Evolution of Vanadium Redox Flow Battery in Electrode
Md Hasnat Hossain
Department of Electrical and Electronic Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Search for more papers by this authorCorresponding Author
Norulsamani Abdullah
Research Center for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya, 47500 Selangor Darul Ehsan, Malaysia
Sunway Materials Smart Science & Engineering (SMS2E) Cluster, Sunway University, Petaling Jaya, Selangor, 47500 Malaysia
Search for more papers by this authorKim Han Tan
Research Center for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya, 47500 Selangor Darul Ehsan, Malaysia
Search for more papers by this authorCorresponding Author
R. Saidur
Research Center for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya, 47500 Selangor Darul Ehsan, Malaysia
Sunway Materials Smart Science & Engineering (SMS2E) Cluster, Sunway University, Petaling Jaya, Selangor, 47500 Malaysia
School of Engineering, Lancaster University, Lancaster, LA1 4YW UK
Search for more papers by this authorMohd Amran Mohd Radzi
Department of Electrical and Electronic Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Search for more papers by this authorSuhaidi Shafie
Department of Electrical and Electronic Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Search for more papers by this authorMd Hasnat Hossain
Department of Electrical and Electronic Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Search for more papers by this authorCorresponding Author
Norulsamani Abdullah
Research Center for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya, 47500 Selangor Darul Ehsan, Malaysia
Sunway Materials Smart Science & Engineering (SMS2E) Cluster, Sunway University, Petaling Jaya, Selangor, 47500 Malaysia
Search for more papers by this authorKim Han Tan
Research Center for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya, 47500 Selangor Darul Ehsan, Malaysia
Search for more papers by this authorCorresponding Author
R. Saidur
Research Center for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya, 47500 Selangor Darul Ehsan, Malaysia
Sunway Materials Smart Science & Engineering (SMS2E) Cluster, Sunway University, Petaling Jaya, Selangor, 47500 Malaysia
School of Engineering, Lancaster University, Lancaster, LA1 4YW UK
Search for more papers by this authorMohd Amran Mohd Radzi
Department of Electrical and Electronic Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Search for more papers by this authorSuhaidi Shafie
Department of Electrical and Electronic Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Search for more papers by this authorAbstract
The vanadium redox flow battery (VRFB) is a highly regarded technology for large-scale energy storage due to its outstanding features, such as scalability, efficiency, long lifespan, and site independence. This paper provides a comprehensive analysis of its performance in carbon-based electrodes, along with a comprehensive review of the system‘s principles and mechanisms. It discusses potential applications, recent industrial involvement, and economic factors associated with VRFB technology. The study also covers the latest advancements in VRFB electrodes, including electrode surface modification and electrocatalyst materials, and highlights their effects on the VRFB system‘s performance. Additionally, the potential of two-dimensional material MXene to enhance electrode performance is evaluated, and the author concludes that MXenes offer significant advantages for use in high-power VRFB at a low cost. Finally, the paper reviews the challenges and future development of VRFB technology.
References
- 1A. Clemente, R. Costa-Castelló, Energies 2020, 13, 4514.
- 2in Vanadium Redox Flow Batteries (VRFB) Market, Vol. 2022, Transparency Market Research, 2022.
- 3
- 3aM. Skyllas-Kazacos, (Ed.: U. Limited), 1988;
- 3bM. Skyllas-Kazacos, M. Rychcik, R. G. Robins, A. G. Fane, M. A. Green, J. Electrochem. Soc. 1986, 133, 1057–1058.
- 4P. C. Ghimire, A. Bhattarai, T. M. Lim, N. Wai, M. Skyllas-Kazacos, Q. Yan, Batteries 2021, 7, 53.
- 5
- 5aY. Kumar, G. P. Pandey, S. A. Hashmi, J. Phys. Chem. C 2012, 116, 26118–26127;
- 5bK. Lourenssen, J. Williams, F. Ahmadpour, R. Clemmer, S. Tasnim, J. Energy Storage 2019, 25, 100844;
- 5cS. P. Ressel, Universitat Politecnica De Valencia (Spain), 2019;
- 5dM. Skyllas-Kazacos, M. Chakrabarti, S. Hajimolana, F. Mjalli, M. Saleem, J. Electrochem. Soc. 2011, 158, R55.
- 6J. Choi, W.-K. Park, I.-W. Lee, in 2016 IEEE International Conference on Renewable Energy Research–Applications (ICRERA), IEEE, 2016, pp. 903–906.
- 7A. Lucas, S. Chondrogiannis, Int. J. Electrical Power & Energy Systems 2016, 80, 26–36.
- 8T. Jirabovornwisut, A. Arpornwichanop, Int. J. Hydrogen Energy 2019, 44, 24485–24509.
