Acid- and Base-Stable Cs2Pt(Cl,Br)6 Vacancy-Ordered Double Perovskites and Their Core–Shell Heterostructures for Solar Water Oxidation
Muhammed Hamdan
Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai, Tamil Nadu, 600036 India
Search for more papers by this authorManasa Manoj
Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai, Tamil Nadu, 600036 India
Search for more papers by this authorJigar Shaileshkumar Halpati
Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai, Tamil Nadu, 600036 India
Search for more papers by this authorCorresponding Author
Aravind Kumar Chandiran
Centre for Photo- and Electro-Chemical Energy (C-PEC), Indian Institute of Technology Madras, Adyar, Chennai, Tamil Nadu, 600036 India
Search for more papers by this authorMuhammed Hamdan
Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai, Tamil Nadu, 600036 India
Search for more papers by this authorManasa Manoj
Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai, Tamil Nadu, 600036 India
Search for more papers by this authorJigar Shaileshkumar Halpati
Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai, Tamil Nadu, 600036 India
Search for more papers by this authorCorresponding Author
Aravind Kumar Chandiran
Centre for Photo- and Electro-Chemical Energy (C-PEC), Indian Institute of Technology Madras, Adyar, Chennai, Tamil Nadu, 600036 India
Search for more papers by this authorAbstract
The stability of the absorber materials in an aqueous medium is the key to developing successful photoelectrochemical (PEC) solar fuel devices. The halide perovskite materials provide an opportunity to tune desired optoelectronic properties and show very high photovoltaic power conversion efficiency. However, their stability is poor as they decompose instantly in an aqueous electrolyte medium. Here the most stable vacancy ordered double perovskites Cs2PtCl6 and Cs2PtBr6, which remain intact in a wide range of pH values between 1 and 13 is reported. These materials also possess excellent absorption properties covering a significant portion of the visible spectrum. Like conventional ABX3 materials, these ultrastable materials offer tunability in optical properties via mixed halide sites. Through anion exchange, the conversion of Cs2PtCl6 to Cs2PtBr6 through core–shell conversion mechanism is shown. The latter led to the formation of type-II heterostructures. The electrochemical properties of these materials are investigated in detail and their ability to carry out solar water oxidation on an unprotected photoanode, with photocurrent density of >0.2 mA cm−2 at 1.23 V (vs. RHE) is demonstrated.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
solr202101092-sup-0001-SuppData-S1.pdf2.5 MB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P. A. Christensen, T. P. Curtis, T. A. Egerton, S. A. M. Kosa, J. R. Tinlin, Appl. Catal. B Environ. 2003, 41, 371.
- 2M. G. Peleyeju, E. H. Umukoro, L. Tshwenya, R. Moutloali, J. O. Babalola, O. A. Arotiba, RSC Adv. 2017, 7, 40571.
- 3M. F. Kuehnel, K. L. Orchard, K. E. Dalle, E. Reisner, J. Am. Chem. Soc. 2017, 139, 7217.
- 4S. Chu, P. Ou, P. Ghamari, S. Vanka, B. Zhou, I. Shih, J. Song, Z. Mi, J. Am. Chem. Soc. 2018, 140, 7869.
- 5Q. Wang, T. Hisatomi, Q. Jia, H. Tokudome, M. Zhong, C. Wang, Z. Pan, T. Takata, M. Nakabayashi, N. Shibata, Y. Li, I. D. Sharp, A. Kudo, T. Yamada, K. Domen, Nat. Mater. 2016, 15, 611.
- 6Y. Ling, G. Wang, D. A. Wheeler, J. Z. Zhang, Y. Li, Nano Lett. 2011, 11, 2119.
- 7A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
- 8T. Bin Song, Q. Chen, H. Zhou, C. Jiang, H. H. Wang, Y. M. Yang, Y. Liu, J. You, Y. Yang, J. Mater. Chem. A 2015, 3, 9032.
- 9D. Kiermasch, P. Rieder, K. Tvingstedt, A. Baumann, V. Dyakonov, Sci. Rep. 2016, 6, 1.
