Recent Progress in Polyaniline and its Composites for Supercapacitors
Syed Shaheen Shah
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520 Japan
Search for more papers by this authorSulayman Oladepo
Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorMuhammad Ali Ehsan
Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorWissam Iali
Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorAsem Alenaizan
Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorMohammad Nahid Siddiqui
Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorMunetaka Oyama
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520 Japan
Search for more papers by this authorCorresponding Author
Abdul-Rahman Al-Betar
- [email protected]
- +966-13-860-7358 | Fax: +966-13-860-7264
Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261 Saudi Arabia
Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorCorresponding Author
Md. Abdul Aziz
- [email protected]
- +966-13-860-3744
Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261 Saudi Arabia
K.A. CARE Energy Research & Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorSyed Shaheen Shah
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520 Japan
Search for more papers by this authorSulayman Oladepo
Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorMuhammad Ali Ehsan
Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorWissam Iali
Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorAsem Alenaizan
Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorMohammad Nahid Siddiqui
Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorMunetaka Oyama
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520 Japan
Search for more papers by this authorCorresponding Author
Abdul-Rahman Al-Betar
- [email protected]
- +966-13-860-7358 | Fax: +966-13-860-7264
Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261 Saudi Arabia
Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorCorresponding Author
Md. Abdul Aziz
- [email protected]
- +966-13-860-3744
Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261 Saudi Arabia
K.A. CARE Energy Research & Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261 Saudi Arabia
Search for more papers by this authorAbstract
Polyaniline (PANI) has piqued the interest of nanotechnology researchers due to its potential as an electrode material for supercapacitors. Despite its ease of synthesis and ability to be doped with a wide range of materials, PANI′s poor mechanical properties have limited its use in practical applications. To address this issue, researchers investigated using PANI composites with materials with highly specific surface areas, active sites, porous architectures, and high conductivity. The resulting composite materials have improved energy storage performance, making them promising electrode materials for supercapacitors. Here, we provide an overview of recent developments in PANI-based supercapacitors, focusing on using electrochemically active carbon and redox-active materials as composites. We discuss challenges and opportunities of synthesizing PANI-based composites for supercapacitor applications. Furthermore, we provide theoretical insights into the electrical properties of PANI composites and their potential as active electrode materials. The need for this review stems from the growing interest in PANI-based composites to improve supercapacitor performance. By examining recent progress in this field, we provide a comprehensive overview of the current state-of-the-art and potential of PANI-based composites for supercapacitor applications. This review adds value by highlighting challenges and opportunities associated with synthesizing and utilizing PANI-based composites, thereby guiding future research directions.
References
- 1N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, J. Thomas, Adv. Mater. 2017, 29, 1605336.
- 2M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P. L. Taberna, C. P. Grey, B. Dunn, P. Simon, Nat. Energy 2016, 1, 16070.
- 3L. Liu, X. Hu, H.-Y. Zeng, M.-Y. Yi, S.-G. Shen, S. Xu, X. Cao, J.-Z. Du, J. Mater. Sci. Technol. 2019, 35, 1691–1699.
- 4Y. Fu, H. Wu, S. Ye, X. Cai, X. Yu, S. Hou, H. Kafafy, D. Zou, Energy Environ. Sci. 2013, 6, 805–812.
- 5H.-J. Choi, S.-M. Jung, J.-M. Seo, D. W. Chang, L. Dai, J.-B. Baek, Nano Energy 2012, 1, 534–551.
- 6M. Usman, M. Adnan, M. T. Ahsan, S. Javed, M. S. Butt, M. A. Akram, ACS Omega 2021, 6, 1190–1196.
- 7S. S. Shah, S. M. A. Nayem, N. Sultana, A. J. S. Ahammad, M. A. Aziz, ChemSusChem 2022, 15, e202101282.
- 8S. S. Shah, M. N. Shaikh, M. Y. Khan, M. A. Alfasane, M. M. Rahman, M. A. Aziz, Chem. Rec. 2021, 21, 1631–1665.
- 9S. S. Shah, M. A. Alfasane, I. A. Bakare, M. A. Aziz, Z. H. Yamani, J. Energy Storage 2020, 30, 101562.
- 10S. S. Shah, H. T. Das, H. R. Barai, M. A. Aziz, Polymer 2022, 14, 270.
- 11W. Mahfoz, H. T. Das, S. S. Shah, M. Sanhoob, A. Anjum, A.-R. Al-Betar, M. A. Aziz, Chem. Asian J. 2023, 18, e202201223.
- 12S. S. Shah, M. A. Aziz, A.-R. Al-Betar, W. Mahfoz, Arab. J. Chem. 2022, 15, 104058.
- 13M. A. Aziz, S. S. Shah, Y. A. Mahnashi, W. Mahfoz, A. S. Alzahrani, A. S. Hakeem, M. N. Shaikh, Small 2023, DOI: 10.1002/smll.202300258, 2300258.
- 14S. Goswami, G. R. Dillip, S. Nandy, A. N. Banerjee, A. Pimentel, S. W. Joo, R. Martins, E. Fortunato, Electrochim. Acta 2019, 316, 202–218.
- 15A. Eftekhari, L. Li, Y. Yang, J. Power Sources 2017, 347, 86–107.
- 16T. Yu, P. Zhu, Y. Xiong, H. Chen, S. Kang, H. Luo, S. Guan, Electrochim. Acta 2016, 222, 12–19.
