Ten Years of Sb2Se3 Thin Film Solar Cells
Chao Chen
School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
Search for more papers by this authorKanghua Li
School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
Search for more papers by this authorCorresponding Author
Jiang Tang
School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
Optics Valley Laboratory, Wuhan, 430074 Hubei, China
Search for more papers by this authorChao Chen
School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
Search for more papers by this authorKanghua Li
School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
Search for more papers by this authorCorresponding Author
Jiang Tang
School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
Optics Valley Laboratory, Wuhan, 430074 Hubei, China
Search for more papers by this authorAbstract
Antimony selenide (Sb2Se3) has emerged as a promising absorber material for photovoltaic application. Since the first pure-phase Sb2Se3 solar cell reported ten years ago, increasing research has been carried out on this system with the device efficiency now reaching 9.2%. This work aims to present the major milestones of Sb2Se3 thin film solar cells from its birth to the present, including the selection of Sb2Se3 for thin film photovoltaics, the choice of planar device configuration instead of sensitized device, switching from solution processing to vacuum processing, new concept of orientation control and benign grain boundaries, discovery of unusual and complex defects, and post selenization for defect passivation. In the end, the authors discuss the competitive applications of Sb2Se3 solar cells in flexible devices and outlook their future development.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1 C. Chen, J. Tang, ACS Energy Lett. 2020, 5, 2294.
- 2 C. Chen, W. Q. Li, Y. Zhou, C. Chen, M. Luo, X. S. Liu, K. Zeng, B. Yang, C. W. Zhang, J. B. Han, J. Tang, Appl. Phys. Lett. 2015, 107, 043905.
- 3 C. Chen, D. C. Bobela, Y. Yang, S. C. Lu, K. Zeng, C. Ge, B. Yang, L. Gao, Y. Zhao, M. C. Beard, J. Tang, Front. Optoelectron. 2017, 10, 18.
- 4 S. Hadke, M. Huang, C. Chen, Y. F. Tay, S. Chen, J. Tang, L. Wong, Chem. Rev. 2021, https://doi.org/10.1021/acs.chemrev.1c00301.
- 5 X. Liu, J. Chen, M. Luo, M. Leng, Z. Xia, Y. Zhou, S. Qin, D.-J. Xue, L. Lv, H. Huang, D. Niu, J. Tang, ACS Appl. Mater. Inter. 2014, 6, 10687.
- 6 Y. Zhou, L. Wang, S. Chen, S. Qin, X. Liu, J. Chen, D.-J. Xue, M. Luo, Y. Cao, Y. Cheng, E. H. Sargent, J. Tang, Nat. Photonics 2015, 9, 409.
- 7 Y. Zhou, M. Leng, Z. Xia, J. Zhong, H. Song, X. Liu, B. Yang, J. Zhang, J. Chen, K. Zhou, J. Han, Y. Cheng, J. Tang, Adv. Energy Mater. 2014, 4, 1301846.
- 8 Y. C. Choi, T. N. Mandal, W. S. Yang, Y. H. Lee, S. H. Im, J. H. Noh, S. I. Seok, Angew. Chem. Int. Edit. 2014, 53, 1329.
- 9 W. Yang, J. H. Kim, O. S. Hutter, L. J. Phillips, J. Tan, J. Park, H. Lee, J. D. Major, J. S. Lee, J. Moon, Nat. Commun. 2020, 11, 861.
- 10 X. Wen, Z. Lu, L. Valdman, G. C. Wang, M. Washington, T. M. Lu, ACS Appl. Mater. Inter. 2020, 12, 35222.
- 11 Z. Li, X. Liang, G. Li, H. Liu, H. Zhang, J. Guo, J. Chen, K. Shen, X. San, W. Yu, Nat. Commun. 2019, 10, 125.
- 12 A. Zakutayev, J. D. Major, X. Hao, A. Walsh, J. Tang, T. K. Todorov, L. H. Wong, E. Saucedo, J. Phys. Energy 2021, 3, 032003.
- 13 S.-C. Liu, Y. Yang, Z. Li, D.-J. Xue, J.-S. Hu, Mater. Chem. Front. 2020, 4, 775.
- 14 Y. Zhao, S. Wang, C. Jiang, C. Li, P. Xiao, R. Tang, J. Gong, G. Chen, T. Chen, J. Li, X. Xiao, Adv. Energy Mater. 2021, 12, 2103015.
- 15 R. Tang, X. Wang, W. Lian, J. Huang, Q. Wei, M. Huang, Y. Yin, C. Jiang, S. Yang, G. Xing, S. Chen, C. Zhu, X. Hao, M. A. Green, T. Chen, Nat. Energy 2020, 5, 587.