- 9
- 9aK.-H. Shin, C.-S. Jin, J.-Y. So, S.-K. Park, D.-H. Kim, S.-H. Yeon, J. Energy Storage 2020, 27, 101066;
- 9bC. Tempelman, J. Jacobs, R. Balzer, V. Degirmenci, J. Energy Storage 2020, 32, 101754.
- 10C. Choi, S. Kim, R. Kim, Y. Choi, S. Kim, H.-y. Jung, J. H. Yang, H.-T. Kim, Renewable Sustainable Energy Rev. 2017, 69, 263–274.
- 11F. Nadeem, S. S. Hussain, P. K. Tiwari, A. K. Goswami, T. S. Ustun, IEEE Access 2018, 7, 4555–4585.
- 12T. Struckmann, P. Kuhn, S. Ressel, Electrochim. Acta 2020, 362, 137174.
- 13
- 13aK. J. Kim, M.-S. Park, Y.-J. Kim, J. H. Kim, S. X. Dou, M. Skyllas-Kazacos, J. Mater. Chem. A 2015, 3, 16913–16933;
- 13bH. Zhang, X. Li, J. Zhang, Redox flow batteries: Fundamentals–applications, CRC Press, 2017.
10.1201/9781315152684 Google Scholar
- 14Y. Shi, C. Eze, B. Xiong, W. He, H. Zhang, T. Lim, A. Ukil, J. Zhao, Appl. Energy 2019, 238, 202–224.
- 15
- 15aN. Kausar, A. Mousa, M. Skyllas-Kazacos, ChemElectroChem 2016, 3, 276–282;
- 15bS. Peng, N. Wang, C. Gao, Y. Lei, X. Liang, S. Liu, Y. Liu, Int. J. Electrochem. Sci. 2012, 7, 4314–4321;
- 15cR. Schweiss, A. Pritzl, C. Meiser, J. Electrochem. Soc. 2016, 163, A2089–A2094.
- 16
- 16aZ. Jiang, K. Klyukin, V. Alexandrov, J. Chem. Phys. 2016, 145;
- 16bM. Kazacos, M. Cheng, M. Skyllas-Kazacos, J. Appl. Electrochem. 1990, 20, 463–467.
- 17D. P. Dubal, P. Gomez-Romero, 2D Mater. 2016, 3, 031004.
- 18Y. Ahn, D. Kim, J. Ind. Eng. Chem. 2022.
- 19J. Shan, D. Xiao, Int. J. Green Energy 2021.
- 20Y. Quan, G. Wang, A. Li, X. Wei, F. Li, J. Zhang, J. Chen, R. Wang, RSC Adv. 2019, 9, 3838–3846.
- 21Y. Ji, Z. Y. Tay, S. F. Y. Li, J. Membr. Sci. 2017, 539, 197–205.
- 22Y. Ahn, D. Kim, J. Ind. Eng. Chem. 2019, 71, 361–368.
- 23Y. Ahn, D. Kim, Energy Storage Mater. 2020, 31, 105–114.
- 24L. Hao, Y. Wang, Y. He, J. Electrochem. Soc. 2019, 166, A1310–A1322.
- 25R. Xie, P. Ning, G. Qu, J. Li, M. Ren, C. Du, H. Gao, Z. Li, Chem. Eng. J. 2018, 341, 298–307.
- 26L. Yan, D. Li, S. Li, Z. Xu, J. Dong, W. Jing, W. Xing, ACS Appl. Mater. Interfaces 2016, 8, 35289–35297.
- 27
- 27aR. Gundlapalli, S. Jayanti, J. Energy Storage 2021, 33, 102078;
- 27bD. Reynard, H. Vrubel, C. R. Dennison, A. Battistel, H. Girault, ChemSusChem 2019, 12, 1222–1228.
- 28H. Chen, S. Wang, H. Gao, X. Feng, C. Yan, A. Tang, J. Power Sources 2019, 427, 154–164.
- 29
- 29aK. Ma, Y. Zhang, L. Liu, J. Xi, X. Qiu, T. Guan, Y. He, Nat. Commun. 2019, 10, 1–11;
- 29bD. Reed, E. Thomsen, B. Li, W. Wang, Z. Nie, B. Koeppel, V. Sprenkle, J. Power Sources 2016, 306, 24–31.
- 30
- 30aA. Khazaeli, A. Vatani, N. Tahouni, M. H. Panjeshahi, J. Power Sources 2015, 293, 599–612;
- 30bX. Ma, H. Zhang, C. Sun, Y. Zou, T. Zhang, J. Power Sources 2012, 203, 153–158.
- 31J. Piwek, C. Dennison, E. Frackowiak, H. Girault, A. Battistel, J. Power Sources 2019, 439, 227075.
- 32J. Balaji, M. G. Sethuraman, S.-H. Roh, H.-Y. Jung, Polym. Test. 2020, 89, 106567.
