Recent Progress on Exploring Stable Metal–Organic Frameworks for Photocatalytic Solar Fuel Production
Xu-Sheng Wang
College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632 P. R. China
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
Search for more papers by this authorLan Li
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences (CAS), Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorCorresponding Author
Dan Li
College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632 P. R. China
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
Search for more papers by this authorCorresponding Author
Jinhua Ye
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0814 Japan
TJU-NIMS International Collaboration Laboratory, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorXu-Sheng Wang
College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632 P. R. China
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
Search for more papers by this authorLan Li
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences (CAS), Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorCorresponding Author
Dan Li
College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632 P. R. China
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
Search for more papers by this authorCorresponding Author
Jinhua Ye
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0814 Japan
TJU-NIMS International Collaboration Laboratory, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorAbstract
Solar energy, a clean and sustainable energy source, can be harvested and converted to solar fuel to meet the ever-increasing energy demand. Integrating the photosensitizers and active catalytic sites into a single solid, metal–organic framework (MOF) with high void architectures and tunable chemical structures, is proposed as a promising platform for photocatalysis. However, compared with the traditional inorganic photocatalysts, the photocatalytic applications of MOFs are greatly hindered by its instability, especially the chemical instability. In this review, the background related to solar fuel production and MOFs are first discussed. Then, several strategies for designing stable MOFs are presented. Third, newly developed approaches for synthesizing highly efficient solar fuel production MOFs are summarized. Finally, the challenges and future perspectives using MOFs for solar fuel production are discussed. This review is expected to provide a deeper understanding of highly stable MOF design and new insights for the application of stable MOFs for solar fuel production.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1B. Dudley, BP Stat. Rev. World Energy, 2019.
- 2a) I. Obraztsov, W. Kutner, F. D'Souza, Solar RRL 2017, 1, 1600002; b) P. Bi, X. Hao, Solar RRL 2019, 3, 1800263; c) G. Yang, Y. Li, H. Pang, K. Chang, J. Ye, Adv. Funct. Mater. 2019, 1904622.
- 3C. S. Ponseca Jr., P. Chabera, J. Uhlig, P. Persson, V. Sundstrom, Chem. Rev. 2017, 117, 10940.
- 4A. Fujishima, K. Honda, Nature 1972, 238, 37.
- 5a) M. Z. Rahman, C. B. Mullins, Acc. Chem. Res. 2018;
b) J. Li, D. Wu, J. Iocozzia, H. Du, X. Liu, Y. Yuan, W. Zhou, Z. Li, Z. Xue, Z. Lin, Angew. Chem. Int. Ed. 2019, 58, 1985;
c) G. Liu, T. Wang, H. Zhang, X. Meng, D. Hao, K. Chang, P. Li, T. Kako, J. Ye, Angew. Chem. Int. Ed. 2015, 127, 13765;
10.1002/ange.201505802 Google Scholard) G. Zhao, G. Liu, H. Pang, H. Liu, H. Zhang, K. Chang, X. Meng, X. Wang, J. Ye, Small 2016, 12, 6160; e) K. Chang, X. Hai, H. Pang, H. Zhang, L. Shi, G. Liu, H. Liu, G. Zhao, M. Li, J. Ye, Adv. Mater. 2016, 28, 10033; f) G. Zhao, Y. Sun, W. Zhou, X. Wang, K. Chang, G. Liu, H. Liu, T. Kako, J. Ye, Adv. Mater. 2017, 29; g) X. Zhao, J. Feng, J. Liu, W. Shi, G. Yang, G. C. Wang, P. Cheng, Angew. Chem. Int. Ed. 2018, 57, 9790; h) X. Hai, K. Chang, H. Pang, M. Li, P. Li, H. Liu, L. Shi, J. Ye, J. Am. Chem. Soc. 2016, 138, 14962; i) Y.-J. Yuan, D. Chen, Z.-T. Yu, Z.-G. Zou, J. Mater. Chem. A 2018, 6, 11606; j) X. Hai, W. Zhou, S. Wang, H. Pang, K. Chang, F. Ichihara, J. Ye, Nano Energy 2017, 39, 409; k) S. Ida, K. Sato, T. Nagata, H. Hagiwara, M. Watanabe, N. Kim, Y. Shiota, M. Koinuma, S. Takenaka, T. Sakai, E. Ertekin, T. Ishihara, Angew Chem. Int. Ed. 2018, 57, 9073; l) K. Chang, H. Pang, X. Hai, G. Zhao, H. Zhang, L. Shi, F. Ichihara, J. Ye, Appl. Catal. B: Environ. 2018, 232, 446; m) Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, R. L. Withers, Nat. Mater. 2010, 9, 559; n) R. Xu, X.-S. Wang, H. Zhao, H. Lin, Y.-B. Huang, R. Cao, Catal. Sci. Technol. 2018, 8, 2224.
