Improvement in the Performance of Inverted 3D/2D Perovskite Solar Cells by Ambient Exposure
Yantao Wang
Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong, China
Search for more papers by this authorJingyang Lin
Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong, China
Department of Physics, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorYanling He
Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong, China
Search for more papers by this authorYi Zhang
Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong, China
Search for more papers by this authorQiong Liang
Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, 11 Yuk Choi Rd., Hung Hom, Hong Kong, China
Search for more papers by this authorFangzhou Liu
Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong, China
Search for more papers by this authorZhiwei Zhou
Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, China
Search for more papers by this authorChristopher C. S. Chan
Department of Physics, The Hong Kong University of Science and Technology, Clearwater Bay, Hong Kong, China
Search for more papers by this authorGang Li
Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, 11 Yuk Choi Rd., Hung Hom, Hong Kong, China
Search for more papers by this authorShien-Ping Feng
Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, China
Department of Advanced Design and Systems Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
Search for more papers by this authorAlan Man Ching Ng
Department of Physics, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorKam Sing Wong
Department of Physics, The Hong Kong University of Science and Technology, Clearwater Bay, Hong Kong, China
Search for more papers by this authorJasminka Popović
Division of Materials Physics, Ruđer Bošković Institute, Bijenička 54, Zagreb, 10000 Croatia
Search for more papers by this authorCorresponding Author
Aleksandra B. Djurišić
Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong, China
Search for more papers by this authorYantao Wang
Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong, China
Search for more papers by this authorJingyang Lin
Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong, China
Department of Physics, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorYanling He
Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong, China
Search for more papers by this authorYi Zhang
Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong, China
Search for more papers by this authorQiong Liang
Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, 11 Yuk Choi Rd., Hung Hom, Hong Kong, China
Search for more papers by this authorFangzhou Liu
Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong, China
Search for more papers by this authorZhiwei Zhou
Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, China
Search for more papers by this authorChristopher C. S. Chan
Department of Physics, The Hong Kong University of Science and Technology, Clearwater Bay, Hong Kong, China
Search for more papers by this authorGang Li
Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, 11 Yuk Choi Rd., Hung Hom, Hong Kong, China
Search for more papers by this authorShien-Ping Feng
Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, China
Department of Advanced Design and Systems Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
Search for more papers by this authorAlan Man Ching Ng
Department of Physics, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorKam Sing Wong
Department of Physics, The Hong Kong University of Science and Technology, Clearwater Bay, Hong Kong, China
Search for more papers by this authorJasminka Popović
Division of Materials Physics, Ruđer Bošković Institute, Bijenička 54, Zagreb, 10000 Croatia
Search for more papers by this authorCorresponding Author
Aleksandra B. Djurišić
Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong, China
Search for more papers by this authorAbstract
Perovskite solar cells (PSCs) are known to be sensitive to the exposure to ambient humidity, which typically results in the degradation and deterioration of performance, although positive effects of exposure to moisture have also been reported, due to recrystallization of the perovskite. Common approach to improve stability is to use 3D/2D perovskite active layer, where 2D capping layer is prepared by spin coating the bulky organic cation halide. Herein, it is shown that optimizing the exposure of the capping layer prepared by spin coating phenylethylammonium iodide (PEAI) to ambient atmosphere results in substantial improvement of the PSC performance. Furthermore, the initial effects of PEAI treatment are dependent on the NiO x /perovskite interface, but in all cases except at very high humidity (80–85% RH) optimized exposure to ambient results in improved performance. The variations in device performance with PEAI treatment and ambient exposure can be attributed to defect passivation and changes in the charge extraction due to energy-level alignment at the interfaces. The best performing devices have passivation of NiO x /perovskite interface and PEAI treatment of top surface followed by exposure to ambient atmosphere at RH of 40–45%, which results in the power conversion efficiency increase from 20.3% to 22.4%.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
solr202200224-sup-0001-SuppData-S1.pdf1.7 MB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Q. Wali, F. J. Iftikhar, M. E. Khan, A. Ullah, Y. Iqbal, R. Jose, Org. Electron. 2020, 78, 105590.
- 2 S. P. Dunfield, L. Bliss, F. Zhang, J. M. Luther, K. Zhu, M. F. A. M. van Hest, M. O. Reese, J. J. Berry, Adv. Energy Mater. 2020, 10, 1904054.
- 3 P. Roy, N. K. Sinha, S. Tiwari, A. Khare, Sol. Energy 2020, 198, 665.
- 4 M. A. Mahmud, T. Duong, J. Peng, Y. L. Wu, H. P. Shen, D. Walter, H. T. Nguyen, N. Mozaffari, G. D. Tabi, K. R. Catchpole, K. J. Weber, T. P. White, Adv. Funct. Mater. 2021, 202009164.