- 17H. Li, J. Wang, Q. Chu, Z. Wang, F. Zhang, S. Wang, J. Power Sources 2009, 190, 578–586.
- 18B. Senthilkumar, K. Vijaya Sankar, C. Sanjeeviraja, R. Kalai Selvan, J. Alloys Compd. 2013, 553, 350–357.
- 19M. Usman, A. Helal, M. M. Abdelnaby, A. M. Alloush, M. Zeama, Z. H. Yamani, Chem. Rec. 2021, 21, 1771–1791.
- 20P. Liu, J. Yan, Z. Guang, Y. Huang, X. Li, W. Huang, J. Power Sources 2019, 424, 108–130.
- 21X. Yu, S. Yun, J. S. Yeon, P. Bhattacharya, L. Wang, S. W. Lee, X. Hu, H. S. Park, Adv. Energy Mater. 2018, 8, 1702930.
- 22H. Lv, Q. Pan, Y. Song, X.-X. Liu, T. Liu, Nano-Micro Lett. 2020, 12, 118.
- 23Y. Yoon, K. Lee, S. Kwon, S. Seo, H. Yoo, S. Kim, Y. Shin, Y. Park, D. Kim, J.-Y. Choi, H. Lee, ACS Nano 2014, 8, 4580–4590.
- 24M. Ashraf, S. S. Shah, I. Khan, M. A. Aziz, N. Ullah, M. Khan, S. F. Adil, Z. Liaqat, M. Usman, W. Tremel, M. N. Tahir, Chem. Eur. J. 2021, 27, 6973–6984.
- 25J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.-L. Taberna, Science 2006, 313, 1760–1763.
- 26A. K. Mohamedkhair, M. A. Aziz, S. S. Shah, M. N. Shaikh, A. K. Jamil, M. A. A. Qasem, I. A. Buliyaminu, Z. H. Yamani, Arab. J. Chem. 2020, 13, 6161–6173.
- 27T. Islam, M. M. Hasan, S. S. Shah, M. R. Karim, F. S. Al-Mubaddel, M. H. Zahir, M. A. Dar, M. D. Hossain, M. A. Aziz, A. J. S. Ahammad, J. Energy Storage 2020, 32, 101908.
- 28S. S. Shah, E. Cevik, M. A. Aziz, T. F. Qahtan, A. Bozkurt, Z. H. Yamani, Synth. Met. 2021, 277, 116765.
- 29C. K. Roy, S. S. Shah, A. H. Reaz, S. Sultana, A.-N. Chowdhury, S. H. Firoz, M. H. Zahir, M. A. A. Qasem, M. A. Aziz, Chem. Asian J. 2021, 16, 296–308.
- 30M. Yaseen, M. A. K. Khattak, M. Humayun, M. Usman, S. S. Shah, S. Bibi, B. S. U. Hasnain, S. M. Ahmad, A. Khan, N. Shah, A. A. Tahir, H. Ullah, Energies 2021, 14, 7779.
- 31A. Izadi-Najafabadi, D. N. Futaba, S. Iijima, K. Hata, J. Am. Chem. Soc. 2010, 132, 18017–18019.
- 32D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L. Taberna, P. Simon, Nat. Nanotechnol. 2010, 5, 651–654.
- 33A. Aziz, S. S. Shah, A. Kashem, Chem. Rec. 2020, 20, 1074–1098.
- 34X. Cao, B. Zheng, W. Shi, J. Yang, Z. Fan, Z. Luo, X. Rui, B. Chen, Q. Yan, H. Zhang, Adv. Mater. 2015, 27, 4695–4701.
- 35H. Chen, L. Hu, M. Chen, Y. Yan, L. Wu, Adv. Funct. Mater. 2014, 24, 934–942.
- 36B. Guan, Y. Li, B. Yin, K. Liu, D. Wang, H. Zhang, C. Cheng, Chem. Eng. J. 2017, 308, 1165–1173.
- 37H. Peng, C. Wei, K. Wang, T. Meng, G. Ma, Z. Lei, X. Gong, ACS Appl. Mater. Interfaces 2017, 9, 17067–17075.
- 38S. Goswami, A. D. Santos, S. Nandy, R. Igreja, P. Barquinha, R. Martins, E. Fortunato, Nano Energy 2019, 60, 794–801.
- 39M. I. A. Abdel Maksoud, R. A. Fahim, A. E. Shalan, M. Abd Elkodous, S. O. Olojede, A. I. Osman, C. Farrell, A. A. H. Al-Muhtaseb, A. S. Awed, A. H. Ashour, D. W. Rooney, Environ. Chem. Lett. 2021, 19, 375–439.
- 40M. Usman, D. Li, C. Li, S. Zhang, Sci. China Chem. 2015, 58, 738–746.
- 41M. M. Hasan, T. Islam, S. S. Shah, A. Awal, M. A. Aziz, A. J. S. Ahammad, Chem. Rec. 2022, 22, e202200041.
- 42M. A. Ehsan, S. S. Shah, S. I. Basha, A. S. Hakeem, M. A. Aziz, Chem. Rec. 2022, 22, e202100278.
- 43S. S. Shah, M. A. Aziz, Z. H. Yamani, Chem. Rec. 2022, 22, e202200018.