- 6L. Zhang, X. Yang, S. Li, Z. Yu, A. Hagfeldt, L. Sun, Solar RRL 2019, 1900436, https://doi.org/10.1002/solr.201900436.
- 7a) X. Li, J.-L. Shi, H. Hao, X. Lang, Appl. Catal. B: Environ. 2018, 232, 260; b) Z. Wang, X. Lang, Appl. Catal. B: Environ. 2018, 224, 404.
- 8T. H. Noh, O. S. Jung, Acc. Chem. Res. 2016, 49, 1835.
- 9a) S. Biswas, M. Maes, A. Dhakshinamoorthy, M. Feyand, D. E. De Vos, H. Garcia, N. Stock, J. Mater. Chem. 2012, 22, 10200; b) Y. B. Huang, J. Liang, X. S. Wang, R. Cao, Chem. Soc. Rev. 2017, 46, 126; c) X. S. Wang, J. Liang, L. Li, Z. J. Lin, P. P. Bag, S. Y. Gao, Y. B. Huang, R. Cao, Inorg. Chem. 2016, 55, 2641; d) X. S. Wang, L. Li, D. Q. Yuan, Y. B. Huang, R. Cao, J. Hazard. Mater. 2017, 344, 283; e) L. Li, J.-D. Yi, Z.-B. Fang, X.-S. Wang, N. Liu, Y.-N. Chen, T.-F. Liu, R. Cao, Chem. Mater. 2019, 31, 7584; f) W. Li, B. Ren, Y. Chen, X. Wang, R. Cao, ACS Appl. Mater. Inter. 2018, 10, 37529; g) L. Li, Q. Yin, H.-F. Li, T.-F. Liu, R. Cao, Mater. Chem. Front. 2018, 2, 1436.
- 10S. Bordiga, C. Lamberti, G. Ricchiardi, L. Regli, F. Bonino, A. Damin, K. P. Lillerud, M. Bjorgen, A. Zecchina, Chem. Commun. 2004, 2300.
- 11M. Alvaro, E. Carbonell, B. Ferrer, F. X. Llabres i Xamena, H. Garcia, Chem. Eur. J. 2007, 13, 5106.
- 12a) A. Dhakshinamoorthy, Z. Li, H. Garcia, Chem. Soc. Rev. 2018, 47, 8134; b) P. P. Bag, X.-S. Wang, P. Sahoo, J. Xiong, R. Cao, Catal. Sci. Technol. 2017, 7, 5113; c) H. Zhao, X. Wang, J. Feng, Y. Chen, X. Yang, S. Gao, R. Cao, Catal. Sci. Technol. 2018, 8, 1288; d) X.-S. Wang, C.-H. Chen, F. Ichihara, M. Oshikiri, J. Liang, L. Li, Y. Li, H. Song, S. Wang, T. Zhang, Y.-B. Huang, R. Cao, J. Ye, Appl. Catal. B: Environ. 2019, 253, 323.