- 16 A. Mavlonov, T. Razykov, F. Raziq, J. Gan, J. Chantana, Y. Kawano, T. Nishimura, H. Wei, A. Zakutayev, T. Minemoto, X. Zu, S. Li, L. Qiao, Sol. Energy 2020, 201, 227.
- 17 H. Lei, J. Chen, Z. Tan, G. Fang, Sol. RRL 2019, 3, 1900026.
- 18 M. A. Green, E. D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao, Prog. Photovoltaics 2021, 30, 3.
- 19
R. Scheer, H.-W. Schock, in Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices, John Wiley & Sons, Hoboken, NJ 2011.
10.1002/9783527633708 Google Scholar
- 20 T. K. Todorov, K. B. Reuter, D. B. Mitzi, Adv. Mater. 2010, 22, E156.
- 21 M. Liu, M. B. Johnston, H. J. Snaith, Nature 2013, 501, 395.
- 22 M. Bhushan, A. Catalano, Appl. Phys. Lett. 1981, 38, 39.
- 23 D. Guo, C. Hu, C. Zhang, Mater. Res. Bull. 2013, 48, 1984.
- 24 A. P. Torane, K. Y. Rajpure, C. H. Bhosale, Mater. Chem. Phys. 1999, 61, 219.
- 25 A. M. Fernández, M. G. Merino, Thin Solid Films 2000, 366, 202.
- 26 K. Y. Rajpure, C. H. Bhosale, Mater. Chem. Phys. 2000, 62, 169.
- 27 S. Jayakumar, C. Balasubramanian, S. K. Narayandass, D. Mangalaraj, C. P. G. Vallabhan, Thin Solid Films 1995, 266, 62.
- 28 K. Kolev, L. D. Laude, Appl. Surf. Sci. 1992, 54, 358.
- 29 T. T. Ngo, S. Chavhan, I. Kosta, O. Miguel, H. J. Grande, R. Tena-Zaera, ACS Appl. Mater. Inter. 2014, 6, 2836.
- 30 M. Luo, M. Y. Leng, X. S. Liu, J. Chen, C. Chen, S. K. Qin, J. Tang, Appl. Phys. Lett. 2014, 104, 173904.
- 31 M. Y. Leng, M. Luo, C. Chen, S. K. Qin, J. Chen, J. Zhong, J. Tang, Appl. Phys. Lett. 2014, 105, 083905.
- 32 X. S. Liu, C. Chen, L. Wang, J. Zhong, M. Luo, J. Chen, D. J. Xue, D. B. Li, Y. Zhou, J. Tang, Prog. Photovolt. 2015, 23, 1828.
- 33 J. Zhang, W. Lian, Y. Yin, X. Wang, R. Tang, C. Qian, X. Hao, C. Zhu, T. Chen, Sol. RRL 2020, 4, 2000048.
- 34 D. Ren, S. Chen, M. Cathelinaud, G. Liang, H. Ma, X. Zhang, ACS Appl. Mater. Interfaces 2020, 12, 30572.
- 35 S. Yao, J. Wang, J. Cheng, L. Fu, F. Xie, Y. Zhang, L. Li, ACS Appl. Mater. Interfaces 2020, 12, 24112.
- 36 V. Kumar, E. Artegiani, A. Kumar, G. Mariotto, F. Piccinelli, A. Romeo, Sol. Energy 2019, 193, 452.
- 37 P. Sun, Z. Wu, C. Ai, M. Zhang, X. Zhang, N. Huang, Y. Sun, X. Sun, Chem. Select 2016, 1, 1824.
- 38 Z. Li, H. Zhu, Y. Guo, X. Niu, X. Chen, C. Zhang, W. Zhang, X. Liang, D. Zhou, J. Chen, Appl. Phys. Express 2016, 9, 052302.
- 39 I. M. El Radaf, Appl. Phys. A 2019, 125, 832.
- 40 S.-N. Park, S.-Y. Kim, S.-J. Lee, S.-J. Sung, K.-J. Yang, J.-K. Kang, D.-H. Kim, J. Mater. Chem. A 2019, 7, 25900.
- 41 L. Zhang, Y. Li, C. Li, Q. Chen, Z. Zhen, X. Jiang, M. Zhong, F. Zhang, H. Zhu, ACS Nano 2017, 11, 12753.