- 5 T. Zhu, D. M. Zheng, J. W. Liu, L. Coolen, ACS Appl. Mater. Interfaces 2020, 12, 37197.
- 6 Q. Jiang, Y. Zhao, X. W. Zhang, X. L. Yang, Y. Chen, Z. M. Chu, Q. F. Ye, X. X. Li, Z. G. Yin, J. B. You, Nat. Photonics 2019, 13, 460.
- 7 N. Li, Z. L. Zhu, C. C. Chueh, H. B. Liu, B. Peng, A. Petrone, X. S. Li, L. D. Wang, A. K. Y. Jen, Adv. Energy Mater. 2017, 7, 1601307.
- 8 H. S. Yoo, N. G. Park, Sol. Energy Mater. Sol. Cells 2018, 179, 57.
- 9 K. S. Lee, J. W. Kim, H. J. Yu, J. W. Lee, C. M. Yoon, S. K. Kim, J. Mater. Chem. A 2018, 6, 24560.
- 10 P. Chen, Y. Bai, S. C. Wang, M. Q. Lyu, J. H. Yun, L. Z. Wang, Adv. Funct. Mater. 2018, 28, 1706923.
- 11 J. Hidalgo, C. A. R. Perini, A.-F. Castro-Mendez, D. Jones, H. Köbler, B. Lai, R. P. Li, S. J. Sun, A. Abate, J.-P. Correa-Baena, ACS Energy Lett. 2020, 5, 3526.
- 12 Z. Z. Li, X. L. Liu, J. Xu, Y. J. Liao, H. Zhao, B. Zhang, S. Z. F. Liu, J. X. Yao, J. Phys. Chem. Lett. 2019, 10, 4587.
- 13 A. Solanki, S. S. Lim, S. Mhaisalkar, T. C. Sum, ACS Appl. Mater. Interfaces 2019, 11, 25474.
- 14 T. L. Bu, J. Li, W. C. Huang, W. X. Mao, F. Zheng, P. Q. Bi, X. T. Hao, J. Zhong, Y. B. Chengabe, F. Z. Huang, J. Mater. Chem. A 2019, 7, 6793.
- 15 H. Y. Shu, J. X. Xia, H. Yang, J. S. Luo, Z. Q. Wan, H. A. Malik, F. Han, X. J. Yao, C. Y. Jia, ACS Sustainable Chem. Eng. 2020, 8, 10859.
- 16 D. S. Lee, J. S. Yun, J. C. Kim, A. M. Soufiani, S. Chen, Y. Y. Cho, X. F. Deng, J. Seidel, S. Lim, S. J. Huang, A. W. Y. Ho-Baillie, ACS Energy Lett. 2018, 3, 647.
- 17 T. Wang, Y. P. Fu, L. R. Jin, S. B. Deng, D. X. Pan, L. Dong, S. Jin, L. B. Huang, J. Am. Chem. Soc. 2020, 142, 16254.
- 18 Y. Yang, C. Liu, A. Mahata, C. Mo Li, Energy Environ. Sci. 2020, 13, 3093.
- 19 Y. Y. Zhang, S. Y. Jang, I. W. Hwang, Y. K. Jung, B. R. Lee, J. H. Kim, K. H. Kim, S. H. Park, ACS Appl. Mater. Interfaces 2020, 12, 24827.
- 20 Y. N. Liu, J. J. Duan, J. K. Zhang, S. M. Huang, W. Ou-Yang, Q. Y. Bao, Z. Sun, X. H. Chen, ACS Appl. Mater. Interfaces 2020, 12, 771.
- 21 S. Q. Li, L. N. Hu, C. X. Zhang, Y. K. Wu, Y. F. Liu, Q. J. Sun, Y. X. Cui, Y. Y. Hao, Y. C. Wu, J. Mater. Chem. C 2020, 8, 2425.
- 22 C. L. Zhang, S. H. Wu, L. M. Tao, G. M. Arumugam, C. Liu, Z. Wang, S. S. Zhu, J. Yuzhao Yang, Adv. Energy Mater. 2020, 10, 2002004.
- 23 N. Lei, L. Pan, T. Ye, Adv. Mater. Interfaces 2020, 7, 2000197.
- 24 R. J. E. Westbrook, W. D. Xu, X. X. Liang, T. Webb, T. M. Clarke, J. Phys. Chem. Lett. 2021, 12, 3312.
- 25 Y. Y. Cho, H. D. Kim, J. H. Zheng, J. M. Bing, Y. Li, M. Zhang, M. A. Green, A. Wakamiya, S. J. Huang, H. Ohkita, A. W. Y. Ho-Baillie, ACS Energy Lett. 2021, 6, 925.