- 13a) K. Takanabe, ACS Catal. 2017, 7, 8006; b) J. Hao, X. Xu, H. Fei, L. Li, B. Yan, Adv. Mater. 2018, 1705634; c) W. Wang, X. Xu, W. Zhou, Z. Shao, Adv. Sci. 2017, 4, 1600371; d) C.-C. Wang, X.-D. Du, J. Li, X.-X. Guo, P. Wang, J. Zhang, Appl. Catal. B: Environ. 2016, 193, 198; e) T. Zhang, W. Lin, Chem. Soc. Rev. 2014, 43, 5982; f) Y. Li, H. Xu, S. Ouyang, J. Ye, Phys. Chem. Chem. Phys. 2016, 18, 7563; g) K. Li, B. Peng, T. Peng, ACS Catal. 2016, 6, 7485; h) R. Li, W. Zhang, K. Zhou, Adv. Mater. 2018, 1705512; i) Z. Lei, Y. Xue, W. Chen, W. Qiu, Y. Zhang, S. Horike, L. Tang, Adv. Energy Mater. 2018, 8, 1801587; j) A. Dhakshinamoorthy, A. M. Asiri, H. Garcia, Angew. Chem. Int. Ed. 2016, 55, 5414; k) J. L. White, M. F. Baruch, J. E. Pander Iii, Y. Hu, I. C. Fortmeyer, J. E. Park, T. Zhang, K. Liao, J. Gu, Y. Yan, T. W. Shaw, E. Abelev, A. B. Bocarsly, Chem. Rev. 2015, 115, 12888; l) X. Chang, T. Wang, J. Gong, Energy Environ. Sci. 2016, 9, 2177; m) J. W. Maina, C. Pozo-Gonzalo, L. Kong, J. Schütz, M. Hill, L. F. Dumée, Mater. Horiz. 2017, 4, 345; n) C. S. Diercks, Y. Liu, K. E. Cordova, O. M. Yaghi, Nat. Mater. 2018, 17, 301.
- 14a) A. M. Abdel-Mageed, B. Rungtaweevoranit, M. Parlinska-Wojtan, X. Pei, O. M. Yaghi, R. J. Behm, J. Am. Chem. Soc. 2019, 141, 5201; b) H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. Yazaydin, R. Q. Snurr, M. O'Keeffe, J. Kim, O. M. Yaghi, Science 2010, 329, 424; c) C. E. Wilmer, O. K. Farha, T. Yildirim, I. Eryazici, V. Krungleviciute, A. A. Sarjeant, R. Q. Snurr, J. T. Hupp, Energy Environ. Sci. 2013, 6, 1158; d) L. Liang, C. Liu, F. Jiang, Q. Chen, L. Zhang, H. Xue, H.-L. Jiang, J. Qian, D. Yuan, M. Hong, Nat. Commun. 2017, 8; e) X. S. Wang, Y. B. Huang, Z. J. Lin, R. Cao, Dalton Trans. 2014, 43, 11950; f) X.-S. Wang, L. Li, J. Liang, Y.-B. Huang, R. Cao, ChemCatChem 2017, 9, 971; g) C. H. Chen, X. S. Wang, L. Li, Y. B. Huang, R. Cao, Dalton Trans. 2018, 47, 3452; h) D. Luo, X. Z. Wang, C. Yang, X. P. Zhou, D. Li, J. Am. Chem. Soc. 2018, 140, 118; i) L. L. Xu, H. F. Zhang, M. Li, S. W. Ng, J. H. Feng, J. G. Mao, D. Li, J. Am. Chem. Soc. 2018, 140, 11569; j) H. Cai, Y.-L. Huang, D. Li, Coordin. Chem. Rev. 2019, 378, 207.
- 15a) J. Qin, S. Yuan, L. Zhang, B. Li, D. Y. Du, N. Huang, W. Guan, H. Drake, J. Pang, Y. Q. Lan, A. Alsalme, H. C. Zhou, J. Am. Chem. Soc. 2019, 141, 2054; b) D. Feng, Z. Y. Gu, J. R. Li, H. L. Jiang, Z. Wei, H. C. Zhou, Angew. Chem. Int. Ed. 2012, 51, 10307.
- 16a) Y.-Z. Zhang, T. He, X.-J. Kong, Z.-X. Bian, X.-Q. Wu, J.-R. Li, ACS Mater. Lett. 2019, 1, 20; b) X. L. Lv, K. Wang, B. Wang, J. Su, X. Zou, Y. Xie, J. R. Li, H. C. Zhou, J. Am. Chem. Soc. 2017, 139, 211.
- 17S. Surble, C. Serre, C. Mellot-Draznieks, F. Millange, G. Ferey, Chem. Commun. 2006, 284.
- 18a) J. J. Low, A. I. Benin, P. Jakubczak, J. F. Abrahamian, S. A. Faheem, R. R. Willis, J. Am. Chem. Soc. 2009, 131, 15834; b) S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang, P. Zhang, Q. Wang, L. Zou, Y. Zhang, L. Zhang, Y. Fang, J. Li, H. C. Zhou, Adv. Mater. 2018, 30, 1704303.
