A Comprehensive Review on Perovskite Solar Cells Integrated Photo-supercapacitors and Perovskites-Based Electrochemical Supercapacitors
Corresponding Author
Md. Mahbubur Rahman
Department of Applied Chemistry, Konkuk University, Chungju, 27478 South Korea
Search for more papers by this authorCorresponding Author
Md. Mahbubur Rahman
Department of Applied Chemistry, Konkuk University, Chungju, 27478 South Korea
Search for more papers by this authorAbstract
Perovskite solar cells (PSCs) have rapidly become a prevalent photovoltaic technology owing to their simple structure, low processing cost, and remarkable increase in solar-to-electric power conversion efficiency (PCE). However, the intermittent nature of solar radiation induces some technical and financial challenges for its practical applications as a reliable power source. To address this issue, the integration of PSCs with supercapacitors (SCs) in the form of integrated photo-supercapacitors (IPSs) has gathered significant attention. This integration can balance energy availability and demand, reduce energy wastage, and stabilize power output for portable and wearable electronics. Meanwhile, the excellent optoelectronic properties with mixed electronic and ionic conductivity of metal halide perovskites (MHPs) have expanded their application as electrode and electrolyte materials for SCs and photo-supercapacitors (PSs) applications. This review provides an all-inclusive summary of the current state-of-the-art research progress of PSCs-IPSs and MHPs-based SCs and PSs by highlighting their basics and integration approaches. It also discusses the challenges and prospects of these materials and technologies.
References
- 1G. Kalt, D. Wiedenhofer, C. Görg, H. Haberl, Energy Res. Soc. Sci. 2019, 53, 47–58.
- 2C. Gürsan, V. de Gooyert, Renewable Sustainable Energy Rev. 2021, 138, 110552.
- 3O. Ellabban, H. Abu-Rub, F. Blaabjerg, Renewable Sustainable Energy Rev. 2014, 39, 748–764.
- 4L. Fagiolari, M. Sampò, A. Lamberti, J. Amici, C. Francia, S. Bodoardo, F. Bella, Energy Storage Mater. 2022, 51, 400–434.
- 5C. Shao, Y. Zhao, L. Qu, SusMat. 2022, 2, 142–16.
- 6B. Luo, D. Ye, L. Wang, Adv. Sci. 2017, 4, 1700104.
- 7T. F. Schulze, T. W. Schmidt, Energy Environ. Sci. 2015, 8, 103–125.
- 8C. Ballif, F.-J. Haug, M. Boccard, P. J. Verlinden, G. Hahn, Nat. Rev. Mater. 2022, 7, 597–616.
- 9A. Richter, M. Hermle, S. W. Glunz, IEEE J. Photovolt. 2013, 3, 1184–1191.
- 10B. A. Veith-Wolf, S. Schäfer, R. Brendel, J. Schmidt, Sol. Energy Mater. Sol. Cells 2018, 186, 194–199.
- 11J. Yan, B. S. Saunders, RSC Adv. 2014, 4, 43286–43314.
- 12M. M. Rahman, Materials 2021, 14, 5653.
- 13M. M. Rahman, H. C. Kang, K. Yoo, J.-J. Lee, J. Electrochem. Soc. 2022, 13, 453–461.
- 14J. Wang, M. M. Rahman, C. Ge, J.-J. Lee, J. Ind. Eng. Chem. 2018, 62, 185–191.
- 15J. Y. Kim, J.-W. Lee, H. S. Jung, H. Shin, N.-G. Park, Chem. Rev. 2020, 120, 7867–7918.
- 16M. M. Rahman, C. Ge, K. Yoo, J.-J. Lee, Mater. Today Energy 2021, 21, 100803.
- 17M. M. Rahman, A. Ahmed, C. Ge, R. Singh, K. Yoo, S. Sandhu, S. Kim, J.-J. Lee, Sustain. Energy Fuels 2021, 5, 4327–4335.
- 18S. Sandhu, M. M. Rahman, M. Senthilkumar, B. Yadagiri, J. Park, K. Yoo, J.-J. Lee, J. Power Sources 2022, 551, 232207.
- 19A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050–6051.