- 44I. Khan, A. A. Khan, I. Khan, M. Usman, M. Sadiq, F. Ali, K. Saeed, New J. Chem. 2020, 44, 13330–13343.
- 45Y. Yan, T. Wang, X. Li, H. Pang, H. Xue, Inorg. Chem. Front. 2017, 4, 33–51.
- 46Y. Tan, Y. Zhang, L. Kong, L. Kang, F. Ran, J. Alloys Compd. 2017, 722, 1–7.
- 47Y. Tan, Y. Liu, L. Kong, L. Kang, F. Ran, J. Power Sources 2017, 363, 1–8.
- 48B. Zhang, B. Zhao, S. Huang, R. Zhang, P. Xu, H.-L. Wang, CrystEngComm 2012, 14, 1542–1544.
- 49H. Zhang, F. Huang, S. Xu, Y. Xia, W. Huang, Z. Li, Electrochem. Commun. 2013, 30, 46–50.
- 50U. Bogdanović, I. Pašti, G. Ćirić-Marjanović, M. Mitrić, S. P. Ahrenkiel, V. Vodnik, ACS Appl. Mater. Interfaces 2015, 7, 28393–28403.
- 51C.-C. Hung, T.-C. Wen, Y. Wei, Mater. Chem. Phys. 2010, 122, 392–396.
- 52Q. Xu, J. Leng, H.-B. Li, G.-J. Lu, Y. Wang, X.-Y. Hu, React. Funct. Polym. 2010, 70, 663–668.
- 53L. Yang, S. Liu, Q. Zhang, F. Li, Talanta 2012, 89, 136–141.
- 54M. Srivastava, S. K. Srivastava, N. R. Nirala, R. Prakash, Anal. Methods 2014, 6, 817–824.
- 55X. Feng, Y. Zhang, Z. Yan, Y. Ma, Q. Shen, X. Liu, Q. Fan, L. Wang, W. Huang, J. Solid State Electrochem. 2014, 18, 1717–1723.
- 56S. Ghani, R. Sharif, S. Bashir, A. Ashraf, S. Shahzadi, A. A. Zaidi, S. Rafique, N. Zafar, A. H. Kamboh, Mater. Sci. Semicond. Process. 2015, 31, 588–592.
- 57C. O. Baker, B. Shedd, R. J. Tseng, A. A. Martinez-Morales, C. S. Ozkan, M. Ozkan, Y. Yang, R. B. Kaner, ACS Nano 2011, 5, 3469–3474.
- 58X. Lang, L. Zhang, T. Fujita, Y. Ding, M. Chen, J. Power Sources 2012, 197, 325–329.
- 59F. Jiang, W. Li, R. Zou, Q. Liu, K. Xu, L. An, J. Hu, Nano Energy 2014, 7, 72–79.
- 60Q. Meng, K. Cai, Y. Chen, L. Chen, Nano Energy 2017, 36, 268–285.
- 61A.-Q. Zhang, Y. Zhang, L.-Z. Wang, X.-F. Li, Polym. Compos. 2011, 32, 1–5.
- 62H. Valentová, J. Stejskal, Synth. Met. 2010, 160, 832–834.
- 63M. M. Hasan, T. Islam, A. Imran, B. Alqahtani, S. S. Shah, W. Mahfoz, M. R. Karim, H. F. Alharbi, M. A. Aziz, A. J. S. Ahammad, Electrochim. Acta 2021, 374, 137968.
- 64H. Wang, J. Lin, Z. X. Shen, J. Sci. Adv. Mater. Devices 2016, 1, 225–255.
- 65J. Banerjee, K. Dutta, M. A. Kader, S. K. Nayak, Polym. Adv. Technol. 2019, 30, 1902–1921.
- 66R. Ramya, R. Sivasubramanian, M. V. Sangaranarayanan, Electrochim. Acta 2013, 101, 109–129.
- 67A. G. Pandolfo, A. F. Hollenkamp, J. Power Sources 2006, 157, 11–27.
- 68R. Kötz, M. Carlen, Electrochim. Acta 2000, 45, 2483–2498.
- 69J. R. Miller, P. Simon, Science 2008, 321, 651–652.
- 70A. González, E. Goikolea, J. A. Barrena, R. Mysyk, Renewable Sustainable Energy Rev. 2016, 58, 1189–1206.
- 71Z. Tehrani, D. J. Thomas, T. Korochkina, C. O. Phillips, D. Lupo, S. Lehtimäki, J. O′Mahony, D. T. Gethin, Energy 2017, 118, 1313–1321.
- 72L. L. Zhang, X. Zhao, Chem. Soc. Rev. 2009, 38, 2520–2531.
- 73A. J. S. Ahammad, N. Odhikari, S. S. Shah, M. M. Hasan, T. Islam, P. R. Pal, M. A. Ahmed Qasem, M. A. Aziz, Nanoscale Adv. 2019, 1, 613–626.
- 74S. S. Shah, M. A. A. Qasem, R. Berni, C. Del Casino, G. Cai, S. Contal, I. Ahmad, K. S. Siddiqui, E. Gatti, S. Predieri, J.-F. Hausman, S. Cambier, G. Guerriero, M. A. Aziz, Sci. Rep. 2021, 11, 6945.
- 75H. Wang, Y. Cao, D. Li, U. Muhammad, C. Li, Z. Li, S. Zhang, J. Renew. Sustain. Energy 2013, 5, 053114.