- 19a) D. Feng, W. C. Chung, Z. Wei, Z. Y. Gu, H. L. Jiang, Y. P. Chen, D. J. Darensbourg, H. C. Zhou, J. Am. Chem. Soc. 2013, 135, 17105; b) M. Dan-Hardi, C. Serre, T. Frot, L. Rozes, G. Maurin, C. Sanchez, G. Ferey, J. Am. Chem. Soc. 2009, 131, 10857; c) P. Horcajada, S. Surble, C. Serre, D. Y. Hong, Y. K. Seo, J. S. Chang, J. M. Greneche, I. Margiolaki, G. Ferey, Chem. Commun. 2007, 2820.
- 20a) K. Wang, X. L. Lv, D. Feng, J. Li, S. Chen, J. Sun, L. Song, Y. Xie, J. R. Li, H. C. Zhou, J. Am. Chem. Soc. 2016, 138, 914; b) X. C. Huang, Y. Y. Lin, J. P. Zhang, X. M. Chen, Angew. Chem. Int. Ed. 2006, 45, 1557; c) K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe, O. M. Yaghi, P. Natl. Acad. Sci. U S A 2006, 103, 10186.
- 21J. B. DeCoste, G. W. Peterson, H. Jasuja, T. G. Glover, Y.-g. Huang, K. S. Walton, J. Mater. Chem. A 2013, 1, 5642.
- 22J. E. Mondloch, M. J. Katz, N. Planas, D. Semrouni, L. Gagliardi, J. T. Hupp, O. K. Farha, Chem. Commun. 2014, 50, 8944.
- 23G. F. Hassan, N. El Hoda Saad, M. Hmadeh, P. Karam, Dalton Trans. 2018, 47, 15765.
- 24S. Yuan, X. Sun, J. Pang, C. Lollar, J.-S. Qin, Z. Perry, E. Joseph, X. Wang, Y. Fang, M. Bosch, D. Sun, D. Liu, H.-C. Zhou, Joule 2017, 1, 806.
- 25Y. Song, Z. Li, Y. Zhu, X. Feng, J. S. Chen, M. Kaufmann, C. Wang, W. Lin, J. Am. Chem. Soc. 2019, 141, 12219.
- 26X. Fang, Q. Shang, Y. Wang, L. Jiao, T. Yao, Y. Li, Q. Zhang, Y. Luo, H. L. Jiang, Adv. Mater. 2018, 30, 1705112.
- 27G. Lan, Y. Y. Zhu, S. S. Veroneau, Z. Xu, D. Micheroni, W. Lin, J. Am. Chem. Soc. 2018, 140, 5326.
- 28F. C. Leng, H. Liu, M. L. Ding, Q. P. Lin, H. L. Jiang, ACS Catal. 2018, 8, 4583.
- 29J. D. Xiao, L. Han, J. Luo, S. H. Yu, H. L. Jiang, Angew. Chem. Int. Ed. 2018, 57, 1103.
- 30S. Y. Han, D. L. Pan, H. Chen, X. B. Bu, Y. X. Gao, H. Gao, Y. Tian, G. S. Li, G. Wang, S. L. Cao, C. Q. Wan, G. C. Guo, Angew. Chem. Int. Ed. 2018, 57, 9864.
- 31S. Yuan, J. S. Qin, H. Q. Xu, J. Su, D. Rossi, Y. Chen, L. Zhang, C. Lollar, Q. Wang, H. L. Jiang, D. H. Son, H. Xu, Z. Huang, X. Zou, H. C. Zhou, ACS Central Sci. 2018, 4, 105.
- 32T. He, S. Chen, B. Ni, Y. Gong, Z. Wu, L. Song, L. Gu, W. Hu, X. Wang, Angew. Chem. Int. Ed. 2018, 57, 3493.
- 33H. Liu, C. Xu, D. Li, H. L. Jiang, Angew. Chem. Int. Ed. 2018, 57, 5379.
- 34Y.-F. Chen, L.-L. Tan, J.-M. Liu, S. Qin, Z.-Q. Xie, J.-F. Huang, Y.-W. Xu, L.-M. Xiao, C.-Y. Su, Appl. Catal. B: Environ. 2017, 206, 426.
- 35B. Zhang, J. Zhang, X. Tan, D. Shao, J. Shi, L. Zheng, J. Zhang, G. Yang, B. Han, ACS Appl. Mater. Inter. 2018, 10, 16418.