- 26 K. Meng, X. Wang, Z. Li, Z. Liu, Z. Qiao, C. Wang, Y. Hu, S. Li, L. Cheng, Y. Zhai, G. Chen, Energy Environ. Sci. 2021, 14, 2357.
- 27 Y. Chen, Q. Meng, Y. Xiao, X. Zhang, J. Sun, C. Han, H. Gao, Y. Zhang, Interfaces 2019, 11, 44101.
- 28 X. Li, D. Bi, C. Yi, J. D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, M. Grätzel, Science 2016, 353, 58.
- 29 W. Chen, B. Han, Q. Hu, M. Gu, Y. Zhu, W. Yang, Y. Zhou, D. Luo, F. Liu, R. Cheng, R. Zhu, S. P. Feng, A. B. Djurišić, T. P. Russell, Z. He, Sci. Bull. 2021, 66, 991.
- 30 S. Shao, M. Abdu-Aguye, L. Qiu, L.-H. Lai, J. Liu, S. Adjokatse, F. Jahani, M. E. Kamminga, G. H. ten Brink, T. T. M. Palstra, B. J. Kooi, J. C. Hummelen, M. Antonietta Loi, Energy Environ. Sci. 2016, 9, 2444.
- 31 J. Yao, L. Yang, F. Cai, Y. Yan, R. S. Gurney, D. Liu, T. Wang, Sustainable Energy Fuels 2018, 2, 436.
- 32 M. Jahandar, J. H. Heo, C. E. Song, K.-J. Kong, W. S. Shin, J.-C. Lee, S. H. Im, S.-J. Moon, Nano Energy 2016, 27, 330.
- 33 Y. Huang, L. Li, Z. Liu, H. Jiao, Y. He, X. Wang, R. Zhu, D. Wang, J. Sun, Q. Chen, H. Zhou, J. Mater. Chem. A 2017, 5, 8537.
- 34 Z. Wu, M. Jiang, Z. Liu, A. Jamshaid, L. K. Ono, Y. Qi, Adv. Energy Mater. 2020, 10, 1903696.
- 35 D. Yang, R. Yang, K. Wang, C. Wu, X. Zhu, J. Feng, X. Ren, G. Fang, S. Priya, S. Liu, Nat. Commun. 2018, 9, 1.
- 36 W. Chen, Y. Zhou, G. Chen, Y. Wu, B. Tu, F. Liu, L. Huang, A. Ng, A. B. Djurišić, Z. He, Adv. Energy Mater. 2019, 9, 1803872.
- 37 Z. Liu, J. Chang, Z. Lin, L. Zhou, Z. Yang, D. Chen, C. Zhang, S. Liu, Y. Hao, Adv. Energy Mater. 2018, 8, 1703432.
- 38 W. A. Laban, L. Etgar, Energy Environ. Sci. 2013, 6, 3249.
- 39 F. Zhang, Q. Huang, J. Song, Y. Zhang, C. Ding, F. Liu, D. Liu, X. Li, H. Yasuda, K. Yoshida, J. Qu, S. Hayase, T. Toyoda, T. Minemoto, Q. Shen, Sol. RRL 2020, 4, 1900243.
- 40 K. Wang, Z. W. Jin, L. Liang, H. Bian, D. Bai, H. Wang, J. Zhang, Q. Wang, S. Liu, Nat. Commun. 2018, 9, 4544.
- 41 J. You, L. Meng, T. Song, T. Guo, Y. Yang, W. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, Nat. Nanotechnol. 2016, 11, 75.
- 42 M. Saliba, T. Matsui, J. Y. Seo, K. Domanski, J. P. C. Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfedlt, M. Grätzel, Energy Environ. Sci. 2016, 9, 1989.
- 43 G. Yang, Z. W. Ren, K. Liu, M. C. Qin, W. Y. Deng, H. K. Zhang, H. B. Wang, J. W. Liang, F. H. Ye, Q. Liang, H. Yin, Y. X. Chen, Y. L. Zhuang, S. Q. Li, B. W. Gao, J. B. Wang, T. T. Shi, X. Wang, X. H. Lu, H. B. Wu, J. H. Hou, D. Y. Lei, S. K. So, Nature Photonics 2021, 15, 681.
- 44 M. J. Kim, G. H. Kim, T. K. Lee, I. W. Choi, H. W. Choi, Y. H. Jo, Y. J. Yoon, J. W. Kim, J. Y. Lee, D. H. Huh, H. Lee, S. K. Kwak, J. Y. Kim, D. S. Kim, Joule 2019, 3, 2179.