- 33W. Li, R. Zaffou, C. C. Sholvin, M. L. Perry, Y. She, ECS Trans. 2013, 53, 93–99.
- 34B. G. Thiam, S. Vaudreuil, J. Electrochem. Soc. 2021.
- 35in Market Research Report, Vol. 2022, DataIntelo, 2022.
- 36Z. Šimić, D. Topić, G. Knežević, D. Pelin, Int. J. Electrical Comp. Eng. Systems 2021, 12, 53–65.
- 37B. Turker, S. A. Klein, L. Komsiyska, J. J. Trujillo, L. von Bremen, M. Kühn, M. Busse, Energy Convers. Manage. 2013, 76, 1150–1157.
- 38Á. Cunha, J. Martins, N. Rodrigues, F. Brito, Int. J. Energy Res. 2015, 39, 889–918.
- 39T. Shibata, S. Hayashi, T. Sano, K. Fujikawa, K. Yamanishi, Y. Tsutsui, in Int. Flow Battery Forum. Limited Swanbarton, 2017, pp. 68–69.
- 40Z. Abdin, K. R. Khalilpour, in Polygeneration with polystorage for chemical–energy hubs, Elsevier, 2019, pp. 77–131.
- 41in Vanadium Redox Flow Battery (VRFB) Market, Vol. 2022, Reports–Data, New York City, United States, 2022.
- 42Z. Huang, A. Mu, Int. J. Energy Res. 2021, 45, 14170–14193.
- 43A. Chmielewski, J. Kupecki, Ł. Szabłowski, K. Fijałkowski, J. Zawieska, K. Bogdziński, O. Kulik, T. Adamczewski, WWF Poland 2020.
- 44Z. Huang, A. Mu, L. Wu, H. Wang, J. Energy Storage 2021, 103526.
- 45
- 45aK. Amini, J. Gostick, M. D. Pritzker, Adv. Funct. Mater. 2020, 30;
- 45bZ. Liu, Y. Zou, in Redox Flow Batteries, CRC Press, 2017, pp. 77–125;
- 45cR. Wang, Y. Li, Energy Storage Mater. 2020, 31, 230–251.
- 46Y. Xiang, W. A. Daoud, Electrochim. Acta 2018, 290, 176–184.
- 47S. Kim, Energy Storage Dev. 2019, 1–19.
- 48Y. Xie, Y. Zhou, J. Mater. Res. 2019, 34, 2472–2481.
- 49Y. Liu, Y. Shen, L. Yu, L. Liu, F. Liang, X. Qiu, J. Xi, Nano Energy 2018, 43, 55–62.
- 50W. Li, Z. Zhang, Y. Tang, H. Bian, T. W. Ng, W. Zhang, C. S. Lee, Adv. Sci. 2016, 3, 1500276.
- 51
- 51aG. F. Dewald, S. Ohno, M. A. Kraft, R. Koerver, P. Till, N. M. Vargas-Barbosa, J. Janek, W. G. Zeier, Chem. Mater. 2019, 31, 8328–8337;
- 51bB. K. Saikia, S. M. Benoy, M. Bora, J. Tamuly, M. Pandey, D. Bhattacharya, Fuel 2020, 282, 118796.
- 52
- 52aA. W. Bayeh, D. M. Kabtamu, Y.-C. Chang, T. H. Wondimu, H.-C. Huang, C.-H. Wang, Sustain. Energy Fuels 2021, 5, 1668–1707;
- 52bJ. Su, Z. Li, L. Hao, L. Qin, Appl. Sci. 2022, 12, 2304.
- 53
- 53aP. C. Ghimire, R. Schweiss, G. G. Scherer, N. Wai, T. M. Lim, A. Bhattarai, T. D. Nguyen, Q. Yan, J. Mater. Chem. A 2018, 6, 6625–6632;
- 53bM. Maleki, G. A. El-Nagar, D. Bernsmeier, J. Schneider, C. Roth, Sci. Rep. 2020, 10, 1–14.
- 54Y. Lv, C. Han, Y. Zhu, T. Zhang, S. Yao, Z. He, L. Dai, L. Wang, J. Mater. Sci. Technol. 2021, 75, 96–109.
- 55L. Wu, Y. Shen, L. Yu, J. Xi, X. Qiu, Nano Energy 2016, 28, 19–28.
- 56S. Kwon, Y. Suharto, K. J. Kim, J. Ind. Eng. Chem. 2021, 98, 231–236.
- 57L. Yu, F. Lin, L. Xu, J. Xi, J. Energy Chem. 2019, 35, 55–59.
- 58C. Zhao, Y. Li, Z. He, Y. Jiang, L. Li, F. Jiang, H. Zhou, J. Zhu, W. Meng, L. Wang, J. Energy Chem. 2019, 29, 103–110.