- 20https://www.nrel.gov/pv/cell-efficiency.html, accessed on 3rd may 2023.
- 21Z. Guo, A. K. Jena, G. M. Kim, T. Miyasaka, Energy Environ. Sci. 2022, 15, 3171–3222.
- 22S. H. Reddy, F. D. Giacomo, A. D. Carlo, Adv. Energy Mater. 2022, 12, 2103534.
- 23J. Qiu, S. Yang, Chem. Rec. 2019, 20, 209–229.
- 24K.-L. Wang, Y.-H. Zhou, Y.-H. Lou, Z.-K. Wang, Chem. Sci. 2021, 12, 11936–11954.
- 25F. Zabihi, M. Tebyetekerwa, Z. Xu, A. Ali, A. K. Kumi, H. Zhang, R. Jose, S. Ramakrishna, S. Yang, J. Mater. Chem. A 2019, 7, 26661–26692.
- 26P. Chen, T.-T. Li, Y.-B. Yang, G.-R. Li, X.-P. Gao, Nat. Commun. 2022, 13, 64.
- 27J. Xu, Y. Chen, L. Dai, Nat. Commun. 2015, 6, 8103.
- 28Y. Sun, X. Yan, Solar RRL 2017, 1, 1700002.
- 29K. Namsheer, C. S. Rout, J. Mater. Chem. A 2021, 9, 8248–8278.
- 30Y. Yang, M. T. Hoang, A. Bhardwaj, M. Wilhelm, S. Mathur, H. Wang, Nano Energy 2022, 94, 106910.
- 31D. Devadiga, M. Selvakumar, P. Shetty, M. S. Santosh, J. Power Sources 2021, 493, 229698.
- 32Q. Zeng, Y. Lai, L. Jiang, F. Liu, X. Hao, L. Wang, M. A. Green, Adv. Energy Mater. 2020, 10, 1903930.
- 33S. Yun, Y. Qin, A. R. Uhl, V. Nikolaos, M. Yin, D. Li, X. Han, A. Hagfeldt, Energy Environ. Sci. 2018, 11, 476–526.
- 34R. Zheng, H. Li, Z. Hu, L. Wang, W. Lü, F. Li, J. Mater. Sci. Mater. Electron. 2022, 33, 22309–22318.
- 35Z. Zhang, X. Chen, P. Chen, G. Guan, L. Qiu, H. Lin, Z. Yang, W. Bai, Y. Luo, H. Peng, Adv. Mater. 2013, 26, 466–470.
- 36A. Mathur, H. Fan, V. Maheshwari, Mater Adv 2021, 2, 5274–5299.
- 37A. S. R. Bati, Y. L. Zhong, P. L. Burn, M. K. Nazeeruddin, P. E. Shaw, M. Batmunkh, Commun. Mater. 2023, 4, 2.
- 38Y. Zhong, X. Xia, W. Mai, J. Tu, H. J. Fan, Adv. Mater. Technol. 2017, 2, 1700182.
- 39R. Liu, Y. Liu, H. Zou, T. Song, B. Sun, Nano Res. 2017, 10, 1545–1559.
- 40X. Zhang, W.-L. Song, J. Tu, J. Wang, M. Wang, S. Jiao, Adv. Sci. 2021, 8, 2100552.
- 41N. A. Nordin, M. N. M. Ansari, S. M. Nomanbhay, N. A. Hamid, N. M. L. Tan, Z. Yahya, I. Abdullah, Energies 2021, 14, 7211.
- 42S. A. Ansari, N. A. Khan, Z. Hasan, A. A. Shaikh, F. K. Ferdousi, H. R. Barai, N. S. Lopa, M. M. Rahman, Sustain. Energy Fuels 2020, 4, 2480–2490.
- 43H. R. Barai, M. M. Rahman, A. Rahim, S. W. Joo, J. Ind. Eng. Chem. 2019, 7, 115–123.
10.1016/j.jiec.2019.06.009 Google Scholar
- 44H. R. Barai, M. M. Rahman, S. W. Joo, J. Power Sources 2017, 372, 227–234.
- 45H. R. Barai, M. M. Rahman, S. W. Joo, Electrochim. Acta 2017, 253, 563–571.
