Gelatinization and rheological properties of starch
Corresponding Author
Yongfeng Ai
Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
Correspondence: Dr. Yongfeng Ai, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
E-mail: [email protected]
Search for more papers by this authorJay-lin Jane
Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
Search for more papers by this authorCorresponding Author
Yongfeng Ai
Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
Correspondence: Dr. Yongfeng Ai, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
E-mail: [email protected]
Search for more papers by this authorJay-lin Jane
Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
Search for more papers by this authorAbstract
Native and modified starches are important raw materials used in the industry. Gelatinization and rheological properties of starch are primary physicochemical properties to determine its applications. Starch gelatinization refers to a process that starch loses the native order and crystalline structure of the granules and becomes amorphous. Key rheological properties of starch include pasting property, viscosity of starch paste, and rheological features of starch gel. In this review, gelatinization and rheological properties of native starches from different botanical sources are compared and impacts of other ingredients, including sugars, salts, and lipids, on the properties are summarized. The review also covers current understandings of the gelatinization and rheological properties of modified starches with different structures. The information provided will be useful for the applications of starch in the industry as well as fundamental research in this field.
References
- 1 Jane, J. L., Kasemsuwan, T., Leas, S., Zobel, H., Robyt, J. F., Anthology of starch granule morphology by scanning electron-microscopy. Starch/Stärke 1994, 46, 121–129.
- 2 Takeda, Y., Shirasaka, K., Hizukuri, S., Examination of the purity and structure of amylose by gel-permeation chromatography. Carbohydr. Res. 1984, 132, 83–92.
- 3 Hizukuri, S., Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydr. Res. 1986, 147, 342–347.
- 4 Jane, J., in: J. N. BeMiller, R. L Whistler (Eds.), Starch Chemistry and Technology, Academic Press, New York 2009, pp. 193–236.
- 5 Li, L., Jiang, H. X., Campbell, M., Blanco, M., Jane, J. L., Characterization of maize amylose-extender (ae) mutant starches. Part I: Relationship between resistant starch contents and molecular structures. Carbohydr. Polym. 2008, 74, 396–404.
- 6 Jane, J., Xu, A., Radosavljevic, M., Seib, P. A., Location of amyloseinnormal starch granules .1. Susceptibility of amylose and amylopectin to cross-linking reagents. Cereal Chem. 1992, 69, 405–409.
- 7 Jane, J., Chen, Y. Y., Lee, L. F., McPherson, A., Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem. 1999, 76, 629–637.
- 8 Sarko, A., Wu, H.-C. H., The Crystal Structures of A-, B- and C-Polymorphs of Amylose and Starch. Starch/Stärke 1978, 30, 73–78.
- 9 Bogracheva, T. Y., Morris, V. J., Ring, S. G., Hedley, C. L., The granular structure of C-type pea starch and its role in gelatinization. BioPolymers 1998, 45, 323–332.
- 10 Debet, M. R., Gidley, M. J., Three classes of starch granule swelling: Influence of surface proteins and lipids. Carbohydr. Polym. 2006, 64, 452–465.
- 11 Morrison, W. R., Milligan, T. P., Azudin, M. N., A Relationship between the Amylose and Lipid Contents of Starches from Diploid Cereals. J. Cereal Sci. 1984, 2, 257–271.
- 12
Kraak, A.,
Industrial applications of potato starch products.
Ind. Crop. Prod.
1993,
1, 107–112.
10.1016/0926-6690(92)90007-I Google Scholar
- 13 Maurer, H. W., Kearney, R. L., Opportunities and challenges for starch in the paper industry. Starch/Stärke 1998, 50, 396–402.
- 14Dobson, J. W., Mondshine, K. B., US Patent Office, Pat. No. 5,641,728 1997.
- 15 Tabilo-Munizaga, G., Barbosa-Canovas, G. V., Rheology for the food industry. J. Food Eng. 2005, 67, 147–156.
- 16 Nashed, G., Rutgers, P. P. G., Sopade, P. A., The plasticisation effect of glycerol and water on the gelatinisation of wheat starch. Starch/Stärke 2003, 55, 131–137.
- 17 Perry, P. A., Donald, A. M., The role of plasticization in starch granule assembly. Biomacromolecules 2000, 1, 424–432.
- 18 vanSoest, J. J. G., Bezemer, R. C., deWit, D., Vliegenthart, J. F. G., Influence of glycerol on the melting of potato starch, Ind. Crop. Prod. 1996, 5, 1–9.