- 59Q. Li, Q. Dong, T. Zhang, Z. Xue, J. Li, Z. Wang, H. Sun, Electrochim. Acta 2022, 139970.
- 60P. Mazúr, J. Mrlik, J. Pocedic, J. Vrána, J. Dundálek, J. Kosek, T. Bystron, J. Power Sources 2019, 414, 354–365.
- 61D. Aaron, S. Yeom, K. D. Kihm, Y. A. Gandomi, T. Ertugrul, M. M. Mench, J. Power Sources 2017, 366, 241–248.
- 62X. Zhang, D. Zhang, Z. Xu, K. Zhang, Y. Zhang, M. Jing, L. Liu, Z. Zhang, N. Pu, J. Liu, Chem. Eng. J. 2022, 439, 135718.
- 63G. Wei, M. Jing, X. Fan, J. Liu, C. Yan, J. Power Sources 2015, 287, 81–86.
- 64X. Zhou, Y. Zeng, X. Zhu, L. Wei, T. Zhao, J. Power Sources 2016, 325, 329–336.
- 65J.-M. Jeong, K. I. Jeong, J. H. Oh, Y. S. Chung, S. S. Kim, Appl. Mater. Today 2021, 24, 101139.
- 66S. Mehboob, G. Ali, H.-J. Shin, J. Hwang, S. Abbas, K. Y. Chung, H. Y. Ha, Appl. Energy 2018, 229, 910–921.
- 67H. Jiang, W. Shyy, Y. Ren, R. Zhang, T. Zhao, Appl. Energy 2019, 233, 544–553.
- 68G. Wei, C. Jia, J. Liu, C. Yan, J. Power Sources 2012, 220, 185–192.
- 69M. M. Loghavi, M. Zarei-Jelyani, Z. Niknam, M. Babaiee, R. Eqra, J. Electroanal. Chem. 2022, 908, 116090.
- 70Z. He, M. Li, Y. Li, L. Wang, J. Zhu, W. Meng, C. Li, H. Zhou, L. Dai, Appl. Surf. Sci. 2019, 469, 423–430.
- 71L. Xia, Q. Zhang, C. Wu, Y. Liu, M. Ding, J. Ye, Y. Cheng, C. Jia, Surf. Coat. Technol. 2019, 358, 153–158.
- 72M. Raja, H. Khan, S. Sankarasubramanian, D. Sonawat, V. Ramani, K. Ramanujam, Catal. Today 2021, 370, 181–188.
- 73L. Wei, T. Zhao, G. Zhao, L. An, L. Zeng, Appl. Energy 2016, 176, 74–79.
- 74L. Wei, T. Zhao, L. Zeng, X. Zhou, Y. Zeng, Appl. Energy 2016, 180, 386–391.
- 75W. Lee, C. Jo, S. Youk, H. Y. Shin, J. Lee, Y. Chung, Y. Kwon, Appl. Surf. Sci. 2018, 429, 187–195.
- 76D. O. Opar, R. Nankya, C. J. Raj, H. Jung, Appl. Mater. Today 2021, 22, 100950.
- 77L. Wei, T. Zhao, L. Zeng, Y. Zeng, H. Jiang, J. Power Sources 2017, 341, 318–326.
- 78X. Zhou, T. Zhao, Y. Zeng, L. An, L. Wei, J. Power Sources 2016, 329, 247–254.
- 79D. M. Kabtamu, J.-Y. Chen, Y.-C. Chang, C.-H. Wang, J. Power Sources 2017, 341, 270–279.
- 80Y. Lv, J. Zhang, Z. Lv, C. Wu, Y. Liu, H. Wang, S. Lu, Y. Xiang, Electrochim. Acta 2017, 253, 78–84.
- 81M. Jing, X. Qi, X. An, X. Ma, D. Fang, X. Fan, J. Liu, C. Yan, Electrochim. Acta 2021, 390, 138879.
- 82A. Fetyan, G. A. El-Nagar, I. Derr, P. Kubella, H. Dau, C. Roth, Electrochim. Acta 2018, 268, 59–65.
- 83Z. He, L. Dai, S. Liu, L. Wang, C. Li, Electrochim. Acta 2015, 176, 1434–1440.
- 84J. Sun, M. Wu, X. Fan, Y. Wan, C. Chao, T. Zhao, Energy Storage Mater. 2021, 43, 30–41.
- 85M. Jing, X. Zhang, X. Fan, L. Zhao, J. Liu, C. Yan, Electrochim. Acta 2016, 215, 57–65.
- 86Z. He, M. Li, Y. Li, C. Li, Z. Yi, J. Zhu, L. Dai, W. Meng, H. Zhou, L. Wang, Electrochim. Acta 2019, 309, 166–176.
- 87Z. He, M. Li, Y. Li, J. Zhu, Y. Jiang, W. Meng, H. Zhou, L. Wang, L. Dai, Electrochim. Acta 2018, 281, 601–610.