- 46Y.-C. Hsiao, T. Wu, M. Li, Q. Liu, W. Qin, B. Hu, J. Mater. Chem. A 2015, 3, 15372–15385.
- 47J. J. Choi, S. J. L. Billinge, Nanoscale 2016, 8, 6206–6208.
- 48H. Kay, P. Bailey, Acta Crystallogr. 1957, 10, 219–226.
- 49L. K. Ono, E. J. Juarez-Perez, Y. Qi, ACS Appl. Mater. Interfaces 2017, 9, 30197–30246.
- 50P. Basumatary, P. Agarwal, Mater. Res. Bull. 2022, 149, 111700.
- 51S. Wang, A. Wang, F. Hao, iScience 2022, 25, 103599.
- 52T. Liu, Q. Hu, J. Wu, K. Chen, L. Zhao, F. Liu, C. Wang, H. Lu, S. Jia, T. Russell, R. Zhu, Q. Gong, Adv. Energy Mater. 2015, 6, 1501890.
- 53Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, Y. Yang, J. Am. Chem. Soc. 2014, 136, 622–625.
- 54T. Webb, S. J. Sweeney, W. Zhang, Adv. Funct. Mater. 2021, 31, 2103121.
- 55A. Raj, M. Kumar, A. Anshul, Mater. Today Chem. 2021, 22, 100595.
- 56Z. H. Bakr, Q. Wali, A. Fakharuddin, L. Schmidt-Mende, T. M. Brown, R. Jose, Nano Energy 2017, 34, 271–305.
- 57F. Ye, S. Zhang, J. Warby, J. Wu, E. Gutierrez-Partida, F. Lang, S. Shah, E. Saglamkaya, B. Sun, F. Zu, S. Shoaee, H. Wang, B. Stiller, D. Neher, W.-H. Zhu, M. Stolterfoht, Y. Wu, Nat. Commun. 2022, 13, 7454.
- 58J. L. Heilbron, Electricity in the 17th and 18th Centuries: a Study of Early Modern Physics, Dover Pubns, University of California Press, California, USA, 1979.
- 59J. Sun, B. Luo, H. Li, Adv. Energy Sustainability Res . 2022, 3, 2100191.
- 60T. Nawaz, M. Ahmad, M. Z. Ansari, I. Hussain, X. Chen, L.-J. Liu, R. Walia, K. H. Low, S. Zhuang, K. Zhang, J. He, Chem. Eng. J. 2023, 468, 143575.
- 61H. R. Barai, N. S. Lopa, F. Ahmed, N. A. Khan, S. A. Ansari, S. W. Joo, M. M. Rahman, ACS Omega 2020, 5, 22356–22366.
- 62H. R. Barai, M. M. Rahman, M. Adeel, S. W. Joo, Mater. Res. Bull. 2022, 148, 111678.
- 63Y. Wang, Y. Song, Y. Xia, Chem. Soc. Rev. 2016, 45, 5925–5950.
- 64L. M. D. Silva, R. Cesar, C. M. R. Moreira, J. H. M. Santos, L. G. De Souza, B. M. Pires, R. Vicentini, W. Nunes, H. Zanin, Energy Storage Mater. 2020, 27, 555–590.
- 65X. Zhang, H. Zhang, C. Li, K. Wang, X. Sun, Y. Ma, RSC Adv. 2014, 4, 45862–45884.
- 66S. Balasubramaniam, A. Mohanty, S. K. Balasingam, S. J. Kim, A. Ramadoss, Nano-Micro Lett. 2020, 12, 85.
- 67I. Hussain, M. Z. Ansari, C. Lamiel, T. Hussain, M. S. Javed, T. Kaewmaraya, M. Ahmad, N. Qin, K. Zhang, ACS Energy Lett. 2023, 8, 1887–1895.
- 68H. R. Barai, M. M. Rahman, M. Roy, P. Barai, S. W. Joo, Mater. Sci. Semicond. Process. 2019, 90, 245–251.
- 69D. P. Chatterjee, A. K. Nandi, J. Mater. Chem. A 2021, 9, 15880–15918.
- 70H. Liu, X. Liu, S. Wang, H.-K. Liu, L. Li, Energy Storage Mater. 2020, 28, 122–145.