- 76D. Versaci, I. Canale, S. Goswami, J. Amici, C. Francia, E. Fortunato, R. Martins, L. Pereira, S. Bodoardo, J. Power Sources 2022, 521, 230945.
- 77L. M. Da Silva, R. Cesar, C. M. R. Moreira, J. H. M. Santos, L. G. De Souza, B. M. Pires, R. Vicentini, W. Nunes, H. Zanin, Energy Storage Mater. 2020, 27, 555–590.
- 78M. Winter, R. J. Brodd, Chem. Rev. 2004, 104, 4245–4270.
- 79T. Li, R. Ma, J. Lin, Y. Hu, P. Zhang, S. Sun, L. Fang, Int. J. Energy Res. 2020, 44, 2426–2454.
- 80W. Raza, F. Ali, N. Raza, Y. Luo, K.-H. Kim, J. Yang, S. Kumar, A. Mehmood, E. E. Kwon, Nano Energy 2018, 52, 441–473.
- 81F.-G. Zhao, Y.-T. Kong, B. Pan, C.-M. Hu, B. Zuo, X. Dong, B. Li, W.-S. Li, J. Mater. Chem. A 2019, 7, 3353–3365.
- 82Y. Sang, L. Bai, B. Zuo, L. Dong, X. Wang, W.-S. Li, F.-G. Zhao, J. Colloid Interface Sci. 2021, 597, 289–296.
- 83E. Frackowiak, F. Béguin, Carbon 2001, 39, 937–950.
- 84A. Burke, J. Power Sources 2000, 91, 37–50.
- 85A. Zaka, K. Hayat, V. Mittal, ACS Appl. Electron. Mater. 2021, 3, 574–596.
- 86B. Pan, C.-M. Hu, L. Bai, F.-G. Zhao, L. Dong, B. Zuo, W. Zhang, X. Wang, W.-S. Li, Adv. Funct. Mater. 2019, 29, 1906076.
- 87S. M. A. Nayem, S. S. Shah, N. Sultana, M. A. Aziz, A. J. S. Ahammad, Chem. Rec. 2021, 21, 1073–1097.
- 88M. A. Aziz, S. S. Shah, S. M. A. Nayem, M. N. Shaikh, A. S. Hakeem, I. A. Bakare, J. Energy Storage 2022, 50, 104278.
- 89R. Yuksel, Z. Sarioba, A. Cirpan, P. Hiralal, H. E. Unalan, ACS Appl. Mater. Interfaces 2014, 6, 15434–15439.
- 90C. Long, T. Wei, J. Yan, L. Jiang, Z. Fan, ACS Nano 2013, 7, 11325–11332.
- 91D. Zhang, M. Miao, H. Niu, Z. Wei, ACS Nano 2014, 8, 4571–4579.
- 92R. Zhang, J. Ding, C. Liu, E.-H. Yang, ACS Appl. Energ. Mater. 2018, 1, 2048–2055.
- 93S. M. Mirvakili, M. N. Mirvakili, P. Englezos, J. D. W. Madden, I. W. Hunter, ACS Appl. Mater. Interfaces 2015, 7, 13882–13888.
- 94B. E. Conway, J. Electrochem. Soc. 1991, 138, 1539–1548.
- 95B. E. Conway, V. Birss, J. Wojtowicz, J. Power Sources 1997, 66, 1–14.
- 96Poonam, K. Sharma, A. Arora, S. K. Tripathi, J. Energy Storage 2019, 21, 801–825.
- 97S. S. Shah, M. A. Aziz, W. Mahfoz, A.-R. Al-Betar, in Nanostructured Materials for Supercapacitors, Vol. 1, (Eds.: S. Thomas, A. B. Gueye, R. K. Gupta), Springer, Cham, 2022, Chap. 22, pp. 485–511.
10.1007/978-3-030-99302-3_22 Google Scholar
- 98C. Arbizzani, M. Mastragostino, F. Soavi, J. Power Sources 2001, 100, 164–170.
- 99L. D. Sappia, B. S. Pascual, O. Azzaroni, W. Marmisollé, ACS Appl. Energ. Mater. 2021, 4, 9283–9293.
- 100A. S. Ghanem, M. Ba-Shammakh, M. Usman, M. F. Khan, H. Dafallah, M. A. M. Habib, B. A. Al-Maythalony, J. Appl. Polym. Sci. 2020, 137, 48513.
- 101W. Chen, R. B. Rakhi, H. N. Alshareef, J. Mater. Chem. A 2013, 1, 3315–3324.
- 102H. D. Yoo, S.-D. Han, R. D. Bayliss, A. A. Gewirth, B. Genorio, N. N. Rajput, K. A. Persson, A. K. Burrell, J. Cabana, ACS Appl. Mater. Interfaces 2016, 8, 30853–30862.
- 103Z. Li, N. Liu, J. Wang, Y. Xu, L. Bai, L. Jiang, L. Cui, C. Shen, X. Liu, F.-G. Zhao, J. Colloid Interface Sci. 2023, 635, 543–551.
- 104M. Zhang, A. Nautiyal, H. Du, Z. Wei, X. Zhang, R. Wang, Electrochim. Acta 2021, 376, 138037.