- 88M.-A. Goulet, A. Habisch, E. Kjeang, Electrochim. Acta 2016, 206, 36–44.
- 89Y. Suharto, K. Lee, K. J. Kim, J. Ind. Eng. Chem. 2019, 70, 290–298.
- 90J. Li, X. Li, E. El Sawy, S. Maslovara, N. Yasri, V. Birss, E. P. Roberts, Available at SSRN 4369447.
- 91Y. Zhang, X. Zhang, Z. Xu, D. Zhang, W. Yu, Y. Zhang, L. Liu, J. Liu, C. Yan, J. Power Sources 2022, 552, 232241.
- 92Y. Liu, Y. Jiang, Y. Lv, Z. He, L. Dai, L. Wang, Molecules 2021, 26, 5085.
- 93Y.-T. Ou, D. M. Kabtamu, A. W. Bayeh, H.-H. Ku, Y.-L. Kuo, Y.-M. Wang, N.-Y. Hsu, T.-C. Chiang, H.-C. Huang, C.-H. Wang, Catalysts 2021, 11, 1188.
- 94R. Madhu, F. V. Kusmartsev, K.-h. Kim, H.-J. Ahn, Electrochim. Acta 2023, 439, 141619.
- 95V. Mahanta, M. Raja, R. Kothandaraman, Mater. Lett. 2019, 247, 63–66.
- 96C. Noh, B. W. Kwon, Y. Chung, Y. Kwon, J. Power Sources 2018, 406, 26–34.
- 97Q. Li, A. Bai, Z. Qu, T. Zhang, J. Li, X. Zhang, M. Yu, Z. Xue, H. Sun, J. Chem. 2019, 2019.
- 98S. Jeong, S. An, J. Jeong, J. Lee, Y. Kwon, J. Power Sources 2015, 278, 245–254.
- 99D.-S. Yang, J. Y. Lee, S.-W. Jo, S. J. Yoon, T.-H. Kim, Y. T. Hong, Int. J. Hydrogen Energy 2018, 43, 1516–1522.
- 100Q. Ma, Q. Deng, H. Sheng, W. Ling, H.-R. Wang, H.-W. Jiao, X.-W. Wu, W.-X. Zhou, X.-X. Zeng, Y.-X. Yin, Sci. China Chem. 2018, 61, 732–738.
- 101D. Cheng, G. Cheng, Z. He, L. Dai, L. Wang, Int. J. Energy Res. 2019, 43, 4473–4482.
- 102A. W. Bayeh, D. M. Kabtamu, Y. C. Chang, G. C. Chen, H. Y. Chen, G. Y. Lin, T. R. Liu, T. H. Wondimu, K. C. Wang, C. H. Wang, ACS Sustainable Chem. Eng. 2018, 6, 3019–3028.
- 103X. Wu, H. Xu, L. Lu, H. Zhao, J. Fu, Y. Shen, P. Xu, Y. Dong, J. Power Sources 2014, 250, 274–278.
- 104H. Zhou, J. Xi, Z. Li, Z. Zhang, L. Yu, L. Liu, X. Qiu, L. Chen, RSC Adv. 2014, 4, 61912–61918.
- 105B. Li, M. Gu, Z. Nie, X. Wei, C. Wang, V. Sprenkle, W. Wang, Nano Lett. 2014, 14, 158–165.
- 106Y. Shen, H. Xu, P. Xu, X. Wu, Y. Dong, L. Lu, Electrochim. Acta 2014, 132, 37–41.
- 107H. Zhou, Y. Shen, J. Xi, X. Qiu, L. Chen, ACS Appl. Mater. Interfaces 2016, 8, 15369–15378.
- 108D. M. Kabtamu, Y.-C. Chang, G.-Y. Lin, A. W. Bayeh, J.-Y. Chen, T. H. Wondimu, C.-H. Wang, Sustain. Energy Fuels 2017, 1, 2091–2100.
- 109A. W. Bayeh, D. M. Kabtamu, Y.-C. Chang, G.-C. Chen, H.-Y. Chen, G.-Y. Lin, T.-R. Liu, T. H. Wondimu, K.-C. Wang, C.-H. Wang, J. Mater. Chem. A 2018, 6, 13908–13917.
- 110Y. Ji, J. L. Li, S. F. Y. Li, J. Mater. Chem. A 2017, 5, 15154–15166.
- 111W.-F. Liu, K.-H. Kim, H.-J. Ahn, J. Alloys Compd. 2023, 170106.
10.1016/j.jallcom.2023.170106 Google Scholar
- 112S. Mohan, M. Revanasiddappa, M. Vellakkat, Synth. Met. 2023, 294, 117311.
