Bismuthiol-Mediated Synthesis of Ordered Carbon Nitride Nanosheets with Enhanced Photocatalytic Performance
Neeta Karjule
Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 Israel
Search for more papers by this authorJesús Barrio
Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 Israel
Search for more papers by this authorAyelet Tashakory
Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 Israel
Search for more papers by this authorCorresponding Author
Menny Shalom
Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 Israel
Search for more papers by this authorNeeta Karjule
Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 Israel
Search for more papers by this authorJesús Barrio
Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 Israel
Search for more papers by this authorAyelet Tashakory
Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 Israel
Search for more papers by this authorCorresponding Author
Menny Shalom
Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 Israel
Search for more papers by this authorAbstract
The facile synthesis of ordered carbon nitride (CN) sheets with excellent photoactivity for hydrogen production and pollutant degradation is reported. To direct the synthesis of CN materials, sulfur-based supramolecular assemblies composed of bismuthiol and melamine are utilized. Upon calcination at high temperature, CN materials with tunable morphology, porosity, and photophysical properties are obtained. The influence of several parameters including solvents, solubility, and monomer concentration are studied to determine their effect on the supramolecular assemblies and on the resulting CN properties and photoactivity. The best CN, prepared in dimethyl sulfoxide as the solvent, exhibits high specific surface area, beneficial electronic structure, and excellent photocatalytic activity for the hydrogen evolution reaction and the degradation of rhodamine B dye.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
solr202000017-sup-0001-SuppData-S1.docx4.9 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Barrio, M. Shalom, ChemCatChem 2018, 10, 5573.
- 2X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 2009, 8, 76.
- 3W. J. Ong, L. L. Tan, Y. H. Ng, S. T. Yong, S. P. Chai, Chem. Rev. 2016, 116, 7159.
- 4A. Savateev, I. Ghosh, B. König, M. Antonietti, Angew. Chem. Int. Ed. 2018, 57, 15936.
- 5Z. Wang, X. Hu, Z. Liu, G. Zou, G. Wang, K. Zhang, ACS Catal. 2019, 10260.
- 6J. Safaei, N. A. Mohamed, M. F. Mohamad Noh, M. F. Soh, N. A. Ludin, M. A. Ibrahim, W. N. R. W. Isahak, M. A. Mat Teridi, J. Mater. Chem. A 2018, 6, 22346.
- 7N. Karjule, R. Phatake, M. Volokh, I. Hod, M. Shalom, Small Methods 2019, 3, 1900401.
- 8J. Wen, J. Xie, X. Chen, X. Li, Appl. Surf. Sci. 2017, 391, 72.
- 9J. Zhu, P. Xiao, H. Li, S. A. C. Carabineiro, ACS Appl. Mater. Interfaces 2014, 6, 16449.
- 10Z. Zhou, Y. Zhang, Y. Shen, S. Liu, Y. Zhang, Chem. Soc. Rev. 2018, 47, 2298.
- 11D. Ni, Y. Zhang, Y. Shen, S. Liu, Y. Zhang, Chinese Chem. Lett 2020, 31, 115.
- 12J. Wu, X. Ji, X. Yuan, Z. Zhao, Y. Li, B. Wen, H. Zhang, D. Yu, Y. Zhao, Y. Tian, Chem. Mater. 2019, 31, 9188.
- 13J. Wang, Y. Shen, Y. Li, S. Liu, Y. Zhang, Chem. A Eur. J. 2016, 22, 12449.
- 14M. Zhou, P. Yang, R. Yuan, A. M. Asiri, M. Wakeel, X. Wang, ChemSusChem 2017, 10, 4451.
- 15P. Xia, M. Liu, B. Cheng, J. Yu, L. Zhang, ACS Sustain. Chem. Eng. 2018, 6, 8945.
- 16J. Sun, R. Phatake, A. Azoulay, G. Peng, C. Han, J. Barrio, J. Xu, X. Wang, M. Shalom, Chem. A Eur. J. 2018, 24, 14921.
- 17D. K. Chauhan, S. Jain, V. R. Battula, K. Kailasam, Carbon N. Y. 2019, 152, 40.
- 18X. Qu, S. Hu, J. Bai, P. Li, G. Lu, X. Kang, J. Mater. Sci. Technol. 2018, 34, 1932.
- 19C. Yang, W. Teng, Y. Song, Y. Cui, Chinese J. Catal. 2018, 39, 1615.
- 20W. Yu, J. Chen, T. Shang, L. Chen, L. Gu, T. Peng, Appl. Catal. B Environ. 2017, 219, 693.
- 21Y. Ren, D. Zeng, W.-J. Ong, Chinese J. Catal. 2019, 40, 289.
- 22Y. Xiong, Y. Chen, N. Yang, C. Jin, Q. Sun, Sol. RRL 2019, 3, 1800341.
- 23M. Shalom, S. Inal, C. Fettkenhauer, D. Neher, M. Antonietti, J. Am. Chem. Soc. 2013, 135, 7118.