- 105N. Y. Abu-Thabit, A. S. H. Makhlouf, in Industrial Applications for Intelligent Polymers and Coatings, Vol. 1, (Eds.: M. Hosseini, A. S. H. Makhlouf), Springer International Publishing, Cham, 2016, pp. 437–477.
10.1007/978-3-319-26893-4_21 Google Scholar
- 106Z. Sun, L. Zhao, H. Wan, H. Liu, D. Wu, X. Wang, Chem. Eng. J. 2020, 396, 125317.
- 107X.-Y. Xu, J.-H. Liu, X. Ouyang, L. Cui, J. Hong, X. Meng, S. Qin, C. Liu, J. Tang, D.-Z. Chen, Electrochim. Acta 2020, 334, 135551.
- 108Q. Li, M. Horn, Y. Wang, J. MacLeod, N. Motta, J. Liu, Materials 2019, 12, 703.
- 109D. Vonlanthen, P. Lazarev, K. A. See, F. Wudl, A. J. Heeger, Adv. Mater. 2014, 26, 5095–5100.
- 110Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, ACS Nano 2010, 4, 1963–1970.
- 111P. Sekar, B. Anothumakkool, S. Kurungot, ACS Appl. Mater. Interfaces 2015, 7, 7661–7669.
- 112J. An, J. Liu, Y. Zhou, H. Zhao, Y. Ma, M. Li, M. Yu, S. Li, J. Phys. Chem. C. 2012, 116, 19699–19708.
- 113M. Xie, S. Duan, Y. Shen, K. Fang, Y. Wang, M. Lin, X. Guo, ACS Energy Lett. 2016, 1, 814–819.
- 114M. M. Faisal, S. R. Ali, S. S. Shah, M. W. Iqbal, S. Pushpan, M. A. Aziz, N. P. Aguilar, M. M. Alcalá Rodríguez, S. L. Loredo, K. C. Sanal, Ceram. Int. 2022, 48, 28565–28577.
- 115H. Letheby, J. Chem. Soc. 1862, 15, 161–163.
10.1039/JS8621500161 Google Scholar
- 116L. Gilchrist, J. Phys. Chem. 1904, 8, 539–547.
- 117A. G. Green, A. E. Woodhead, J. Chem. Soc. Trans. 1910, 97, 2388–2403.
10.1039/CT9109702388 Google Scholar
- 118A. Eftekhari, P. Jafarkhani, J. Electroanal. Chem. 2014, 717, 110–118.
- 119A. Eftekhari, P. Jafarkhani, Polym. J. 2006, 38, 651–658.
- 120H. Kuang, Q. Cao, X. Wang, B. Jing, Q. Wang, L. Zhou, J. Appl. Polym. Sci. 2013, 130, 3753–3758.
- 121S. Xie, M. Gan, L. Ma, Z. Li, J. Yan, H. Yin, X. Shen, F. Xu, J. Zheng, J. Zhang, J. Hu, Electrochim. Acta 2014, 120, 408–415.
- 122P. Bandyopadhyay, T. Kuila, J. Balamurugan, T. T. Nguyen, N. H. Kim, J. H. Lee, Chem. Eng. J. 2017, 308, 1174–1184.
- 123X. He, G. Liu, B. Yan, H. Suo, C. Zhao, Eur. Polym. J. 2016, 83, 53–59.
- 124B. Guan, J. Tong, H. Zhang, C. Ma, B. Hu, J. Zhao, C. Cheng, RSC Adv. 2016, 6, 67271–67280.
- 125F. Miao, C. Shao, X. Li, K. Wang, N. Lu, Y. Liu, J. Power Sources 2016, 329, 516–524.
- 126P. Yu, X. Zhao, Y. Li, Q. Zhang, Appl. Surf. Sci. 2017, 393, 37–45.
- 127H. Zhou, H.-J. Zhai, Org. Electron. 2016, 37, 197–206.
- 128S. Grover, S. Goel, R. B. Marichi, V. Sahu, G. Singh, R. K. Sharma, Electrochim. Acta 2016, 196, 131–139.
- 129J. Xu, J. Ding, X. Zhou, Y. Zhang, W. Zhu, Z. Liu, S. Ge, N. Yuan, S. Fang, R. H. Baughman, J. Power Sources 2017, 340, 302–308.
- 130B. H. Patil, G. S. Gund, C. D. Lokhande, Ionics 2015, 21, 191–200.
- 131E. Song, J.-W. Choi, Nanomaterials 2013, 3, 498–523.
- 132J. Luo, W. Zhong, Y. Zou, C. Xiong, W. Yang, J. Power Sources 2016, 319, 73–81.
- 133Y. Wang, S. Tang, S. Vongehr, J. A. Syed, X. Wang, X. Meng, Sci. Rep. 2016, 6, 12883.
- 134L. Zhang, D. Huang, N. Hu, C. Yang, M. Li, H. Wei, Z. Yang, Y. Su, Y. Zhang, J. Power Sources 2017, 342, 1–8.
- 135Q. Wu, M. Chen, S. Wang, X. Zhang, L. Huan, G. Diao, Chem. Eng. J. 2016, 304, 29–38.
- 136H. Wang, D. Liu, X. Duan, P. Du, J. Guo, P. Liu, Mater. Des. 2016, 108, 801–806.