- 113J.-Y. Uan, Y.-J. Chen, Y.-H. Hsu, A. Arpornwichanop, Y.-S. Chen, Mater. Today Commun. 2021, 27, 102280.
- 114Z. He, L. Shi, J. Shen, Z. He, S. Liu, Int. J. Energy Res. 2015, 39, 709–716.
- 115Y.-H. Wang, I.-M. Hung, C.-Y. Wu, Ceram. Int. 2018, 44, S30-S33.
- 116J. Ortiz-Medina, Z. Wang, R. Cruz-Silva, A. Morelos-Gomez, F. Wang, X. Yao, M. Terrones, M. Endo, Adv. Mater. 2019, 31.
- 117Z. He, Y. Jiang, H. Zhou, G. Cheng, W. Meng, L. Wang, L. Dai, Int. J. Energy Res. 2017, 41, 439–447.
- 118Y.-C. Chang, J.-Y. Chen, D. M. Kabtamu, G.-Y. Lin, N.-Y. Hsu, Y.-S. Chou, H.-J. Wei, C.-H. Wang, J. Power Sources 2017, 364, 1–8.
- 119R. K. Gautam, A. Verma, Mater. Chem. Phys. Rep. 2020, 251, 123178.
- 120A. Hassan, T. Tzedakis, J. Energy Storage 2019, 26, 100967.
- 121L. Dai, Y. Jiang, W. Meng, H. Zhou, L. Wang, Z. He, Appl. Surf. Sci. 2017, 401, 106–113.
- 122Z. González, C. Flox, C. Blanco, M. Granda, J. R. Morante, R. Menéndez, R. Santamaría, J. Power Sources 2017, 338, 155–162.
- 123S. Fu, C. Zhu, Y. Zhou, G. Yang, J.-W. Jeon, J. Lemmon, D. Du, S. K. Nune, Y. Lin, Electrochim. Acta 2015, 178, 287–293.
- 124J. Jin, X. Fu, Q. Liu, Y. Liu, Z. Wei, K. Niu, J. Zhang, ACS Nano 2013, 7, 4764–4773.
- 125L. Shi, S. Liu, Z. He, J. Shen, Electrochim. Acta 2014, 138, 93–100.
- 126V. Pasala, J. N. Ramavath, C. He, V. K. Ramani, K. Ramanujam, ChemistrySelect 2018, 3, 8678–8687.
- 127H. Gursu, M. Gencten, Y. Sahin, Int. J. Electrochem. Sci. 2018, 13, 875–885.
- 128D. M. Kabtamu, J.-Y. Chen, Y.-C. Chang, C.-H. Wang, J. Mater. Chem. A 2016, 4, 11472–11480.
- 129D. M. Kabtamu, A. W. Bayeh, T.-C. Chiang, Y.-C. Chang, G.-Y. Lin, T. H. Wondimu, S.-K. Su, C.-H. Wang, Appl. Surf. Sci. 2018, 462, 73–80.
- 130Z. González, A. Sánchez, C. Blanco, M. Granda, R. Menéndez, R. Santamaría, Electrochem. Commun. 2011, 13, 1379–1382.
- 131H. Jiang, W. Shyy, M. Wu, L. Wei, T. Zhao, J. Power Sources 2017, 365, 34–42.
- 132W. Wang, X. Wang, Electrochim. Acta 2007, 52, 6755–6762.
- 133
- 133aJ. Xu, Y. Zhang, Z. Huang, C. Jia, S. Wang, Energy Fuels 2021, 35, 8617–8633;
- 133bL. Zeng, T. S. Zhao, L. Wei, Y. K. Zeng, X. L. Zhou, Energy Technol. 2018, 6, 1228–1236.
- 134J. Jiang, Y. Zhang, P. Nie, G. Xu, M. Shi, J. Wang, Y. Wu, R. Fu, H. Dou, X. Zhang, Adv. Sustainable Syst. 2018, 2.
- 135R. K. Sankaralingam, S. Seshadri, J. Sunarso, A. I. Bhatt, A. Kapoor, J. Energy Storage 2021, 41, 102857.
- 136M. Park, J. Ryu, Y. Kim, J. Cho, Energy Environ. Sci. 2014, 7, 3727–3735.
- 137W. Li, J. Liu, C. Yan, Carbon 2011, 49, 3463–3470.
- 138W. Li, J. Liu, C. Yan, Carbon 2013, 55, 313–320.
- 139M. Park, I.-Y. Jeon, J. Ryu, H. Jang, J.-B. Back, J. Cho, Nano Energy 2016, 26, 233–240.
- 140M. Park, Y. J. Jung, J. Kim, H. I. Lee, J. Cho, Nano Lett. 2013, 13, 4833–4839.
- 141K. J. Kim, M.-S. Park, J.-H. Kim, U. Hwang, N. J. Lee, G. Jeong, Y.-J. Kim, Chem. Commun. 2012, 48, 5455–5457.
