Undiagnosed cardiomyopathy: An incidental finding in a recreational soccer player—A case report and literature review
Correction(s) for this article
-
Correction to “Undiagnosed cardiomyopathy: An incidental finding in a recreational soccer player—A case report and literature review”
- Volume 11Issue 4Sonography
- pages: 439-439
- First Published online: March 24, 2024
Corresponding Author
Richard P. Allwood
Cardiology Department, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
Correspondence
Richard P. Allwood, Cardiology Department, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Richard P. Allwood
Cardiology Department, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
Correspondence
Richard P. Allwood, Cardiology Department, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.
Email: [email protected]
Search for more papers by this authorAbstract
Introduction
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetic disease characterised by progressive fibrofatty tissue replacement of the myocardium. Several arrhythmogenic cardiomyopathy (ACM) phenotypes are now recognised, including right-dominant, biventricular, and left-dominant variants, which led to the development of the 2020 International criteria (Padua criteria).
Raising awareness of these variants is crucial as their clinical entity can be concealed. This is particularly important in the athletic population. Exercise can promote the development of the phenotype and accelerate disease progression, resulting in left ventricular (LV) involvement and systolic dysfunction, which can cause ventricular arrhythmias and sudden death.
Case Description
A late adolescent male was escorted by paramedics to an emergency department following a medium-speed motor vehicle accident. A multimodality approach was implemented involving a 12-lead electrocardiogram (ECG), transthoracic echocardiography (ECHO) and cardiac magnetic resonance (CMR) imaging. An unknown cardiomyopathy was revealed with diagnostic clues suggesting biventricular ACM in a recreational soccer player, when using the Padua criteria.
Conclusion
ACM should be considered in the evaluation of an unexplained cardiomyopathy presenting with possible syncopal events. This case describes the clinical features of an ACM patient, emphasising the utility of ECG, ECHO and CMR in determining biventricular involvement.
CMR is a powerful tool for the diagnosis of ACM and the identification of myocardial fibrosis with late gadolinium enhancement (LGE). The use of 12-lead ECG and 2-dimensional (2D) strain imaging may also raise suspicion of biventricular phenotypes and predict LV involvement with significant myocardial fibrosis.
CONFLICT OF INTEREST STATEMENT
The author declares no conflicts of interest.
Supporting Information
Filename | Description |
---|---|
sono12382-sup-0001-AppendixS1.docxWord 2007 document , 3.7 MB | Appendix S1: Supporting Information. |
sono12382-sup-0002-VideoS1.mp4MPEG-4 video, 5.3 MB | Supplemental Video 1: CMR horizontal long axis. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Miles C, Finocchiaro G, Papadakis M, Gray B, Westaby J, Ensam B, et al. Sudden death and left ventricular involvement in arrhythmogenic cardiomyopathy. Circulation. 2019; 139(15): 1786–1797. https://doi.org/10.1161/CIRCULATIONAHA
- 2Mast TP, James CA, Calkins H, Teske AJ, Tichnell C, Murray B, et al. Evaluation of structural progression in arrhythmogenic right ventricular dysplasia/cardiomyopathy. JAMA Cardiol. 2017; 2(3): 293–302. https://doi.org/10.1001/jamacardio.2016.5034
- 3Towbin JA, McKenna WJ, Abrams DJ, Ackerman MJ, Calkins H, Darrieux FC, et al. 2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart Rhythm. 2019; 16(11): e301–e372. https://doi.org/10.1016/j.hrthm.2019.05.007
- 4Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Eur Heart J. 2010; 31(7): 806–814. https://doi.org/10.1093/eurheartj/ehq025
- 5Mast TP, Teske AJ, Doevendans PA, Cramer MJ. Current and future role of echocardiography in arrhythmogenic right ventricular dysplasia/cardiomyopathy. Cardiol J. 2015; 22(4): 362–374. https://doi.org/10.5603/CJ.a2015.0018