- 36R. Wang, L. Gu, J. Zhou, X. Liu, F. Teng, C. Li, Y. Shen, Y. Yuan, Adv. Mater. Interfaces 2015, 2, 1500037.
- 37M. A. Nasalevich, R. Becker, E. V. Ramos-Fernandez, S. Castellanos, S. L. Veber, M. V. Fedin, F. Kapteijn, J. N. H. Reek, J. I. van der Vlugt, J. Gascon, Energy Environ. Sci. 2015, 8, 364.
- 38D. Shi, R. Zheng, M. J. Sun, X. Cao, C. X. Sun, C. J. Cui, C. S. Liu, J. Zhao, M. Du, Angew. Chem. Int. Ed. 2017, 56, 14637.
- 39X. Y. Dong, M. Zhang, R. B. Pei, Q. Wang, D. H. Wei, S. Q. Zang, Y. T. Fan, T. C. Mak, Angew. Chem. Int. Ed. 2016, 55, 2073.
- 40J. D. Xiao, Q. Shang, Y. Xiong, Q. Zhang, Y. Luo, S. H. Yu, H. L. Jiang, Angew. Chem. Int. Ed. 2016, 55, 9389.
- 41T. Zhou, Y. Du, A. Borgna, J. Hong, Y. Wang, J. Han, W. Zhang, R. Xu, Energy Environ. Sci. 2013, 6, 3229.
- 42X. Wang, X. Zhang, W. Zhou, L. Liu, J. Ye, D. Wang, Nano Energy 2019, 62, 250.
- 43Y. Xiao, Y. Qi, X. Wang, X. Wang, F. Zhang, C. Li, Adv. Mater. 2018, 1803401.
- 44L. Chi, Q. Xu, X. Liang, J. Wang, X. Su, Small 2016, 12, 1351.
- 45G. Wang, Q. Sun, Y. Liu, B. Huang, Y. Dai, X. Zhang, X. Qin, Chem. Eur. J. 2015, 21, 2364.
- 46Y. Horiuchi, T. Toyao, K. Miyahara, L. Zakary, D. D. Van, Y. Kamata, T. H. Kim, S. W. Lee, M. Matsuoka, Chem. Commun. 2016, 52, 5190.
- 47G. Paille, M. Gomez-Mingot, C. Roch-Marchal, B. Lassalle-Kaiser, P. Mialane, M. Fontecave, C. Mellot-Draznieks, A. Dolbecq, J. Am. Chem. Soc. 2018, 140, 3613.
- 48J. Han, D. Wang, Y. Du, S. Xi, Z. Chen, S. Yin, T. Zhou, R. Xu, Appl. Catal. A: Gen. 2016, 521, 83.
- 49J. Han, D. Wang, Y. Du, S. Xi, J. Hong, S. Yin, Z. Chen, T. Zhou, R. Xu, J. Mater. Chem. A 2015, 3, 20607.
- 50Y. An, Y. Liu, P. An, J. Dong, B. Xu, Y. Dai, X. Qin, X. Zhang, M. H. Whangbo, B. Huang, Angew. Chem. Int. Ed. 2017, 56, 3036.
- 51Y. Xie, Z. Fang, L. Li, H. Yang, T. F. Liu, ACS Appl. Mater. Inter. 2019, 11, 27017.
- 52D. Wang, R. Huang, W. Liu, D. Sun, Z. Li, ACS Catal. 2014, 4, 4254.
- 53E. X. Chen, M. Qiu, Y. F. Zhang, Y. S. Zhu, L. Y. Liu, Y. Y. Sun, X. Bu, J. Zhang, Q. Lin, Adv. Mater. 2018, 30, 1704388.
- 54Y. Fu, D. Sun, Y. Chen, R. Huang, Z. Ding, X. Fu, Z. Li, Angew. Chem. Int. Ed. 2012, 51, 3364.
- 55T. Kajiwara, M. Fujii, M. Tsujimoto, K. Kobayashi, M. Higuchi, K. Tanaka, S. Kitagawa, Angew. Chem. Int. Ed. 2016, 55, 2697.
- 56H. Zhang, J. Wei, J. Dong, G. Liu, L. Shi, P. An, G. Zhao, J. Kong, X. Wang, X. Meng, J. Zhang, J. Ye, Angew. Chem. Int. Ed. 2016, 55, 14310.