- 137S. Guo, Y. Zhu, Y. Yan, Y. Min, J. Fan, Q. Xu, H. Yun, J. Power Sources 2016, 316, 176–182.
- 138R. Shakil, M. N. Shaikh, S. S. Shah, A. H. Reaz, C. K. Roy, A.-N. Chowdhury, M. A. Aziz, Asian J. Org. Chem. 2021, 10, 2220–2230.
- 139S. S. Shah, M. A. Aziz, M. Oyama, A.-R. F. Al-Betar, Chem. Rec. 2021, 21, 204–238.
- 140J. Saravanan, A. Vignesh, S. S. Shah, M. A. Aziz, M. Pannipara, A. G. Al-Sehemi, S.-M. Phang, F.-L. Ng, B. A. A. Abdul, G. G. kumar, Res. Chem. Intermed. 2022, 48, 101–116.
- 141J. Saravanan, M. Pannipara, A. G. Al-Sehemi, S. Talebi, V. Periasamy, S. S. Shah, M. A. Aziz, G. Gnana kumar, J. Mater. Sci. Mater. Electron. 2021, 32, 24775–24789.
- 142F. Ke, J. Tang, S. Guang, H. Xu, RSC Adv. 2016, 6, 14712–14719.
- 143S. Uppugalla, U. Male, P. Srinivasan, Electrochim. Acta 2014, 146, 242–248.
- 144T. Liu, L. Finn, M. Yu, H. Wang, T. Zhai, X. Lu, Y. Tong, Y. Li, Nano Lett. 2014, 14, 2522–2527.
- 145V. Gupta, N. Miura, Electrochim. Acta 2006, 52, 1721–1726.
- 146Y. Zhou, Z.-Y. Qin, L. Li, Y. Zhang, Y.-L. Wei, L.-F. Wang, M.-F. Zhu, Electrochim. Acta 2010, 55, 3904–3908.
- 147K. Hayat, S. S. Shah, S. Ali, S. K. Shah, Y. Iqbal, M. A. Aziz, J. Mater. Sci. Mater. Electron. 2020, 31, 15859–15874.
- 148S. S. Shah, K. Hayat, S. Ali, K. Rasool, Y. Iqbal, Mater. Sci. Semicond. Process. 2019, 90, 65–71.
- 149K. Hayat, S. S. Shah, M. Yousaf, M. J. Iqbal, M. Ali, S. Ali, M. Ajmal, Y. Iqbal, Mater. Sci. Semicond. Process. 2016, 41, 364–369.
- 150Y. Yan, Q. Cheng, G. Wang, C. Li, J. Power Sources 2011, 196, 7835–7840.
- 151S.-W. Woo, K. Dokko, H. Nakano, K. Kanamura, J. Power Sources 2009, 190, 596–600.
- 152Z. Zhang, G. Wang, Y. Li, X. Zhang, N. Qiao, J. Wang, J. Zhou, Z. Liu, Z. Hao, J. Mater. Chem. A 2014, 2, 16715–16722.
- 153Z.-Z. ZHU, G.-C. WANG, M.-Q. SUN, X.-W. LI, C.-Z. LI, Electrochim. Acta 2011, 56, 1366–1372.
- 154K. Zhang, H. Hu, W. Yao, C. Ye, J. Mater. Chem. A 2015, 3, 617–623.
- 155S. M. Abu Nayem, S. S. Shah, N. Sultana, M. A. Aziz, A. J. Saleh Ahammad, Chem. Rec. 2021, 21, 1039–1072.
- 156L. Wang, T. Wu, S. Du, M. Pei, W. Guo, S. Wei, RSC Adv. 2016, 6, 1004–1011.
- 157S. He, X. Hu, S. Chen, H. Hu, M. Hanif, H. Hou, J. Mater. Chem. 2012, 22, 5114–5120.
- 158M. Kotal, A. K. Thakur, A. K. Bhowmick, ACS Appl. Mater. Interfaces 2013, 5, 8374–8386.
- 159Z. Gao, W. Yang, J. Wang, B. Wang, Z. Li, Q. Liu, M. Zhang, L. Liu, Energy Fuels 2013, 27, 568–575.
- 160M. Kumar, K. Singh, S. K. Dhawan, K. Tharanikkarasu, J. S. Chung, B.-S. Kong, E. J. Kim, S. H. Hur, Chem. Eng. J. 2013, 231, 397–405.
- 161Y. Xu, B. Pan, W.-S. Li, L. Dong, X. Wang, F.-G. Zhao, ACS Appl. Mater. Interfaces 2021, 13, 41537–41544.
- 162M. Usman, M. Humayun, S. S. Shah, H. Ullah, A. A. Tahir, A. Khan, H. Ullah, Energies 2021, 14, 2281.
- 163B. Li, S. Liu, H. Yang, R. Wang, X. Xu, Y. Zhou, Y. Zhang, D. Yang, J. Li, ACS Appl. Mater. Interfaces 2023, 15, 4343–4357.
- 164J. Shen, C. Yang, X. Li, G. Wang, ACS Appl. Mater. Interfaces 2013, 5, 8467–8476.
- 165X. Jiang, Y. Cao, P. Li, J. Wei, K. Wang, D. Wu, H. Zhu, Mater. Lett. 2015, 140, 43–47.
- 166W. Fan, Y.-E. Miao, L. Zhang, Y. Huang, T. Liu, RSC Adv. 2015, 5, 31064–31073.