- 6Cipriani A, Bauce B, De Lazzari M, Rigato I, Bariani R, Meneghin S, et al. Arrhythmogenic right ventricular cardiomyopathy: characterization of left ventricular phenotype and differential diagnosis with dilated cardiomyopathy. J Am Heart Assoc. 2020; 9(5):e014628. https://doi.org/10.1161/JAHA.119.014628
- 7Corrado D, Perazzolo Marra M, Zorzi A, Beffagna G, Cipriani A, Lazzari MD, et al. Diagnosis of arrhythmogenic cardiomyopathy: the Padua criteria. Int J Cardiol. 2020; 319: 106–114. https://doi.org/10.1016/j.ijcard.2020.06.005
- 8Corrado D, Zorzi A, Cipriani A, Bauce B, Bariani R, Beffagna G, et al. Evolving diagnostic criteria for arrhythmogenic cardiomyopathy. J Am Heart Assoc. 2021; 10(18):e021987. https://doi.org/10.1161/JAHA.121.021987
- 9Graziano F, Zorzi A, Cipriani A, de Lazzari M, Bauce B, Rigato I, et al. The 2020 “Padua criteria” for diagnosis and phenotype characterization of arrhythmogenic cardiomyopathy in clinical practice. J Clin Med. 2022; 11(1):279. https://doi.org/10.3390/jcm11010279
- 10Graziano F, Zorzi A, Cipriani A, de Lazzari M, Bauce B, Rigato I, et al. New diagnostic approach to arrhythmogenic cardiomyopathy: the Padua criteria. Rev Cardiovasc Med. 2022; 23(10):335. https://doi.org/10.31083/j.rcm2310335
- 11Finocchiaro G, Papadakis M, Dhutia H, Zaidi A, Malhotra A, Fabi E, et al. Electrocardiographic differentiation between ‘benign T-wave inversion’ and arrhythmogenic right ventricular cardiomyopathy. Europace. 2019; 21(2): 332–338. https://doi.org/10.1093/europace/euy179
- 12De Lazzari M, Zorzi A, Cipriani A, Susana A, Mastella G, Rizzo A, et al. Relationship between electrocardiographic findings and cardiac magnetic resonance phenotypes in arrhythmogenic cardiomyopathy. J Am Heart Assoc. 2018; 7(22):e009855. https://doi.org/10.1161/JAHA.118.009855
- 13Cox MG, van der Smagt JJ, Wilde AA, Wiesfeld AC, Atsma DE, Nelen MR, et al. New ECG criteria in arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ Arrhythm Electrophysiol. 2009; 2(5): 524–530. https://doi.org/10.1161/CIRCEP.108.832519
- 14Corrado D, van Tintelen PJ, McKenna WJ, Hauer RN, Anastastakis A, Asimaki A, et al. Arrhythmogenic right ventricular cardiomyopathy: evaluation of the current diagnostic criteria and differential diagnosis. Eur Heart J. 2020; 41(14): 1414–1429. https://doi.org/10.1093/eurheartj/ehz669
- 15Corrado D, Basso C. Arrhythmogenic left ventricular cardiomyopathy. Heart. 2021; 108: 733–743. https://doi.org/10.1136/heartjnl-2020-316944
- 16Zhang L, Liu L, Kowey PR, Fontaine G. The electrocardiographic manifestations of arrhythmogenic right ventricular dysplasia. Curr Cardiol Rev. 2014; 10(3): 237–245. https://doi.org/10.2174/1573403x10666140514102928
- 17Yoerger DM, Marcus F, Sherrill D, Calkins H, Towbin JA, Zareba W, et al. Echocardiographic findings in patients meeting task force criteria for arrhythmogenic right ventricular dysplasia: new insights from the multidisciplinary study of right ventricular dysplasia. J Am Coll Cardiol. 2005; 45(6): 860–865. https://doi.org/10.1016/j.jacc.2004.10.070
- 18Te Riele ASJM, Tandri H, Sanborn DM, Bluemke DA. Noninvasive multimodality imaging in ARVD/C. JACC Cardiovasc Imaging. 2015; 8(5): 597–611. https://doi.org/10.1016/j.jcmg.2015.02.007
- 19Haugaa KH, Basso C, Badano LP, Bucciarelli-Ducci C, Cardim N, Gaemperli O, et al. Comprehensive multi-modality imaging approach in arrhythmogenic cardiomyopathy-an expert consensus document of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2017; 18(3): 237–253. https://doi.org/10.1093/ehjci/jew229
- 20Prior D. Differentiating athlete's heart from cardiomyopathies – the right side. Heart Lung Circ. 2018; 27(9): 1063–1071. https://doi.org/10.1016/j.hlc.2018.04.300
- 21D'Ascenzi F, Pisicchio C, Caselli S, Di Paolo FM, Spataro A, Pelliccia A. RV remodeling in Olympic athletes. JACC Cardiovasc Imaging. 2017; 10(4): 385–393. https://doi.org/10.1016/j.jcmg.2016.03.017