- 19 Ragheb, A. A., Elthalouth, I. A., Tawfik, S., Gelatinization of starch in aqueous alkaline-solutions. Starch/Stärke 1995, 47, 338–345.
- 20 Jane, J. L., Mechanism of starch gelatinization in neutral salt-solutions. Starch/Stärke 1993, 45, 161–166.
- 21 Leach, H. W., Schoch, T. J., Structure of the starch granule. III. Solubilities of granular starches in dimethyl sulfoxide. Cereal Chem. 1962, 39, 318–326.
- 22 Biliaderis, C. G., Maurice, T. J., Vose, J. R., Starch gelatinization phenomena studied by differential scanning calorimetry. J. Food Sci. 1980, 45, 1669.
- 23 Li, Q., Xie, Q., Yu, S. J., Gao, Q. Y., New approach to study starch gelatinization applying a combination of hot-stage light microscopy and differential scanning calorimetry. J. Agr. Food Chem. 2013, 61, 1212–1218.
- 24 Biliaderis, C. G., Page, C. M., Maurice, T. J., Juliano, B. O., Thermal characterization of rice starches—a polymeric approach to phase transitions of granular starch. J. Agri. Food Chem. 1986, 34, 6–14.
- 25 Gonera, A., Cornillon, P., Gelatinization of starch/gum/sugar systems studied by using DSC, NMR, and CSLM. Starch/Stärke 2002, 54, 508–516.
- 26 Jenkins, P. J., Cameron, R. E., Donald, A. M., Bras, W., et al. In-situ simultaneous small and wide-angle x-ray-scattering—a new technique to study starch gelatinization. J. Polym. Sci. B-Polym. Phys. 1994, 32, 1579–1583.
- 27 Rubens, P., Heremans, K., Pressure-temperature gelatinization phase diagram of starch: An in situ fourier transform infrared study. BioPolymers 2000, 54, 524–530.
- 28 Donovan, J. W., Phase-Transitions of the Starch-Water System. BioPolymers 1979, 18, 263–275.
- 29 Jang, J. K., Pyun, Y. R., Effect of moisture content on the melting of wheat starch. Starch/Stärke 1996, 48, 48–51.
- 30 Jiang, H. X., Campbell, M., Blanco, M., Jane, J. L., Characterization of maize amylose-extender (ae) mutant starches: Part II. Structures and properties of starch residues remaining after enzymatic hydrolysis at boiling-water temperature. Carbohydr. Polym. 2010, 80, 1–12.
- 31 Beleia, A., Miller, R. A., Hoseney, R. C., Starch gelatinization in sugar solutions. Starch/Stärke 1996, 48, 259–262.
- 32 Kohyama, K., Nishinari, K., Effect of soluble sugars on gelatinization and retrogradation of sweet-potato starch. J. Agri. Food Chem. 1991, 39, 1406–1410.
- 33 Tomasik, P., Wang, Y. J., Jane, J. L., Complexes of starch with low-molecular saccharides. Starch/Stärke 1995, 47, 185–191.
- 34 Woo, K. S., Seib, P. A., Cross-linked resistant starch: Preparation and properties. Cereal Chem. 2002, 79, 819–825.
- 35 Ahmad, F. B., Williams, P. A., Effect of salts on the gelatinization and rheological properties of sago starch. J. Agri. Food Chem. 1999, 47, 3359–3366.
- 36 Beck, M., Jekle, M., Becker, T., Starch re-crystallization kinetics as a function of various cations. Starch/Stärke 2011, 63, 792–800.
- 37 Pan, D. D., Jane, J. L., Internal structure of normal maize starch granules revealed by chemical surface gelatinization. Biomacromolecules 2000, 1, 126–132.
- 38 Ai, Y. F., Hasjim, J., Jane, J. L., Effects of lipids on enzymatic hydrolysis and physical properties of starch. Carbohydr. Polym. 2013, 92, 120–127.
- 39 Eliasson, A. C., Finstad, H., Ljunger, G., A study of starch-lipid interactions for some native and modified maize starches. Starch/Stärke 1988, 40, 95–100.
- 40 Hoover, R., Acid-treated starches. Food Rev. Int. 2000, 16, 369–392.
- 41 Amaya-Llano, S. L., Martinez-Bustos, F., Alegria, A. L. M., Zazueta-Morales, J. D., Comparative studies on some physico-chemical, thermal, morphological, and pasting properties of acid-thinned jicama and maize starches. Food and Bioprocess Technology 2011, 4, 48–60.