- 10R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Hörantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore, H. J. Snaith, Adv. Energy Mater. 2016, 6, 1.
10.1002/aenm.201502458 Google Scholar
- 11Q. A. Akkerman, V. D'Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, L. Manna, J. Am. Chem. Soc. 2015, 137, 10276.
- 12L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nano Lett. 2015, 15, 3692.
- 13Y. Zhao, Y. Dai, Q. Wang, Y. Dong, T. Song, A. Mudryi, Q. Chen, Y. Li, ChemCatChem 2021, 13, 2592.
- 14M. Z. Yang, Y. F. Xu, J. F. Liao, X. D. Wang, H. Y. Chen, D. Bin Kuang, J. Mater. Chem. A 2019, 7, 5409.
- 15C. Zheng, O. Rubel, J. Phys. Chem. C 2019, 123, 19385.
- 16M. Crespo-Quesada, L. M. Pazos-Outón, J. Warnan, M. F. Kuehnel, R. H. Friend, E. Reisner, Nat. Commun. 2016, 7, 6.
- 17L. F. Gao, W. J. Luo, Y. F. Yao, Z. G. Zou, Chem. Commun. 2018, 54, 11459.
- 18I. Poli, U. Hintermair, M. Regue, S. Kumar, E. V. Sackville, J. Baker, T. M. Watson, S. Eslava, P. J. Cameron, Nat. Commun. 2019, 10, 1.
- 19H. Zhang, Z. Yang, W. Yu, H. Wang, W. Ma, X. Zong, C. Li, Adv. Energy Mater. 2018, 8, 1800795.
- 20S. Ahmad, A. Sadhanala, R. L. Z. Hoye, V. Andrei, M. H. Modarres, B. Zhao, J. Rongé, R. Friend, M. De Volder, ACS Appl. Mater. Interfaces 2019, 11, 23198.
- 21V. Andrei, R. L. Z. Hoye, M. Crespo-Quesada, M. Bajada, S. Ahmad, M. De Volder, R. Friend, E. Reisner, Adv. Energy Mater. 2018, 8, 1.
10.1002/aenm.201801403 Google Scholar
- 22I. S. Kim, M. J. Pellin, A. B. F. Martinson, ACS Energy Lett. 2019, 4, 293.
- 23M. Hamdan, A. K. Chandiran, Angew. Chem., Int. Ed. 2020, 59, 16033.
- 24N. Sakai, A. A. Haghighirad, M. R. Filip, P. K. Nayak, S. Nayak, A. Ramadan, Z. Wang, F. Giustino, H. J. Snaith, J. Am. Chem. Soc. 2017, 139, 6030.
- 25J. P. Jayaraman, M. Hamdan, M. Velpula, N. S. Kaisare, A. K. Chandiran, ACS Appl. Mater. Interfaces 2021, 13, 16267.
- 26B. Lee, C. C. Stoumpos, N. Zhou, F. Hao, C. Malliakas, C. Y. Yeh, T. J. Marks, M. G. Kanatzidis, R. P. H. Chang, J. Am. Chem. Soc. 2014, 136, 15379.
- 27S. Yang, L. Wang, S. Zhao, A. Liu, Y. Zhou, Q. Han, F. Yu, L. Gao, C. Zhang, T. Ma, ACS Appl. Mater. Interfaces 2020, 12, 44700.
- 28L. Zhou, J. F. Liao, Z. G. Huang, X. D. Wang, Y. F. Xu, H. Y. Chen, D. Bin Kuang, C. Y. Su, ACS Energy Lett. 2018, 3, 2613.
- 29M. G. Ju, M. Chen, Y. Zhou, H. F. Garces, J. Dai, L. Ma, N. P. Padture, X. C. Zeng, ACS Energy Lett. 2018, 3, 297.
- 30P. Vishnoi, J. L. Zuo, J. A. Cooley, L. Kautzsch, A. Gómez-Torres, J. Murillo, S. Fortier, S. D. Wilson, R. Seshadri, A. K. Cheetham, Angew. Chem., Int. Ed. 2021, 60, 5184.
- 31H. Peng, L. Xu, Y. Sheng, W. Sun, Y. Yang, H. Deng, W. Chen, J. Liu, Small 2021, 17, 1.