- 42 A. Liao, Y. Zhou, L. Xiao, C. Zhang, C. Wu, A. M. Asiri, M. Xiao, Z. Zou, Nanoscale 2019, 11, 109.
- 43 Z. Xia, J. Zhong, M. Leng, L. Hu, D.-J. Xue, B. Yang, Y. Zhou, X. Liu, S. Qin, Y.-B. Cheng, J. Tang, Chem. Mater. 2015, 27, 8048.
- 44 B. Yang, S. Qin, D.-j. Xue, C. Chen, Y.-s. He, D. Niu, H. Huang, J. Tang, Prog. Photovolt. 2017, 25, 113.
- 45 R. Kondrotas, C. Chen, X. Liu, B. Yang, J. Tang, J. Semicond. 2021, 42, 031701.
- 46 L. Grad, F. von Rohr, J. Zhao, M. Hengsberger, J. Osterwalder, Phys. Rev. Mater. 2020, 4, 105404.
- 47 J. Black, E. Conwell, L. Seigle, C. Spencer, J. Phys. Chem. Solids 1957, 2, 240.
- 48 L. Wang, D. B. Li, K. H. Li, C. Chen, H. X. Deng, L. Gao, Y. Zhao, F. Jiang, L. Y. Li, F. Huang, Y. S. He, H. S. Song, G. D. Niu, J. Tang, Nat. Energy 2017, 2, 17046.
- 49 K. H. Li, C. Chen, S. C. Lu, C. Wang, S. Y. Wang, Y. Lu, J. Tang, Adv. Mater. 2019, 31, 1903914.
- 50 R. Kondrotas, J. Zhang, C. Wang, J. Tang, Sol. Energy Mat. Sol. C. 2019, 199, 16.
- 51 M. Huang, P. Xu, D. Han, J. Tang, S. Chen, ACS Appl. Mater. Inter. 2019, 11, 15564.
- 52 M. Huang, Z. Cai, S. Wang, X. G. Gong, S. H. Wei, S. Chen, Small 2021, 17, e2102429.
- 53 X. Wen, C. Chen, S. Lu, K. Li, R. Kondrotas, Y. Zhao, W. Chen, L. Gao, C. Wang, J. Zhang, G. Niu, J. Tang, Nat. Commun. 2018, 9, 2179.
- 54 J. H. Tao, X. B. Hu, Y. X. Guo, J. H. Hong, K. H. Li, J. C. Jiang, S. Q. Chen, C. B. Jing, F. Y. Yue, P. X. Yang, C. J. Zhang, Z. C. Wu, J. Tang, J. H. Chu, Nano Energy 2019, 60, 802.
- 55 M. Grossberg, O. Volobujeva, A. Penežko, R. Kaupmees, T. Raadik, J. Krustok, J. Alloys Compd. 2020, 817, 152716.
- 56 G.-X. Liang, Y.-D. Luo, S. Chen, R. Tang, Z.-H. Zheng, X.-J. Li, X.-S. Liu, Y.-K. Liu, Y.-F. Li, X.-Y. Chen, Z.-H. Su, X.-H. Zhang, H.-L. Ma, P. Fan, Nano Energy 2020, 73, 104806.
- 57 R. Tang, Z.-H. Zheng, Z.-H. Su, X.-J. Li, Y.-D. Wei, X.-H. Zhang, Y.-Q. Fu, J.-T. Luo, P. Fan, G.-X. Liang, Nano Energy 2019, 64, 103929.
- 58 P. Vidal-Fuentes, M. Placidi, Y. Sanchez, I. Becerril-Romero, J. Andrade-Arvizu, Z. Jehl, A. Perez-Rodriguez, V. Izquierdo-Roca, E. Saucedo, Sol. RRL 2020, 4, 2000141.
- 59 L. J. Phillips, P. Yates, O. S. Hutter, T. Baines, L. Bowen, K. Durose, J. D. Major, presented at IEEE 44th Photovoltaic Specialist Conf., Washington, DC, June, 2017.
- 60 D.-B. Li, X. Yin, C. R. Grice, L. Guan, Z. Song, C. Wang, C. Chen, K. Li, A. J. Cimaroli, R. A. Awni, D. Zhao, H. Song, W. Tang, Y. Yan, J. Tang, Nano Energy 2018, 49, 346.
- 61 Y. K. Rao, Mater. Trans. B 1983, 14, 308.
- 62 J. Berkowitz, W. A. Chupka, J. Chem. Phys. 1968, 48, 5743.