- 22Zaidi A, Sheikh N, Jongman JK, Gati S, Panoulas VF, Carr-White G, et al. Clinical differentiation between physiological remodeling and arrhythmogenic right ventricular cardiomyopathy in athletes with marked electrocardiographic repolarization anomalies. J Am Coll Cardiol. 2015; 65(25): 2702–2711. https://doi.org/10.1016/j.jacc.2015.04.035
- 23D'Ascenzi F, Solari M, Corrado D, Zorzi A, Mondillo S. Diagnostic differentiation between arrhythmogenic cardiomyopathy and athlete's heart by using imaging. JACC Cardiovasc Imaging. 2018; 11(9): 1327–1339. https://doi.org/10.1016/j.jcmg.2018.04.031
- 24Qasem M, George K, Somauroo J, Forsythe L, Brown B, Oxborough D. Right ventricular function in elite male athletes meeting the structural echocardiographic task force criteria for arrhythmogenic right ventricular cardiomyopathy. J Sports Sci. 2019; 37(3): 306–312. https://doi.org/10.1080/02640414.2018.1499392
- 25Rossi VA, Niederseer D, Sokolska JM, Kovacs B, Costa S, Gasperetti A, et al. A novel diagnostic score integrating atrial dimensions to differentiate between the athlete's heart and arrhythmogenic right ventricular cardiomyopathy. J Clin Med. 2021; 10(18):4094. https://doi.org/10.3390/jcm10184094
- 26Gandjbakhch E, Redheuil A, Pousset F, Charron P, Frank R. Clinical diagnosis, imaging, and genetics of arrhythmogenic right ventricular cardiomyopathy/dysplasia: JACC state-of-the-art review. J Am Coll Cardiol. 2018; 72(7): 784–804. https://doi.org/10.1016/j.jacc.2018.05.065
- 27Malik N, Mukherjee M, Wu KC, Zimmerman SL, Zhan J, Calkins H, et al. Multimodality imaging in arrhythmogenic right ventricular cardiomyopathy. Cir Cardiovasc Imaging. 2022; 15(2):e013725. https://doi.org/10.1161/CIRCIMAGING.121.013725
- 28Focardi M, Cameli M, Carbone SF, Massoni A, de Vito R, Lisi M, et al. Traditional and innovative echocardiographic parameters for the analysis of right ventricular performance in comparison with cardiac magnetic resonance. Eur Heart J Cardiovasc Imaging. 2015; 16(1): 47–52. https://doi.org/10.1093/ehjci/jeu156
- 29Teske AJ, Cox MG, Te Riele AS, De Boeck BW, Doevendans PA, Hauer RN, et al. Early detection of regional functional abnormalities in asymptomatic ARVD/C gene carriers. J Am Soc Echocardiogr. 2012; 25(9): 997–1006. https://doi.org/10.1016/j.echo.2012.05.008
- 30Mast TP, Taha K, Cramer MJ, Lumens J, van der Heijden J, Bouma BJ, et al. The prognostic value of right ventricular deformation imaging in early arrhythmogenic right ventricular cardiomyopathy. JACC Cardiovasc Imaging. 2019; 12(3): 446–455. https://doi.org/10.1016/j.jcmg.2018.01.012
- 31Teske AJ, Cox MG, De Boeck BW, Doevendans PA, Hauer RN, Cramer MJ. Echocardiographic tissue deformation imaging quantifies abnormal regional right ventricular function in arrhythmogenic right ventricular dysplasia/cardiomyopathy. J Am Soc Echocardiogr. 2009; 22(8): 920–927. https://doi.org/10.1016/j.echo.2009.05.014
- 32Mast TP, Teske AJ, Walmsley J, van der Heijden JF, van Es R, Prinzen FW, et al. Right ventricular imaging and computer simulation for electromechanical substrate characterization in arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol. 2016; 68(20): 2185–2197. https://doi.org/10.1016/j.jacc.2016.08.061
- 33Kirkels FP, Bosman LP, Taha K, Cramer MJ, van der Heijden JF, Hauer RNW, et al. Improving diagnostic value of echocardiography in arrhythmogenic right ventricular cardiomyopathy using deformation imaging. JACC Cardiovasc Imaging. 2021; 14(12): 2481–2483. https://doi.org/10.1016/j.jcmg.2021.07.002
- 34Kirkels FP, Lie ØH, Cramer MJ, Chivulescu M, Rootwelt-Norberg C, Asselbergs FW, et al. Right ventricular functional abnormalities in arrhythmogenic cardiomyopathy: association with life-threatening ventricular arrhythmias. JACC Cardiovasc Imaging. 2021; 14(5): 900–910. https://doi.org/10.1016/j.jcmg.2020.12.028
- 35Lie ØH, Rootwelt-Norberg C, Dejgaard LA, Leren IS, Stokke MK, Edvardsen T, et al. Prediction of life-threatening ventricular arrhythmia in patients with arrhythmogenic cardiomyopathy: a primary prevention cohort study. JACC Cardiovasc Imaging. 2018; 11(10): 1377–1386.