- 24Y.-S. Jun, E. Z. Lee, X. Wang, W. H. Hong, G. D. Stucky, A. Thomas, Adv. Funct. Mater. 2013, 23, 3661.
- 25Q. Zheng, D. P. Durkin, J. E. Elenewski, Y. Sun, N. A. Banek, L. Hua, H. Chen, M. J. Wagner, W. Zhang, D. Shuai, Environ. Sci. Technol. 2016, 50, 12938.
- 26G. Shien, D. Zhaopeng, L. Mingxia, J. Baojiang, T. Chungui, P. Qingjiang, F. Honggang, Angew. Chem. Int. Ed. 2016, 55, 1830.
- 27Z. Wang, M. Chen, Y. Huang, X. Shi, Y. Zhang, T. Huang, J. Cao, W. Ho, S. C. Lee, Appl. Catal. B Environ. 2018, 239, 352.
- 28J. Zhang, J. Sun, K. Maeda, K. Domen, P. Liu, M. Antonietti, X. Fu, X. Wang, Energy Environ. Sci. 2011, 4, 675.
- 29J.-Y. Song, H.-J. Kang, J. C. Won, Y. H. Kim, Y.-S. Jun, H. S. Jeong, Mater. Horizons 2019, 6, 1726.
- 30J. Zhang, M. Zhang, G. Zhang, X. Wang, ACS Catal. 2012, 2, 940.
- 31G. Zhang, J. Zhang, M. Zhang, X. Wang, J. Mater. Chem. 2012, 22, 8083.
- 32L.-L. Feng, Y. Zou, C. Li, S. Gao, L.-J. Zhou, Q. Sun, M. Fan, H. Wang, D. Wang, G.-D. Li, X. Zou, Int. J. Hydrogen Energy 2014, 39, 15373.
- 33Q. Fan, J. Liu, Y. Yu, S. Zuo, B. Li, Appl. Surf. Sci. 2017, 391, 360.
- 34S. Dolai, J. Barrio, G. Peng, A. Grafmueller, M. Shalom, Nanoscale 2019, 11, 5564.
- 35X. Weinan, C. Gang, L. Chunmei, S. Jingxue, H. Zhonghui, Z. Yansong, H. Yidong, M. Qingqiang, ChemCatChem 2016, 8, 2838.
- 36J. Wang, S. Cao, J. Yu, Sol. RRL 2019, 1900469, 1900469.
- 37J. Barrio, M. Shalom, ACS Appl. Mater. Interfaces 2018, 10, 39688.
- 38J. Sun, J. Xu, A. Grafmueller, X. Huang, C. Liedel, G. Algara-Siller, M. Willinger, C. Yang, Y. Fu, X. Wang, M. Shalom, Appl. Catal. B Environ. 2017, 205, 1.
- 39J.-W. Zhang, S. Gong, N. Mahmood, L. Pan, X. Zhang, J.-J. Zou, Appl. Catal. B Environ. 2018, 221, 9.
- 40Z.-F. Huang, J. Song, L. Pan, Z. Wang, X. Zhang, J.-J. Zou, W. Mi, X. Zhang, L. Wang, Nano Energy 2015, 12, 646.
- 41G. Peng, L. Xing, J. Barrio, M. Volokh, M. Shalom, Angew. Chem. Int. Ed. 2018, 57, 1186.
- 42B. Roy, P. Bairi, A. K. Nandi, RSC Adv. 2014, 4, 1708.
- 43S. Dolai, N. Karjule, A. Azoulay, J. Barrio, RSC Adv. 2019, 9, 26091.
- 44J. L. Cook, C. A. Hunter, C. M. R. Low, A. Perez-Velasco, J. G. Vinter, Angew. Chem. Int. Ed. 2007, 46, 3706.
- 45J. Barrio, A. Grafmüller, J. Tzadikov, M. Shalom, Appl. Catal. B Environ. 2018, 237, 681.
- 46R. S. Bhosale, M. Al Kobaisi, S. V. Bhosale, S. Bhargava, S. V. Bhosale, Sci. Rep. 2015, 5, 14609.
- 47X. Lin, M. Suzuki, M. Gushiken, M. Yamauchi, T. Karatsu, T. Kizaki, Y. Tani, K. Nakayama, M. Suzuki, H. Yamada, T. Kajitani, T. Fukushima, Y. Kikkawa, S. Yagai, Sci. Rep. 2017, 7, 43098.
- 48Y.-S. Jun, J. Park, S. U. Lee, A. Thomas, W. H. Hong, G. D. Stucky, Angew. Chemie 2013, 125, 11289.
10.1002/ange.201304034 Google Scholar
- 49Y. Shiraishi, Y. Kofuji, S. Kanazawa, H. Sakamoto, S. Ichikawa, S. Tanaka, T. Hirai, Chem. Commun. 2014, 50, 15255.
- 50J. Xu, S. Cao, T. Brenner, X. Yang, J. Yu, M. Antonietti, M. Shalom, Adv. Funct. Mater. 2015, 25, 6265.
- 51P. Kalisman, Y. Nakibli, L. Amirav, Nano Lett. 2016, 16, 1776.