Krittayavathananon, M. Sawangphruk, Chem. Commun. 2019, 55, 5855–5858.
- 153W. Yang, X. Wang, Y. Yan, X. Ding, J. Mater. Sci. Mater. Electron. 2023, 34, 871.
- 154M. Luo, W. Sun, B. Bin Xu, H. Pan, Y. Jiang, Adv. Energy Mater. 2021, 11, 2002762.
- 155L. Bo, W. Shi, F. Nian, Y. Hu, L. Pu, P. Li, Z. Zhang, J. Tong, Sep. Purif. Technol. 2023, 307, 122536.
- 156Y. Zhang, Z. Zhang, G. Jiang, A. H. Mamaghani, S. Sy, R. Gao, Y. Jiang, Y. Deng, Z. Bai, L. Yang, Nano Energy 2022, 100, 107425.
- 157X. Sun, T. Xu, W. Sun, J. Bai, C. Li, J. Alloys Compd. 2022, 898, 162778.
- 158L. Sun, Y. Qin, L. Fu, Y. Di, K. Hu, H. Li, L. Li, W. Zhang, J. Alloys Compd. 2022, 921, 166128.
- 159J. Wang, H. Kong, J. Zhang, Y. Hao, Z. Shao, F. Ciucci, Prog. Mater. Sci. 2021, 116, 100717.
- 160Y. Qin, Z. Ou, C. Xu, Z. Zhang, J. Yi, Y. Jiang, J. Wu, C. Guo, Y. Si, T. Zhao, Nanoscale Res. Lett. 2021, 16, 92.
- 161Q. Wei, Y. Fu, G. Zhang, S. Sun, Curr. Opin. Electrochem. 2017, 4, 45–59.
- 162Z. Xia, B. Deng, Y. Wang, Z. Jiang, Z.-J. Jiang, J. Mater. Chem. A 2022, 10, 23483–23493.
- 163Y. Liu, T.-E. Ko, W.-X. Hong, W.-H. Wang, Y.-C. Fu, Y.-Y. Li, J. Taiwan Inst. Chem. Eng. 2022, 140, 104559.
- 164A. B. Haruna, K. I. Ozoemena, Curr. Opin. Electrochem. 2020, 21, 219–224.
- 165J. Wang, H. Li, N. Xu, J. Qiao, Ionics 2018, 24, 3877–3884.
- 166A. Helal, S. S. Shah, M. Usman, M. Y. Khan, M. A. Aziz, M. Mizanur Rahman, Chem. Rec. 2022, 22, e202200055.
- 167M. Fawad Khan, M. Ali Marwat, Abdullah, S. S. Shah, M. R. Abdul Karim, M. Abdul Aziz, Z. Ud Din, S. Ali, K. Muhammad Adam, Sep. Purif. Technol. 2023, 310, 123101.
- 168M. A. Ehsan, S. S. Shah, S. I. Basha, A. S. Hakeem, M. A. Aziz, Chem. Rec. 2022, 22, e202100278.
- 169G. Zhang, B. Y. Xia, X. Wang, X. W. Lou, Adv. Mater. 2014, 26, 2408–2412.
- 170J. H. Dumont, U. Martinez, K. Artyushkova, G. M. Purdy, A. M. Dattelbaum, P. Zelenay, A. Mohite, P. Atanassov, G. Gupta, ACS Appl. Nano Mater. 2019, 2, 1675–1682.
- 171A. Mishra, N. P. Shetti, S. Basu, K. Raghava Reddy, T. M. Aminabhavi, ChemElectroChem 2019, 6, 5771–5786.
- 172H.-Y. Tsai, C.-C. Wu, C.-Y. Lee, E. P. Shih, J. Power Sources 2009, 194, 199–205.
- 173B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, G. Shen, Nano Lett. 2012, 12, 3005–3011.
- 174Z. Zhang, J. Wang, Y. Li, S. Zhang, L. Xiao, J. Wang, J. Qi, Int. J. Hydrogen Energy 2023, 48, 4207–4219.
- 175S. Li, H. Zhang, L. Wu, H. Zhao, L. Li, C. Sun, B. An, J. Mater. Chem. A 2022, 10, 9858–9868.
- 176X. Liu, T. Tang, W. Jiang, Q. Zhang, L. Gu, J. Hu, Chem. Commun. 2020, 56, 5374–5377.
- 177M. Wu, G. Zhang, H. Tong, X. Liu, L. Du, N. Chen, J. Wang, T. Sun, T. Regier, S. Sun, Nano Energy 2020, 79,105409.
10.1016/j.nanoen.2020.105409 Google Scholar
- 178Q. Sun, Y. Zhao, X. Yu, C. Zhang, S. Xing, J. Electrochem. Soc. 2022, 169, 60537.
- 179H. S. Lu, H. Zhang, X. Zhang, N. Sun, X. Zhu, H. Zhao, G. Wang, Appl. Surf. Sci. 2018, 448, 369–379.
- 180L. Zhong, H. Zhou, R. Li, H. Cheng, S. Wang, B. Chen, Y. Zhuang, J. Chen, A. Yuan, J. Colloid Interface Sci. 2021, 599, 46–57.
- 181T. Kang, D. Nam, J. Kim, Appl. Surf. Sci. 2022, 582, 152442.
- 182Y. Zhao, X. Wang, X. Guo, N. Shi, D. Cheng, H. Zhou, N. Saito, T. Fan, Electrochim. Acta 2022, 420, 140432.
- 183T. Zhou, W. Xu, N. Zhang, Z. Du, C. Zhong, W. Yan, Adv. Mater. 2019, 31, 1807468.
- 184W. Chen, W. Xiang, W. Li, H. Zhang, F. Du, T. Zhao, Q. Xiao, X. Li, W. Luo, Inorg. Chem. Front. 2023.
- 185M. Yang, S. Ding, X. Shu, W. Pan, J. Zhang, Mater. Chem. Front. 2022, 6, 3706–3715.
- 186L. Gui, X. Shi, N. Shi, J. Zhang, B. He, J. Xu, L. Zhao, Appl. Surf. Sci. 2023, 613, 156039.
- 187A. A. Yadav, Y. M. Hunge, S. B. Kulkarni, Ultrason. Sonochem. 2019, 58, 104663.
- 188R. Wu, J. Sun, C. Xu, H. Chen, Sustain. Energy Fuels 2021, 5, 4807–4829.
- 189W. Liu, J. Bao, L. Xu, M. Guan, Z. Wang, J. Qiu, Y. Huang, J. Xia, Y. Lei, H. Li, J. Bao, L. Xu, A. Surface, Appl. Surf. Sci. 2019, 478, 552–559.
- 190J. Béjar, L. Álvarez-Contreras, J. Ledesma-García, N. Arjona, L. G. Arriaga, J. Mater. Chem. A 2020, 8, 8554–8565.
- 191T. Ahmad, Murtaza, S. S. Shah, S. Khan, A. A. Khan, N. Ullah, M. Oyama, M. A. Aziz, Mater. Sci. Eng. B 2023, 292, 116430.
- 192S. S. Shah, M. A. Aziz, Z. H. Yamani, Chem. Rec. 2022, 22, e202200018.
- 193T. Ishihara, K. Yokoe, T. Miyano, H. Kusaba, Electrochim. Acta 2019, 300, 455–460.
- 194W. J. Sim, M. T. Nguyen, Z. Huang, S. Kheawhom, C. Wattanakit, T. Yonezawa, Nanoscale 2022, 14, 8012–8022.