- 142S. Jeong, S. Kim, Y. Kwon, Electrochim. Acta 2013, 114, 439–447.
- 143T.-M. Tseng, R.-H. Huang, C.-Y. Huang, C.-C. Liu, K.-L. Hsueh, F.-S. Shieu, J. Electrochem. Soc. 2014, 161, A1132–A1138.
- 144G. Wei, X. Fan, J. Liu, C. Yan, J. Power Sources 2015, 281, 1–6.
- 145S. E. Park, S. Y. Yang, K. J. Kim, Appl. Surf. Sci. 2021, 546, 148941.
- 146Z. Hu, Z. Miao, Z. Xu, X. Zhu, F. Zhong, M. Ding, J. Wang, X. Xie, C. Jia, J. Liu, Chem. Eng. J. 2022, 450, 138377.
- 147Y. Lv, Y. Yang, J. Gao, J. Li, W. Zhu, L. Dai, Y. Liu, L. Wang, Z. He, Electrochim. Acta 2022, 431, 141135.
- 148Y. Shao, X. Wang, M. Engelhard, C. Wang, S. Dai, J. Liu, Z. Yang, Y. Lin, J. Power Sources 2010, 195, 4375–4379.
- 149H. Lee, H. Kim, J. Appl. Electrochem. 2013, 43, 553–557.
- 150M. E. Lee, H.-J. Jin, Y. S. Yun, RSC Adv. 2017, 7, 43227–43232.
- 151M. Han, H. Kim, J. Korean Electrochem. Soc. 2018, 21, 1–5.
- 152Z. González, C. Botas, C. Blanco, R. Santamaría, M. Granda, P. Álvarez, R. Menéndez, Nano Energy 2013, 2, 1322–1328.
- 153M. Park, I. Y. Jeon, J. Ryu, J. B. Baek, J. Cho, Adv. Energy Mater. 2015, 5.
- 154B. Sun, M. Skyllas-Kazakos, Electrochim. Acta 1991, 36, 513–517.
- 155M. G. Hosseini, S. Mousavihashemi, S. Murcia-López, C. Flox, T. Andreu, J. R. Morante, Carbon 2018, 136, 444–453.
- 156H.-M. Tsai, S.-J. Yang, C.-C. M. Ma, X. Xie, Electrochim. Acta 2012, 77, 232–236.
- 157C. Chang, T. Yuen, Y. Nagao, H. Yugami, J. Power Sources 2010, 195, 5938–5941.
- 158C. P. De Leon, A. Frías-Ferrer, J. González-García, D. Szánto, F. C. Walsh, J. Power Sources 2006, 160, 716–732.
- 159S. Moon, B. W. Kwon, Y. Chung, Y. Kwon, J. Electrochem. Soc. 2019, 166, A2602-A2609.
- 160A. D. Blasi, C. Busacca, O. D. Blasi, N. Briguglio, V. Antonucci, J. Electrochem. Soc. 2018, 165, A1478-A1485.
- 161D. Cheng, Y. Li, J. Zhang, M. Tian, B. Wang, Z. He, L. Dai, L. Wang, Carbon 2020, 170, 527–542.
- 162M. Ulaganathan, A. Jain, V. Aravindan, S. Jayaraman, W. C. Ling, T. M. Lim, M. P. Srinivasan, Q. Yan, S. Madhavi, J. Power Sources 2015, 274, 846–850.
- 163R. Kumar, T. Bhuvana, A. Sharma, ACS Sustainable Chem. Eng. 2018, 6, 8238–8246.
- 164A. Sodiq, L. Mohapatra, F. Fasmin, S. Mariyam, M. Arunachalam, A. Kheireddine, R. Zaffou, B. Merzougui, Chem. Commun. 2019, 55, 10249–10252.
- 165L. Wei, T. Zhao, L. Zeng, X. Zhou, Y. Zeng, Energy Technol. 2016, 4, 990–996.
- 166C. Yang, H. Wang, S. Lu, C. Wu, Y. Liu, Q. Tan, D. Liang, Y. Xiang, Electrochim. Acta 2015, 182, 834–840.
- 167Y. Jiang, X. Feng, G. Cheng, Y. Li, C. Li, Z. He, J. Zhu, W. Meng, H. Zhou, L. Dai, Electrochim. Acta 2019, 322, 134754.
- 168S. Abbas, S. Mehboob, H.-J. Shin, O. H. Han, H. Y. Ha, Chem. Eng. J. 2019, 378, 122190.
- 169A. Sodiq, F. Fasmin, L. Mohapatra, S. Mariyam, M. Arunachalam, H. Hamoudi, R. Zaffou, B. Merzougui, Mater Adv 2020, 1, 2033–2042.