- 36Lie ØH, Klaboe LG, Dejgaard LA, Skjølsvik ET, Grimsmo J, Bosse G, et al. Cardiac phenotypes and markers of adverse outcome in elite athletes with ventricular arrhythmias. JACC Cardiovasc Imaging. 2021; 14(1): 148–158. https://doi.org/10.1016/j.jcmg.2020.07.039
- 37Sarvari SI, Haugaa KH, Anfinsen OG, Leren TP, Smiseth OA, Kongsgaard E, et al. Right ventricular mechanical dispersion is related to malignant arrhythmias: a study of patients with arrhythmogenic right ventricular cardiomyopathy and subclinical right ventricular dysfunction. Eur Heart J. 2011; 32(9): 1089–1096. https://doi.org/10.1093/eurheartj/ehr069
- 38Ma C, Fan J, Zhou B, Zhao C, Zhao X, Su B, et al. Myocardial strain measured via two-dimensional speckle-tracking echocardiography in a family diagnosed with arrhythmogenic left ventricular cardiomyopathy. Cardiovasc Ultrasound. 2021; 19(1): 40.
- 39Malik N, Win S, James CA, Kutty S, Mukherjee M, Gilotra NA, et al. Right ventricular strain predicts structural disease progression in patients with arrhythmogenic right ventricular cardiomyopathy. J Am Heart Assoc. 2020; 9(7):e015016. https://doi.org/10.1161/JAHA.119.015016
- 40Bosman LP, Te Riele ASJM. Arrhythmogenic right ventricular cardiomyopathy: a focused update on diagnosis and risk stratification. Heart. 2022; 108(2): 90–97. https://doi.org/10.1136/heartjnl-2021-319113
- 41Kawakami H, Nerlekar N, Haugaa KH, Edvardsen T, Marwick TH. Prediction of ventricular arrhythmias with left ventricular mechanical dispersion: a systematic review and meta-analysis. JACC Cardiovasc Imaging. 2020; 13(2 Pt 2): 562–572.
- 42Mast TP, Teske AJ, vd Heijden JF, Groeneweg JA, Te Riele AS, Velthuis BK, et al. Left ventricular involvement in arrhythmogenic right ventricular dysplasia/cardiomyopathy assessed by echocardiography predicts adverse clinical outcome. J Am Soc Echocardiogr. 2015; 28(9): 1103–1113.e9. https://doi.org/10.1016/j.echo.2015.04.015
- 43Segura-Rodríguez D, Bermúdez-Jiménez FJ, González-Camacho L, Moreno Escobar E, García-Orta R, Alcalá-López JE, et al. Layer-specific global longitudinal strain predicts arrhythmic risk in arrhythmogenic cardiomyopathy. Front Cardiovasc Med. 2021; 8:748003.
- 44te Riele AS, Tandri H, Bluemke DA. Arrhythmogenic right ventricular cardiomyopathy (ARVC): cardiovascular magnetic resonance update. J Cardiovasc Magn Reson. 2014; 16(1): 50–65. https://doi.org/10.1186/s12968-014-0050-8
- 45Cipriani A, Mattesi G, Bariani R, Cecere A, Martini N, de Michieli L, et al. Cardiac magnetic resonance imaging of arrhythmogenic cardiomyopathy: evolving diagnostic perspectives. Eur Radiol. 2023; 33(1): 270–282. https://doi.org/10.1007/s00330-022-08958-2
- 46Petersen SE, Khanji MY, Plein S, Lancellotti P, Bucciarelli-Ducci C. European Association of Cardiovascular Imaging expert consensus paper: a comprehensive review of cardiovascular magnetic resonance normal values of cardiac chamber size and aortic root in adults and recommendations for grading severity. Eur Heart J Cardiovasc Imaging. 2019; 20(12): 1321–1331. https://doi.org/10.1093/ehjci/jez232
- 47D'Ascenzi F, Anselmi F, Piu P, Fiorentini C, Carbone SF, Volterrani L, et al. Cardiac magnetic resonance normal reference values of biventricular size and function in male athlete's heart. JACC Cardiovasc Imaging. 2019; 12(9): 1755–1765. https://doi.org/10.1016/j.jcmg.2018.09.021
- 48Moccia E, Papatheodorou E, Miles CJ, Merghani A, Malhotra A, Dhutia H, et al. Arrhythmogenic cardiomyopathy and differential diagnosis with physiological right ventricular remodelling in athletes using cardiovascular magnetic resonance. Int J Cardiovasc Imaging. 2022; 38(12): 2723–2732. https://doi.org/10.1007/s10554-022-02684-y
- 49Aquaro GD, Barison A, Todiere G, Grigoratos C, Ait Ali L, di Bella G, et al. Usefulness of combined functional assessment by cardiac magnetic resonance and tissue characterization versus task force criteria for diagnosis of arrhythmogenic right ventricular cardiomyopathy. Am J Cardiol. 2016; 118(11): 1730–1736. https://doi.org/10.1016/j.amjcard.2016.08.056