- 42 Beninca, C., Colman, T. A. D., Lacerda, L. G., Carvalho, M. A., The thermal, rheological and structural properties of cassava starch granules modified with hydrochloric acid at different temperatures. Thermochimica Acta 2013, 552, 65–69.
- 43 Wang, Y. J., Wang, L. F., Physicochemical properties of common and waxy corn starches oxidized by different levels of sodium hypochlorite. Carbohydr. Polym. 2003, 52, 207–217.
- 44 Kuakpetoon, D., Wang, Y. J., Structural characteristics and physicochemical properties of oxidized corn starches varying in amylose content. Carbohydr. Res. 2006, 341, 1896.
- 45 Sangseethong, K., Termvejsayanon, N., Sriroth, K., Characterization of physicochemical properties of hypochlorite- and peroxide-oxidized cassava starches. Carbohydr. Polym. 2010, 82, 446–453.
- 46 Chavez-Murillo, C. E., Wang, Y. J., Bello-Perez, L. A., Morphological, physicochemical and structural characteristics of oxidized barley and corn starches. Starch/Stärke 2008, 60, 634–645.
- 47 Yoneya, T., Ishibashi, K., Hironaka, K., Yamamoto, K., Influence of cross-linked potato starch treated with POCl3 on DSC, rheological properties and granule size. Carbohydr. Polym. 2003, 53, 447–457.
- 48 Kaur, L., Singh, J., Singh, N., Effect of cross-linking on some properties of potato (Solanum tuberosum L.) starches. J. Sci. Food Agri. 2006, 86, 1945.
- 49 Sodhi, N. S., Singh, N., Characteristics of acetylated starches prepared using starches separated from different rice cultivars. J. Food Eng. 2005, 70, 117–127.
- 50 Liu, H. J., Corke, H., Ramsden, L., Functional properties and enzymatic digestibility of cationic and cross-linked cationic ae, wx, and normal maize starch. J. Agri. Food Chem. 1999, 47, 2523–2528.
- 51 Liu, H., Ramsden, L., Corke, H., Physical properties and enzymatic digestibility of hydroxypropylated ae, wx, and normal maize starch. Carbohydr. Polym. 1999, 40, 175–182.
- 52 Liu, H. J., Ramsden, L., Corke, H., Physical properties and enzymatic digestibility of phosphorylated ae, wx, and normal maize starch prepared at different pH levels. Cereal Chem. 1999, 76, 938–943.
- 53 Fadzlina, Z. A. N., Karim, A. A., Teng, T. T., Physicochemical properties of carboxymethylated sago (Metroxylon sagu) starch. J. Food Sci. 2005, 70, C560–C567.
- 54 Ai, Y. F., Nelson, B., Birt, D. F., Jane, J. L., In vitro and in vivo digestion of octenyl succinic starch. Carbohydr. Polym. 2013, 98, 1266–1271.
- 55 Tester, R. F., Debon, S. J. J., Annealing of starch—a review. Int. J. Biol. Macromol. 2000, 27, 1–12.
- 56 Hoover, R., The impact of heat-moisture treatment on molecular structures and properties of starches isolated from different botanical sources. Crit. Rev. Food Sci. Nutr. 2010, 50, 835–847.
- 57 Katopo, H., Song, Y., Jane, J. L., Effect and mechanism of ultrahigh hydrostatic pressure on the structure and properties of starches. Carbohydr. Polym. 2002, 47, 233–244.
- 58 Stute, R., Klingler, R. W., Boguslawski, S., Eshtiaghi, M. N., Knorr, D., Effects of high pressures treatment on starches. Starch/Stärke 1996, 48, 399–408.
- 59 Tan, F. J., Dai, W. T., Hsu, K. C., Changes in gelatinization and rheological characteristics of japonica rice starch induced by pressure/heat combinations. J. Cereal Sci. 2009, 49, 285–289.
- 60 Bao, J. S., Ao, Z. H., Jane, J. I., Characterization of physical properties of flour and starch obtained from gamma-irradiated white rice. Starch/Stärke 2005, 57, 480–487.
- 61 Nemtanu, M. R., Minea, R., Kahraman, K., Koksel, H., et al. Electron beam technology for modifying the functional properties of maize starch. Nucl. Instrum. Meth. A 2007, 580, 795–798.
- 62 Fiedorowicz, M., Tomasik, P., You, S. G., Lim, S. T., Molecular distribution and pasting properties of UV-irradiated corn starches. Starch/Stärke 1999, 51, 126–131.