- 71T. Miyasaka, T. N. Murakami, Appl. Phys. Lett. 2004, 85, 3932.
- 72T. N. Murakami, N. Kawashima, T. Miyasaka, Chem. Commun. 2005, 41, 3346.
- 73J.-J. Lee, M. M. Rahman, S. Sarker, N. C. D. Nath, A. J. S. Ahammad, J. K. Lee, Metal Oxides and Their Composites for the Photoelectrode of Dye Sensitized Solar Cells, in: A. Brahim (Ed.) Advances in Composite Materials for Medicine and Nanotechnology, IntechOpen, Rijeka, 2011.
- 74T. Chen, L. B. Qiu, Z. B. Yang, Z. B. Cai, J. Ren, H. P. Li, H. J. Lin, X. M. Sun, H. S. Peng, Angew. Chem. Int. Ed. 2012, 51, 11977–11980.
- 75Y. Fu, H. Wu, S. Ye, X. Cai, X. Yu, S. Hou, H. Kafafy, D. Zou, Energy Environ. Sci. 2013, 6, 805–812.
- 76X. Xu, S. Li, H. Zhang, Y. Shen, S. M. Zakeeruddin, M. Graetzel, Y.-B. Cheng, M. Wang, ACS Nano 2015, 9, 1782–1787.
- 77N. M. Keppetipola, C. Olivier, T. Toupance, L. Cojocaru, Sustain. Energy Fuels 2021, 5, 4784–4806.
- 78P. Du, X. Hu, C. Yi, H. C. Liu, P. Liu, H.-L. Zhang, X. Gong, Adv. Funct. Mater. 2015, 25, 2420–2427.
- 79Y. Yang, L. Fan, N. D. Pham, D. Yao, T. Wang, Z. Wang, H. Wang, J. Power Sources 2020, 479, 229046.
- 80T. Berestok, C. Diestel, N. Ortlieb, J. Buettner, J. Matthews, P. S. C. Schulze, J. C. Goldschmidt, S. W. Glunz, A. Fischer, Solar RRL 2021, 5, 2100662.
- 81Z. Song, J. Wu, L. Sun, T. Zhu, C. Deng, X. Wang, G. Li, Y. Du, Q. Chen, W. Sun, L. Fan, H. Chen, J. Lin, Z. Lan, Nano Energy 2022, 10, 107501.
10.1016/j.nanoen.2022.107501 Google Scholar
- 82J. Kim, S. M. Lee, Y.-H. Hwang, S. Lee, B. Park, J.-H. Jang, K. Lee, J. Mater. Chem. A 2017, 5, 1906–1912.
- 83R. Liu, C. Liu, S. Fan, J. Mater. Chem. A 2017, 5, 23078–23084.
- 84J. Liang, G. Zhu, Z. Lu, P. Zhao, C. Wang, Y. Ma, Z. Xu, Y. Wang, Y. Hu, L. Ma, T. Chen, Z. Tie, J. Liu, J. Jin, J. Mater. Chem. A 2018, 6, 2047–2052.
- 85J. Liang, G. Zhu, C. Wang, P. Zhao, Y. Wang, Y. Hu, L. Ma, Z. Tie, J. Liu, Z. Jin, Nano Energy 2018, 52, 239–245.
- 86C. H. Ng, H. N. Lim, S. Hayase, Z. Zainal, S. Shafie, H. W. Lee, N. M. Huang, ACS Appl. Energ. Mater. 2018, 1, 692–699.
- 87J. Xu, Z. Ku, Y. Zhang, D. Chao, H. J. Fan, Adv. Mater. Technol. 2016, 1, 1600074.
- 88Z. Liu, Y. Zhong, B. Sun, X. Liu, J. Han, T. Shi, Z. Tang, G. Liao, ACS Appl. Mater. Interfaces 2017, 9, 22361–22368.
- 89C. Li, M. M. Islam, J. Moore, J. Sleppy, C. Morrison, K. Konstantinov, S. X. Dou, C. Renduchintala, J. Thomas, Nat. Commun. 2016, 7, 13319.
- 90F. Zhang, W. Li, Z. Xu, M. Ye, H. Xu, W. Guo, X. Liu, Nano Energy 2018, 46, 168–175.