- 167H. Liu, Y. Wang, X. Gou, T. Qi, J. Yang, Y. Ding, Mater. Sci. Eng. B 2013, 178, 293–298.
- 168F. Chen, P. Liu, Q. Zhao, Electrochim. Acta 2012, 76, 62–68.
- 169Z. Huang, L. Li, Y. Wang, C. Zhang, T. Liu, Compos. Commun. 2018, 8, 83–91.
- 170J. L. Xie, C. X. Guo, C. M. Li, Energy Environ. Sci. 2014, 7, 2559–2579.
- 171N. B. Trung, T. V. Tam, H. R. Kim, S. H. Hur, E. J. Kim, W. M. Choi, Chem. Eng. J. 2014, 255, 89–96.
- 172B. Ma, X. Zhou, H. Bao, X. Li, G. Wang, J. Power Sources 2012, 215, 36–42.
- 173Y. Liu, Y. Ma, S. Guang, H. Xu, X. Su, J. Mater. Chem. A 2014, 2, 813–823.
- 174G. Erdenedelger, T. Lee, T. D. Dao, J. S. Kim, B.-S. Kim, H. M. Jeong, J. Mater. Chem. A 2014, 2, 12526–12534.
- 175Z. Gao, F. Wang, J. Chang, D. Wu, X. Wang, X. Wang, F. Xu, S. Gao, K. Jiang, Electrochim. Acta 2014, 133, 325–334.
- 176J. Zhang, J. Gao, Q. Song, Z. Guo, A. Chen, G. Chen, S. Zhou, Electrochim. Acta 2016, 199, 70–79.
- 177M. M. Rahman, P. M. Joy, M. N. Uddin, M. Z. B. Mukhlish, M. M. R. Khan, Heliyon 2021, 7, e07407.
- 178M. M. Rahman, T. Mahtab, M. Z. B. Mukhlish, M. O. Faruk, M. M. Rahman, Polym. Bull. 2021, 78, 5379–5397.
- 179M. M. Rahman, M. R. Hossen, I. Alam, M. H. Rahman, O. Faruk, M. Nurbas, M. M. Rahman, M. M. R. Khan, J. Alloys Compd. 2023, 947, 169471.
- 180S. Xiong, Y. Shi, J. Chu, M. Gong, B. Wu, X. Wang, Electrochim. Acta 2014, 127, 139–145.
- 181J.-G. Wang, Y. Yang, Z.-H. Huang, F. Kang, J. Power Sources 2012, 204, 236–243.
- 182Q. Zhang, Y. Li, Y. Feng, W. Feng, Electrochim. Acta 2013, 90, 95–100.
- 183E. Mitchell, J. Candler, F. De Souza, R. K. Gupta, B. K. Gupta, L. F. Dong, Synth. Met. 2015, 199, 214–218.
- 184K.-S. Kim, S.-J. Park, Synth. Met. 2012, 162, 2107–2111.
- 185S. Dhibar, C. K. Das, Ind. Eng. Chem. Res. 2014, 53, 3495–3508.
- 186J. Tong, H. Zhang, J. Gu, L. Li, C. Ma, J. Zhao, C. Wang, J. Mater. Sci. 2016, 51, 1966–1977.
- 187X.-M. Feng, R.-M. Li, Y.-W. Ma, R.-F. Chen, N.-E. Shi, Q.-L. Fan, W. Huang, Adv. Funct. Mater. 2011, 21, 2989–2996.
- 188Z. Cui, C. X. Guo, C. M. Li, J. Mater. Chem. A 2013, 1, 6687–6692.
- 189H. Bai, Y. Xu, L. Zhao, C. Li, G. Shi, Chem. Commun. 2009, 2009, 1667–1669.
- 190T. Lee, T. Yun, B. Park, B. Sharma, H.-K. Song, B.-S. Kim, J. Mater. Chem. 2012, 22, 21092–21099.
- 191J. Xu, K. Wang, S.-Z. Zu, B.-H. Han, Z. Wei, ACS Nano 2010, 4, 5019–5026.
- 192K. Zhang, L. L. Zhang, X. S. Zhao, J. Wu, Chem. Mater. 2010, 22, 1392–1401.
- 193L. Q. Xu, Y. L. Liu, K.-G. Neoh, E.-T. Kang, G. D. Fu, Macromol. Rapid Commun. 2011, 32, 684–688.
- 194D.-W. Wang, F. Li, J. Zhao, W. Ren, Z.-G. Chen, J. Tan, Z.-S. Wu, I. Gentle, G. Q. Lu, H.-M. Cheng, ACS Nano 2009, 3, 1745–1752.
- 195M. Xue, F. Li, J. Zhu, H. Song, M. Zhang, T. Cao, Adv. Funct. Mater. 2012, 22, 1284–1290.
- 196Q. Hao, H. Wang, X. Yang, L. Lu, X. Wang, Nano Res. 2011, 4, 323–333.
- 197L. Bai, Y. Xu, A. Liu, L. Dong, K. Zhang, W.-S. Li, F.-G. Zhao, Chem. Eng. J. 2022, 434, 134639.
- 198B. Pan, L. Bai, C.-M. Hu, X. Wang, W.-S. Li, F.-G. Zhao, Adv. Energy Mater. 2020, 10, 2000181.