- 63 Luo, Z. G., He, X. W., Fu, X., Luo, F. X., Gao, Q. Y., Effect of microwave radiation on the physicochemical properties of normal maize waxy, maize and amylomaize V starches. Starch/Stärke 2006, 58, 468–474.
- 64 Tawil, G., Vikso-Nielsen, A., Rolland-Sabate, A., Colonna, P., Buleon, A., In depth study of a new highly efficient raw starch hydrolyzing alpha-amylase from Rhizomucor sp. Biomacromolecules 2011, 12, 34–42.
- 65 Zhang, G. Y., Ao, Z. H., Hamaker, B. R., Slow digestion property of native cereal starches. Biomacromolecules 2006, 7, 3252–3258.
- 66 Zhou, Y., Hoover, R., Liu, Q., Relationship between alpha-amylase degradation and the structure and physicochemical properties of legume starches. Carbohydr. Polym. 2004, 57, 299–317.
- 67 Qin, F. L., Man, J. M., Xu, B., Hu, M., Structural properties of hydrolyzed high-amylose rice starch by alpha-amylase from Bacillus licheniformis. J. Agri. Food Chem. 2011, 59, 12667–12673.
- 68 Oh, E. J., Choi, S. J., Lee, S. J., Kim, C. H., Moon, T. W., Modification of granular corn starch with 4-alpha-glucanotransferase from Thermotoga maritima: Effects on structural and physical properties. J. Food Sci. 2008, 73, C158–C166.
- 69 Jiang, Q. Q., Gao, W. Y., Li, X., Zhang, J. Z., Characteristics of native and enzymatically hydrolyzed Zea mays L., Fritillaria ussuriensis Maxim. and Dioscorea opposita Thunb. starches. Food Hydrocolloid. 2011, 25, 521–528.
- 70 Planchot, V., Colonna, P., Buleon, A., Enzymatic hydrolysis of alpha-glucan crystallites. Carbohydr. Res. 1997, 298, 319–326.
- 71 Suh, D. S., Jane, J. L., Comparison of starch pasting properties at various cooking conditions using the Micro Visco-Amylo-Graph and the Rapid Visco Analyser. Cereal Chem. 2003, 80, 745–749.
- 72 Mendez-Montealvo, G., Wang, Y. J., Campbell, M., Thermal and rheological properties of granular waxy maize mutant starches after isoamylase modification. Carbohydr. Polym. 2011, 83, 2011–2015.
- 73 Mendez-Montealvo, G., Wang, Y. J., Campbell, M., Thermal and rheological properties of granular waxy maize mutant starches after beta-amylase modification. Carbohydr. Polym. 2011, 83, 1106–1111.
- 74 Collado, L. S., Mabesa, R. C., Corke, H., Genetic variation in the physical properties of sweet potato starch. J. Agri. Food Chem. 1999, 47, 4195–4201.
- 75 Zeng, M., Morris, C. F., Batey, I. L., Wrigley, C. W., Sources of variation for starch gelatinization, pasting, and gelation properties in wheat. Cereal Chem. 1997, 74, 63–71.
- 76 Gunaratne, A., Ranaweera, S., Corke, H., Thermal, pasting, and gelling properties of wheat and potato starches in the presence of sucrose, glucose, glycerol, and hydroxypropyl beta-cyclodextrin. Carbohydr. Polym. 2007, 70, 112–122.
- 77 Chantaro, P., Pongsawatmanit, R., Influence of sucrose on thermal and pasting properties of tapioca starch and xanthan gum mixtures. J. Food Eng. 2010, 98, 44–50.
- 78 Savage, H. L., Osman, E. M., Effects of certain sugars and sugar alcohols on the swelling of cornstarch granules. Cereal Chem. 1978, 55, 447–454.
- 79 Jyothi, A. N., Sasikiran, K., Sajeev, M. S., Revamma, R., Moorthy, S. N., Gelatinisation properties of cassava starch in the pesence of salts, acids and oxidising agents. Starch/Stärke 2005, 57, 547–555.
- 80 Shi, X. H., BeMiller, J. N., Effects of food gums on viscosities of starch suspensions during pasting. Carbohydr. Polym. 2002, 50, 7–18.
- 81 Sahin, S., Sumnu, S. G., in: S. Sahin, S. G. Sumnu (Eds), Physical Properties of Foods, Springer, New York 2006, pp. 39–105.
- 82 Che, L. M., Li, D., Wang, L. J., Ozkan, N., et al. Rheological properties of dilute aqueous solutions of cassava starch. Carbohydr. Polym. 2008, 74, 385–389.