- 91M. Zhang, Z. Lin, ACS Energy Lett. 2022, 7, 1260–1265.
- 92W. Shockley, H. J. Queisser, J. Appl. Phys. 1961, 32, 510–519.
- 93Z. Wang, Z. Song, Y. Yan, S. Liu, D. Yang, Adv. Sci. 2019, 6, 1801704.
- 94H. Li, W. Zhang, Chem. Rev. 2020, 120, 9835–9950.
- 95T. Zhu, Y. Yang, Y. Liu, R. Lopez-Hallman, Z. Ma, L. Liu, X. Gong, Nano Energy 2020, 78, 105397.
- 96N. I. Jaksic, C. A. Salahifar, Sol. Energy Mater. Sol. Cells 2003, 79, 409–423.
- 97C. Bechinger, S. Ferrer, A. Zaban, J. Sprague, B. A. Gregg, Nature 1996, 383, 608–.
- 98F. Zhou, Z. Ren, Y. Zhao, X. Shen, A. Wang, Y. Y. Li, C. Surya, Y. Chai, ACS Nano 2016, 10, 5900–5908.
- 99L. Zhang, J. Miao, J. Li, Q. Li, Adv. Funct. Mater. 2020, 30, 2003653.
- 100R. Kumar, M. Bag, Energy Technol. 2022, 10, 2100889.
- 101S. Zhou, L. Li, H. Yu, J. Chen, C.-P. Wong, N. Zhao, Adv. Electron. Mater. 2016, 1600114.
10.1002/aelm.201600114 Google Scholar
- 102I. Popoola, M. Gondal, L. Oloore, A. J. Popoola, J. AlGhamdi, Electrochim. Acta 2020, 332, 135536.
- 103R. Kumar, P. S. Shukla, G. D. Varma, M. Bag, Electrochim. Acta 2021, 398, 139344.
- 104R. Kumar, M. Bag, J. Phys. Chem. C 2021, 125, 16946–16954.
- 105J. K. Pious, M. L. Lekshmi, C. Muthu, R. B. Rakhi, C. Vijayakumar, ACS Omega 2017, 2, 5798–5802.
- 106T. Li, J. Mallows, K. Adams, G. S. Nichol, J. H. J. Thijssen, N. Robertson, Batteries & Supercaps 2019, 2, 568–575.
- 107A. Slonopas, H. Ryan, P. Norris, Electrochim. Acta 2019, 307, 334–340.
- 108S. Güz, M. Buldu-Akturk, H. Göçmez, E. Erdem, ACS Omega 2022, 7, 47306–47316.
- 109A. Vlad, N. Singh, C. Galande, P. M. Ajayan, Adv. Energy Mater. 2015, 5, 1402115.
- 110S. Ahmad, C. George, D. J. Beesley, J. J. Baumberg, M. D. Volder, Nano Lett. 2018, 18, 1856–1862.
- 111I. K. Popoola, M. A. Gondal, A. J. Popoola, L. E. Oloore, J. Energy Storage 2022, 53, 105167.
- 112R. Kumar, A. Kumar, P. S. Shukla, G. D. Varma, D. Venkataraman, M. Bag, ACS Appl. Mater. Interfaces 2022, 14, 35592–35599.
- 113L. L. Zhang, R. Zhou, X. S. Zhao, J. Mater. Chem. 2010, 20, 5983–5992.
- 114T. Wu, Z. Qin, Y. Wang, Y. Wu, W. Chen, S. Zhang, M. Cai, S. Dai, J. Zhang, J. Liu, Z. Zhou, X. Liu, H. Segawa, H. Tan, Q. Tang, J. Fang, Y. Li, L. Ding, Z. Ning, Y. Qi, Y. Zhang, L. Han, Nano-Micro Lett. 2021, 13, 152.
- 115W. Xiang, W. Tress, Adv. Mater. 2019, 31, 1902851.
- 116H. Yang, N. Wu, Energy Sci Eng. 2022, 10, 1643–1671.
- 117Y. Gao, Y. Pan, F. Zhou, G. Niu, C. Yan, J. Mater. Chem. A 2021, 9, 11931–11943.