- 199X. Lu, H. Dou, S. Yang, L. Hao, L. Zhang, L. Shen, F. Zhang, X. Zhang, Electrochim. Acta 2011, 56, 9224–9232.
- 200N. Hu, L. Zhang, C. Yang, J. Zhao, Z. Yang, H. Wei, H. Liao, Z. Feng, A. Fisher, Y. Zhang, Z. J. Xu, Sci. Rep. 2016, 6, 19777.
- 201D. Li, R. B. Kaner, Chem. Commun. 2005, 2005, 3286–3288.
- 202D. Li, M. B. Müller, S. Gilje, R. B. Kaner, G. G. Wallace, Nat. Nanotechnol. 2008, 3, 101.
- 203M. Hassan, K. R. Reddy, E. Haque, S. N. Faisal, S. Ghasemi, A. I. Minett, V. G. Gomes, Compos. Sci. Technol. 2014, 98, 1–8.
- 204H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, Nanoscale 2010, 2, 2164–2170.
- 205X. Zang, X. Li, M. Zhu, X. Li, Z. Zhen, Y. He, K. Wang, J. Wei, F. Kang, H. Zhu, Nanoscale 2015, 7, 7318–7322.
- 206S. Park, R. S. Ruoff, Nat. Nanotechnol. 2009, 4, 217–224.
- 207K. Halab Shaeli Iessa, Y. Zhang, G. Zhang, F. Xiao, S. Wang, J. Power Sources 2016, 302, 92–97.
- 208M. A. Bavio, G. G. Acosta, T. Kessler, Int. J. Energy Res. 2015, 39, 2053–2061.
- 209S. K. Simotwo, C. DelRe, V. Kalra, ACS Appl. Mater. Interfaces 2016, 8, 21261–21269.
- 210L.-Z. Fan, Y.-S. Hu, J. Maier, P. Adelhelm, B. Smarsly, M. Antonietti, Adv. Funct. Mater. 2007, 17, 3083–3087.
- 211X. Wang, Y. Lin, Y. Su, B. Zhang, C. Li, H. Wang, L. Wang, Electrochim. Acta 2017, 225, 263–271.
- 212M. Shao, F. Ning, Y. Zhao, J. Zhao, M. Wei, D. G. Evans, X. Duan, Chem. Mater. 2012, 24, 1192–1197.
- 213J. Han, H.-Y. Zeng, X. Cao, C.-R. Chen, J. Mater. Sci. Mater. Electron. 2017, 28, 2754–2762.
- 214S. P. Ashokkumar, L. Yesappa, H. Vijeth, M. Niranjana, M. Vandana, H. Devendrappa, Mater. Res. Express 2020, 6, 125557.
- 215A.-U.-H. A. Shah, M. O. Khan, S. Bilal, G. Rahman, H. V. Hoang, Adv. Polym. Technol. 2018, 37, 2230–2237.
- 216S. G. C. B. P. M. Kharade b, D. J. Salunkhe b, P. B. Joshi b, S. M. Mane a, S. B. Kulkarni a, Mater. Res. Bull. 2014, 52, 37–41.
- 217A. Helal, S. S. Shah, M. Usman, M. Y. Khan, M. A. Aziz, M. Mizanur Rahman, Chem. Rec. 2022, 22, e202200055.
- 218J. H. Shendkar, V. V. Jadhav, P. V. Shinde, R. S. Mane, Results Phys. 2019, 14, 102380.
- 219F. Qi, C. Zhao, C. Wang, X. Jia, L. Weng, T. He, Y. Min, J. Electrochem. Soc. 2019, 166, A3932–A3939.
- 220M. Dirican, M. Yanilmaz, A. M. Asiri, X. Zhang, J. Electroanal. Chem. 2020, 861, 113995.
- 221B. Zou, S. Gong, Y. Wang, X. Liu, J. Nanomater. 2014, 2014, 813120.
10.1155/2014/813120 Google Scholar
- 222R. Hu, J. Zhao, G. Zhu, J. Zheng, Electrochim. Acta 2018, 261, 151–159.
- 223A. D. Adhikari, R. Oraon, S. K. Tiwari, N. K. Jena, J. H. Lee, N. H. Kim, G. C. Nayak, Chem. Asian J. 2017, 12, 900–909.
- 224Y. Duan, J. Liu, Y. Zhang, T. Wang, RSC Adv. 2016, 6, 73915–73923.
- 225P. Chen, J. Yang, K. Guo, Macromol. Mater. Eng. 2021, 306, 2100274.
- 226M. Kandasamy, A. Seetharaman, B. Chakraborty, I. Manohara Babu, J. J. William, G. Muralidharan, K. Jothivenkatachalam, D. Sivasubramanian, Phys. Rev. Appl. 2020, 14, 024067.
- 227Y. Xie, Y. Mu, Electrochim. Acta 2021, 391, 138953.
- 228F. Al-Zohbi, J. Jacquemin, F. Ghamouss, B. Schmaltz, M. Abarbri, K. Cherry, M. F. Tabcheh, F. Tran-Van, J. Power Sources 2019, 431, 162–169.
- 229T. Hao, Y. Liu, G. Liu, C. Peng, B. Chen, Y. Feng, J. Ru, J. Yang, Energy Storage Mater. 2019, 23, 225–232.