- 83 Nguyen, Q. D., Jensen, C. T. B., Kristensen, P. G., Experimental and modelling studies of the flow properties of maize and waxy maize starch pastes. Chem. Eng. J. 1998, 70, 165–171.
- 84 Dintzis, F. R., Bagley, E. B., Effects of thermomechanical processing on viscosity behavior of corn starches. J. Rheol. 1995, 39, 1483–1495.
- 85 Wang, Y. J., White, P., Pollak, L., Physicochemical Properties of Starches from Mutant Genotypes of the Oh43 Inbred Line. Cereal Chem. 1993, 70, 199–203.
- 86 Biliaderis, C. G., in: J. N. BeMiller, R. L. Whistler (Eds.) Starch Chemistry and Technology, Academic Press, New York 2009, pp. 293–372.
- 87 Ott, M., Hester, E. E., Gel formation as related to concentration of amylose and degree of starch swelling. Cereal Chem. 1965, 42.
- 88 Ring, S. G., Some studies on starch gelation. Starch/Stärke 1985, 37, 80–83.
- 89 Orford, P. D., Ring, S. G., Carroll, V., Miles, M. J., Morris, V. J., The effect of concentration and botanical source on the gelation and retrogradation of starch. J. Sci. Food Agri. 1987, 39, 169–177.
- 90 Hansen, L. M., Hoseney, R. C., Faubion, J. M., Oscillatory rheometry of starch-water systems—effect of starch concentration and temperature. Cereal Chem. 1991, 68, 347–351.
- 91 Case, S. E., Capitani, T., Whaley, J. K., Shi, Y., Physical properties and gelation behavior of a low-amylopectin maize starch and other high-amylose maize starches. J. Cereal Sci. 1998, 27, 301–314.
- 92 Leloup, V. M., Colonna, P., Buleon, A., Influence of amylose amylopectin ratio on gel properties. J. Cereal Sci. 1991, 13, 1–13.
- 93 Lu, Z. H., Sasaki, T., Li, Y. Y., Yoshihashi, T., et al. Effect of amylose content and rice type on dynamic viscoelasticity of a composite rice starch gel. Food Hydrocolloid. 2009, 23, 1712–1719.
- 94 Miles, M. J., Morris, V. J., Orford, P. D., Ring, S. G., The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydr. Res. 1985, 135, 271–281.
- 95 Ring, S. G., Colonna, P., Ianson, K. J., Kalichevsky, M., The gelation and crystallization of amylopectin. Carbohydr. Res. 1987, 162, 277–293.
- 96 Lii, C. Y., Tsai, M. L., Tseng, K. H., Effect of amylose content on the rheological property of rice starch. Cereal Chem. 1996, 73, 415–420.
- 97
Ahmad, F. B.,
Williams, P. A.,
Effect of sugars on the thermal and rheological properties of sago starch.
BioPolymers
1999,
50, 401–412.
10.1002/(SICI)1097-0282(19991005)50:4<401::AID-BIP6>3.0.CO;2-V CAS PubMed Web of Science® Google Scholar
- 98 Wang, Y. J., Truong, V. D., Wang, L. F., Structures and rheological properties of corn starch as affected by acid hydrolysis. Carbohydr. Polym. 2003, 52, 327–333.
- 99 Singh, H., Sodhi, N. S., Singh, N., Structure and functional properties of acid thinned sorghum starch. Int. J. Food Properties 2009, 12, 713–725.
- 100 Abdorreza, M. N., Robal, M., Cheng, L. H., Tajul, A. Y., Karim, A. A., Physicochemical, thermal, and rheological properties of acid-hydrolyzed sago (Metroxylon sagu) starch. Lwt-Food Sci. Technol. 2012, 46, 135–141.
- 101 Kuakpetoon, D., Wang, Y. J., Characterization of different starches oxidized by hypochlorite. Starch/Stärke 2001, 53, 211–218.
- 102 Boruch, M., Transformations of potato starch during oxidation with hypochlorite. Starch/Stärke 1985, 37, 91–98.
- 103 Forssell, P., Hamunen, A., Autio, K., Suortti, T., Poutanen, K., Hypochlorite oxidation of barley and potato starch. Starch/Stärke 1995, 47, 371–377.
- 104 Jyothi, A. N., Moorthy, S. N., Rajasekharan, K. N., Effect of cross-linking with epichlorohydrin on the properties of cassava (Manihot esculenta Crantz) starch. Starch/Stärke 2006, 58, 292–299.