- 170M. Pahlevaninezhad, D. Momodu, M. Pahlevani, E. P. Roberts, in Electrochem. Soc. Meeting Abstracts 241, The Electrochemical Society, Inc., 2022, pp. 493–493.
- 171S. Fiorini Granieri, G. M. Pagano, M. Messaggi, M. Zago, A. Casalegno, F. Di Fonzo, in Electrochem. Soc. Meeting Abstracts 241, The Electrochemical Society, Inc., 2022, pp. 2036–2036.
- 172S. Bellani, L. Najafi, M. Prato, R. Oropesa-Nuñez, B. Martín-Garciá, L. Gagliani, E. Mantero, L. Marasco, G. Bianca, M. I. Zappia, C. Demirci, S. Olivotto, G. Mariucci, V. Pellegrini, M. Schiavetti, F. Bonaccorso, Chem. Mater. 2021, 33, 4106–4121.
- 173P. Han, H. Wang, Z. Liu, X. Chen, W. Ma, J. Yao, Y. Zhu, G. Cui, Carbon 2011, 49, 693–700.
- 174
- 174aB. Anasori, M. R. Lukatskaya, Y. Gogotsi, Nat. Rev. Mater. 2017, 2, 16098;
- 174bM. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum, Adv. Mater. 2011, 23, 4248–4253.
- 175K. Hantanasirisakul, Y. Gogotsi, Adv. Mater. 2018, 30, 1804779.
- 176C. E. Shuck, M. Han, K. Maleski, K. Hantanasirisakul, S. J. Kim, J. Choi, W. E. Reil, Y. Gogotsi, ACS Appl. Nano Mater. 2019, 2, 3368–3376.
- 177A. VahidMohammadi, J. Rosen, Y. Gogotsi, Science 2021, 372, eabf1581.
- 178C. E. Shuck, A. Sarycheva, M. Anayee, A. Levitt, Y. Zhu, S. Uzun, V. Balitskiy, V. Zahorodna, O. Gogotsi, Y. Gogotsi, Adv. Eng. Mater. 2020, 22, 1901241.
- 179T. S. Mathis, K. Maleski, A. Goad, A. Sarycheva, M. Anayee, A. C. Foucher, K. Hantanasirisakul, C. E. Shuck, E. A. Stach, Y. Gogotsi, ACS Nano 2021, 15, 6420–6429.
- 180J. L. Hart, K. Hantanasirisakul, A. C. Lang, B. Anasori, D. Pinto, Y. Pivak, J. T. van Omme, S. J. May, Y. Gogotsi, M. L. Taheri, Nat. Commun. 2019, 10, 522.
- 181A. V. Mizrak, S. Uzun, B. Akuzum, L. Agartan, Y. Gogotsi, E. C. Kumbur, J. Electrochem. Soc. 2021, 168, 090518.
- 182A. Bhat, S. Anwer, K. S. Bhat, M. I. H. Mohideen, K. Liao, A. Qurashi, NPJ 2D Mater. Appl. 2021, 5, 61.
- 183M. Ghidiu, M. R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M. W. Barsoum, Nature 2014, 516, 78–81.
- 184P. Simon, ACS Nano 2017, 11, 2393–2396.
- 185H. Riazi, S. K. Nemani, M. C. Grady, B. Anasori, M. Soroush, J. Mater. Chem. A 2021, 9, 8051–8098.
- 186K. Maleski, V. N. Mochalin, Y. Gogotsi, Chem. Mater. 2017, 29, 1632–1640.
- 187Z. Lin, H. Shao, K. Xu, P.-L. Taberna, P. Simon, Trends Chem. 2020, 2, 654–664.
- 188F. Cao, Y. Zhang, H. Wang, K. Khan, A. K. Tareen, W. Qian, H. Zhang, H. Ågren, Adv. Mater. 2022, 34, 2107554.
- 189
- 189aM. Gyu Jung, G. Sambhaji Gund, Y. Gogotsi, H. Seok Park, Batteries & Supercaps 2020, 3, 354–360;
- 189bJ. Orangi, M. Beidaghi, Adv. Funct. Mater. 2020, 30, 2005305.
- 190L. Wei, C. Xiong, H. Jiang, X. Fan, T. Zhao, Energy Storage Mater. 2020, 25, 885–892.
- 191E. Kohn, in Comprehensive Microsystems (Eds.: Y. B. Gianchandani, O. Tabata, H. Zappe), Elsevier, Oxford, 2008, pp. 131–181.
10.1016/B978-044452190-3.00005-7 Google Scholar
- 192C. M. Van Genuchten, S. R. Bandaru, E. Surorova, S. E. Amrose, A. J. Gadgil, J. Pena, Chemosphere 2016, 153, 270–279.
- 193C.-H. Huang, L. Chen, C.-L. Yang, Sep. Purif. Technol. 2009, 65, 137–146.