- 32P. Reiss, M. Protière, L. Li, Small 2009, 5, 154.
- 33S. Kim, B. Fisher, M. Bawendi, 2003, 11466.
- 34C. X. Zhang, S. Wang, X. Li, M. Yuan, L. Turyanska, X. Yang, Adv. Funct. Mater. 2020, 30, 1910582.
- 35M. Saruyama, S. Kim, T. Nishino, M. Sakamoto, M. Haruta, H. Kurata, S. Akiyama, T. Yamada, K. Domen, T. Teranishi, Chem. Sci. 2018, 9, 4830.
- 36R. Shannon, Acta. Cryst. 1976, A32, 751.
- 37X. Han, J. Liang, J. H. Yang, K. Soni, Q. Fang, W. Wang, J. Zhang, S. Jia, A. A. Martí, Y. Zhao, J. Lou, Small 2019, 15, 1.
- 38I. Levchuk, A. Osvet, X. Tang, M. Brandl, J. D. Perea, F. Hoegl, G. J. Matt, R. Hock, M. Batentschuk, C. J. Brabec, Nano Lett. 2017, 17, 2765.
- 39R. G. Pearson, J. Am. Chem. Soc. 1969, 4947.
10.1021/ja01046a001 Google Scholar
- 40D. Torres, J. Freire, Phys. Rev. B: Condens. Matter Mater. Phys. 1997, 56, 7763.
- 41A. Kaltzoglou, M. Antoniadou, A. G. Kontos, C. C. Stoumpos, D. Perganti, E. Siranidi, V. Raptis, K. Trohidou, V. Psycharis, M. G. Kanatzidis, P. Falaras, J. Phys. Chem. C 2016, 120, 11777.
- 42D. M. Adams, H. A. Gebbie, Spectrochim. Acta 1963, 19, 925.
- 43P. J. Hendra, P. J. D. Park, Spectrochim. Acta, Part A 1967, 23, 1635.
- 44M. Debeau, C. R. Krauzman, C. R. Acad. Sci. Ser. B. 1967, 264, 1724.
- 45R. W. Berg, J. Chem. Phys. 1979, 71, 2531.
- 46R. J. Deeth, H. D. B. Jenkins, J. Phys. Chem. A 1997, 101, 4793.
- 47L. Chen, Y. Y. Tan, Z. X. Chen, T. Wang, S. Hu, Z. A. Nan, L. Q. Xie, Y. Hui, J. X. Huang, C. Zhan, S. H. Wang, J. Z. Zhou, J. W. Yan, B. W. Mao, Z. Q. Tian, J. Am. Chem. Soc. 2019, 141, 1665.
- 48P. Shrivastava, B. Kavaipatti, P. Bhargava, Int. J. Energy Res. 2021, 45, 8049.
- 49T. Appdurai, R. Kashikar, P. Sikarwar, S. Antharjanam, B. R. K. Nanda, A. K. Chandiran, Commun. Mater. 2021.
- 50Y. Cai, W. Xie, H. Ding, Y. Chen, K. Thirumal, L. H. Wong, N. Mathews, S. G. Mhaisalkar, M. Sherburne, M. Asta, Chem. Mater. 2017, 29, 7740.
- 51M. Faizan, K. C. Bhamu, G. Murtaza, X. He, N. Kulhari, M. M. AL-Anazy, S. H. Khan, Sci. Rep. 2021, 11, Article no. 6965, https://doi.org/10.1038/s41598-021-86145-x.
- 52X. Ye, A. Liu, Y. Zhao, Q. Han, T. Kitamura, T. Ma, Int. J. Energy Res. 2022, 1, https://doi.org/10.1002/er.7696.
10.1002/er.7696 Google Scholar
- 53S. Sapra, S. Mayilo, T. A. Klar, A. L. Rogach, J. Feldmann, Adv. Mater. 2007, 19, 569.
- 54S. E. Koops, B. C. O'Regan, P. R. F. Barnes, J. R. Durrant, J. Am. Chem. Soc. 2009, 131, 4808.