- 105 Lim, S., Seib, P. A., Preparation and pasting properties of wheat and corn starch phosphates. Cereal Chem. 1993, 70, 137–144.
- 106 Nayouf, M., Loisel, C., Doublier, J. L., Effect of thermomechanical treatment on the rheological properties of crosslinked waxy corn starch. J. Food Eng. 2003, 59, 209–219.
- 107 Gunaratne, A., Corke, H., Functional properties of hydroxypropylated, cross-linked, and hydroxypropylated cross-linked tuber and root starches. Cereal Chem. 2007, 84, 30–37.
- 108 Kwon, K. S., Auh, J. H., Kim, J. W., Park, K., Physicochemical properties and functionality of highly carboxymethylated starch. Starch/Stärke 1997, 49, 499–505.
- 109 Luo, Z. G., Shi, Y. C., Preparation of acetylated waxy, normal, and high-amylose maize starches with intermediate degrees of substitution in aqueous solution and their properties. J. Agri. Food Chem. 2012, 60, 9468–9475.
- 110 Betancur, A. D., Chel, G. L., Canizares, H. E., Acetylation and characterization of Canavalia ensiformis starch. J. Agri. Food Chem. 1997, 45, 378–382.
- 111 Agboola, S. O., Akingbala, J. O., Oguntimein, G. B., Physicochemical and functional-properties of low ds cassava starch acetates and citrates. Starch/Stärke 1991, 43, 62–66.
- 112 Islam, M. N., Mohd, B. M. N., Rheological properties of calcium treated hydroxypropyl rice starches. Starch/Stärke 1997, 49, 136–141.
- 113 Bao, J. S., Xing, J., Phillips, D. L., Corke, H., Physical properties of octenyl succinic anhydride modified rice, wheat, and potato starches. J. Agri. Food Chem. 2003, 51, 2283–2287.
- 114 Chung, K. M., Moon, T. W., Chun, J. K., Influence of annealing on gel properties of mung bean starch. Cereal Chem. 2000, 77, 567–571.
- 115 Hormdok, R., Noomborm, A., Hydrothermal treatments of rice starch for improvement of rice noodle quality. Lwt-Food Sci. Technol. 2007, 40, 1723–1731.
- 116 Puncha-arnon, S., Uttapap, D., Rice starch vs. rice flour: Differences in their properties when modified by heat-moisture treatment. Carbohydr. Polym. 2013, 91, 85–91.
- 117 Hoover, R., Vasanthan, T., The flow properties of native, heat-moisture treated, and annealed starches from wheat, oat, potato and lentil. J. Food Biochem. 1994, 18, 67–82.
- 118 Eerlingen, R. C., Jacobs, H., Block, K., Delcour, J. A., Effects of hydrothermal treatments on the rheological properties of potato starch. Carbohydr. Res. 1997, 297, 347–356.
- 119 Hoover, R., Vasanthan, T., Senanayake, N. J., Martin, A. M., The effects of defatting and heat-moisture treatment on the retrogradation of starch gels from wheat, oat, potato, and lentil. Carbohydr. Res. 1994, 261, 13–24.
- 120 Singh, S., Raina, C. S., Bawa, A. S., Saxena, D. C., Effect of heat-moisture treatment and acid modification on rheological, textural, and differential scanning calorimetry characteristics of sweetpotato starch. J. Food Sci. 2005, 70, E373–E378.
- 121 Li, W. H., Zhang, F. S., Liu, P. L., Bai, Y., Effect of high hydrostatic pressure on physicochemical, thermal and morphological properties of mung bean (Vigna radiata L.) starch. J. Food Eng. 2011, 103, 388–393.
- 122 Pimpa, B., Muhammad, S. K. S., Hassan, M. A., Ghazali, Z., et al. Effect of electron beam irradiation on physicochemical properties of sago starch. Songklanakarin J. Sci. Technol. 2007, 29, 759–768.
- 123 Rocha, T. D., Carneiro, A. P. D., Franco, C. M. L., Effect of enzymatic hydrolysis on some physicochemical properties of root and tuber granular starches. Ciencia E Tecnologia De Alimentos 2010, 30, 544–551.
- 124 Lee, K. Y., Kim, Y. R., Park, K. H., Lee, H. G., Effects of alpha-glucanotransferase treatment on the thermo-reversibility and freeze-thaw stability of a rice starch gel. Carbohydr. Polym. 2006, 63, 347–354.