- 63 K.-J. Yang, D.-H. Son, S.-J. Sung, J.-H. Sim, Y.-I. Kim, S.-N. Park, D.-H. Jeon, J. Kim, D.-K. Hwang, C.-W. Jeon, D. Nam, H. Cheong, J.-K. Kang, D.-H. Kim, J. Mater. Chem. A 2016, 4, 10151.
- 64 P. Fan, G. J. Chen, S. Chen, Z. H. Zheng, M. Azam, N. Ahmad, Z. H. Su, G. X. Liang, X. H. Zhang, Z. G. Chen, ACS Appl. Mater. Inter. 2021, 13, 46671.
- 65 C. Chen, K. H. Li, F. Li, B. Z. Wu, P. F. Jiang, H. D. Wu, S. C. Lu, G. L. Tu, Z. Liu, J. Tang, ACS Photonics 2020, 7, 352.
- 66 K. Li, F. Li, C. Chen, P. Jiang, S. Lu, S. Wang, Y. Lu, G. Tu, J. Guo, L. Shui, Z. Liu, B. Song, J. Tang, Nano Energy 2021, 86, 106101.
- 67 C. Wang, S. Lu, S. Li, S. Wang, X. Lin, J. Zhang, R. Kondrotas, K. Li, C. Chen, J. Tang, Nano Energy 2020, 71, 104577.
- 68 X. Wen, Z. Lu, G.-C. Wang, M. A. Washington, T.-M. Lu, Nano Energy 2021, 85, 106019.
- 69 K. Wang, C. Chen, H. Liao, S. Wang, J. Tang, M. C. Beard, Y. Yang, J. Phys. Chem. Lett. 2019, 10, 4881.
- 70 C. Chen, Y. Zhao, S. C. Lu, K. H. Li, Y. Li, B. Yang, W. H. Chen, L. Wang, D. B. Li, H. Deng, F. Yi, J. Tang, Adv. Energy Mater. 2017, 7, 1700866.
- 71 S. Lu, Y. Zhao, C. Chen, Y. Zhou, D. Li, K. Li, W. Chen, X. Wen, C. Wang, R. Kondrotas, N. Lowe, J. Tang, Adv. Electron. Mater. 2018, 4, 1700329.
- 72 C. Chen, X. Liu, K. Li, S. Lu, S. Wang, S. Li, Y. Lu, J. He, J. Zheng, X. Lin, J. Tang, Appl. Phys. Lett. 2021, 118, 172103.
- 73 H. Guo, Z. Chen, X. Wang, Q. Cang, C. Ma, X. Jia, N. Yuan, J. Ding, J. Mater. Chem. C 2019, 7, 14350.
- 74 X. Wang, R. Tang, Y. Yin, H. Ju, S. a. Li, C. Zhu, T. Chen, Sol. Energy Mat. Sol. C. 2019, 189, 5.
- 75 X. Wang, H. Guo, Z. Chen, C. Ma, X. Fang, X. Jia, N. Yuan, J. Ding, Sol. Energy 2019, 188, 218.
- 76 X. Wang, H. Guo, C. Ma, X. Jia, Y. Li, N. Yuan, J. Ding, Vacuum 2019, 166, 201.
- 77 K. K. Mamta, Sustainability 2021, 13, 12320.
- 78 K. Shen, C. Ou, T. Huang, H. Zhu, J. Li, Z. Li, Y. Mai, Sol. Energy Mat. Sol. C. 2018, 186, 58.
- 79 H. Guo, Z. Chen, X. Wang, Q. Cang, X. Jia, C. Ma, N. Yuan, J. Ding, Sol. RRL 2019, 3, 1800224.
- 80 K. Li, Y. Lu, X. Ke, S. Li, S. Lu, C. Wang, S. Wang, C. Chen, J. Tang, Sol. RRL 2020, 4, 2000220.
- 81 S. Zhang, J. Wang, S. Wen, M. Jiang, H. Xiao, X. Ding, N. Wang, M. Li, X. Zu, S. Li, C. Yam, B. Huang, L. Qiao, Phys. Rev. Lett. 2021, 126, 176401.
- 82 M. Huang, S. Lu, K. Li, Y. Lu, C. Chen, J. Tang, S. Chen, Sol. RRL 2021, 2100730.
- 83 D. Liu, R. Tang, Y. Ma, C. Jiang, W. Lian, G. Li, W. Han, C. Zhu, T. Chen, ACS Appl. Mater. Inter. 2021, 13, 18856.
- 84 G. Cheon, K. N. Duerloo, A. D. Sendek, C. Porter, Y. Chen, E. J. Reed, Nano Lett. 2017, 17, 1915.