- 45 J. Li, L. J. Zuo, H. T. Wu, B. F. Niu, S. Q. Shan, G. Wu, H. Z. Chen, Adv. Funct. Mater. 2021, 31, 2104036.
- 46 A. Rajagopal, K. Yao, A. K. Y. Jen, Adv. Mater. 2018, 30, 1800455.
- 47 G. B. Wu, R. Liang, M. Z. Ge, G. X. Sun, Y. Zhang, G. C. Xing, Adv. Mater. 2022, 34, 2105635.
- 48 K. Yao, X. F. Wang, Y. X. Xu, F. Li, Nano Energy 2015, 18, 165.
- 49 M. Degani, Q. Z. An, M. Albaladejo-Siguan, Y. J. Hofstetter, C. S. Cho, F. Paulus, G. Grancini, Y. Vaynzof, Sci. Adv. 2021, 7, eabj7930.
- 50 F. B. Minussi, E. M. Bertoletti, S. P. Reis, J. F. Carvalho, E. B. Araujo, Chem. Commun. 2022, 58, 2212.
- 51 L. Xie, L. Chen, Z. Nan, H. Lin, T. Wang, D. Zhan, J. Yan, B. Mao, Z. Tian, J. Am. Chem. Soc. 2017, 139, 3320.
- 52 D. Ju, T. Zhao, Y. Dang, G. Zhang, X. Hu, D. Cui, X. Tao, J. Mater. Chem. A 2017, 5, 21919.
- 53 J. Calabrese, N. L. Jones, R. L. Harlow, N. Herron, D. L. Thorn, Y. Wang, J. Am. Chem. Soc. 1991, 113, 2328.
- 54 J. Song, Y. Dang, X. Liu, X. Tao, CrystEngComm 2020, 22, 6310.
- 55 S. Ning, S. Zhang, J. Sun, C. Li, J. Zheng, Y. M. Khalifa, S. Zhou, J. Cao, Y. Wu, ACS Appl. Mater. Interfaces 2020, 12, 43705.
- 56 H. Xu, Y. Wu, J. Cui, C. Ni, F. Xu, J. Cai, F. Hong, Z. Fang, W. Wang, J. Zhu, L. Wang, R. Xu, F. Xu, Phys.Chem.Chem.Phys. 2016, 18, 18607.
- 57 V. M. Le Corre, E. A. Duijnstee, O. El Tambouli, J. M. Ball, H. J. Snaith, J. Lim, L. J. A. Koster, ACS Energy Lett. 2021, 6, 1087.
- 58 H. Li, C. Li, S. Wen, C. Wang, G. Wang, C. Li, C. Wang, L. Huang, W. Dong, S. Ruan, ACS Sustainable Chem. Eng. 2018, 6, 11295.
- 59 O. Almora, C. Aranda, E. Mas-Marzá, Appl. Phys. Lett. 2016, 109, 173903.
- 60 A. Kahn, Mater. Horiz. 2016, 3, 7.
- 61 Q. D. Ou, C. Li, Q. K. Wang, Y. Q. Li, J. X. Tang, Adv. Mater. Interfaces 2017, 4, 1600694.
- 62 W. Peng, J. Yin, K. T. Ho, O. Ouellette, M. De Bastiani, B. Murali, O. El Tall, C. Shen, X. Miao, J. Pan, E. Alarousu, J. H. He, B. S. Ooi, O. F. Mohammed, E. Sargent, O. M. Bakr, Nano Lett. 2017, 17, 4759.
- 63 J. Yang, Z. Yuan, X. Liu, S. Braun, Y. Li, J. Tang, F. Gao, C. Duan, M. Fahlman, Q. Bao, ACS Appl. Mater. Interfaces 2018, 10, 16225.
- 64 M. Wang, B. Li, J. Yuan, F. Huang, G. Cao, J. Tian, ACS Appl. Mater. Interfaces 2018, 10, 37005.
- 65 O. Fernandez-Delgado, P. S. Chandrasekhar, N. Cano-Sampaio, Z. C. Simon, A. R. Puente-Santiago, F. Liu, E. Castro, L. Echegoyen, J. Mater. Chem. C 2021, 9, 10759.
- 66 A. Al-Ashouri, A. Magomedov, M. Roß, M. Jošt, M. Talaikis, G. Chistiakova, T. Bertram, J. A. Márquez, E. Köhnen, E. Kasparavičius, S. Levcenco, L. Gil-Escrig, C. J. Hages, R. Schlatmann, B. Rech, T. Malinauskas, T. Unold, C. A. Kaufmann, L. Korte, G. Niaura, V. Getautis, S. Albrecht, Energy Environ. Sci. 2019, 12, 3356.