- 57J. Liu, Y.-Z. Fan, X. Li, Z. Wei, Y.-W. Xu, L. Zhang, C.-Y. Su, Appl. Catal. B: Environ. 2018, 231, 173.
- 58D. Sun, Y. Fu, W. Liu, L. Ye, D. Wang, L. Yang, X. Fu, Z. Li, Chem. Eur. J. 2013, 19, 14279.
- 59M. B. Chambers, X. Wang, N. Elgrishi, C. H. Hendon, A. Walsh, J. Bonnefoy, J. Canivet, E. A. Quadrelli, D. Farrusseng, C. Mellot-Draznieks, M. Fontecave, ChemSusChem 2015, 8, 603.
- 60M. Sun, S. Yan, Y. Sun, X. Yang, Z. Guo, J. Du, D. Chen, P. Chen, H. Xing, Dalton Trans. 2018, 47, 909.
- 61H. Fei, M. D. Sampson, Y. Lee, C. P. Kubiak, S. M. Cohen, Inorg. Chem. 2015, 54, 6821.
- 62C. Wang, Z. Xie, K. E. deKrafft, W. Lin, J. Am. Chem. Soc. 2011, 133, 13445.
- 63H. Q. Xu, J. Hu, D. Wang, Z. Li, Q. Zhang, Y. Luo, S. H. Yu, H. L. Jiang, J. Am. Chem. Soc. 2015, 137, 13440.
- 64N. Li, J. Liu, J. J. Liu, L. Z. Dong, Z. F. Xin, Y. L. Teng, Y. Q. Lan, Angew. Chem. Int. Ed. 2019, 58, 5226.
- 65Y. Lee, S. Kim, J. K. Kang, S. M. Cohen, Chem. Commun. 2015, 51, 5735.
- 66D. Sun, W. Liu, M. Qiu, Y. Zhang, Z. Li, Chem. Commun. 2015, 51, 2056.
- 67B. Han, X. Ou, Z. Deng, Y. Song, C. Tian, H. Deng, Y. J. Xu, Z. Lin, Angew. Chem. Int. Ed. 2018, 57, 16811.
- 68L. Ye, Y. Gao, S. Cao, H. Chen, Y. Yao, J. Hou, L. Sun, Appl. Catal. B: Environ. 2018, 227, 54.
- 69W. Zhu, C. Zhang, Q. Li, L. Xiong, R. Chen, X. Wan, Z. Wang, W. Chen, Z. Deng, Y. Peng, Appl. Catal. B: Environ. 2018, 238, 339.
- 70L. Shi, T. Wang, H. Zhang, K. Chang, J. Ye, Adv. Funct. Mater. 2015, 25, 5360.
- 71X. Wang, X. Zhao, D. Zhang, G. Li, H. Li, Appl. Catal. B: Environ. 2018, 228, 47.
- 72D. Sun, W. Liu, Y. Fu, Z. Fang, F. Sun, X. Fu, Y. Zhang, Z. Li, Chem. Eur. J. 2014, 20, 4780.
- 73K. M. Choi, D. Kim, B. Rungtaweevoranit, C. A. Trickett, J. T. Barmanbek, A. S. Alshammari, P. Yang, O. M. Yaghi, J. Am. Chem. Soc. 2017, 139, 356.
- 74Z.-C. Kong, J.-F. Liao, Y.-J. Dong, Y.-F. Xu, H.-Y. Chen, D.-B. Kuang, C.-Y. Su, ACS Energy Lett. 2018, 3, 2656.
- 75L. Chen, F. Yu, X. Shen, C. Duan, Chem. Commun. 2019, 55, 4845.
- 76T. Toyao, M. Saito, S. Dohshi, K. Mochizuki, M. Iwata, H. Higashimura, Y. Horiuchi, M. Matsuoka, Chem. Commun. 2014, 50, 6779.
- 77X. Sun, Q. Yu, F. Zhang, J. Wei, P. Yang, Catal. Sci. Technol. 2016, 6, 3840.
- 78C. Li, H. Xu, J. Gao, W. Du, L. Shangguan, X. Zhang, R.-B. Lin, H. Wu, W. Zhou, X. Liu, J. Yao, B. Chen, J. Mater. Chem. A 2019, 7, 11928.
- 79J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K. P. Lillerud, J. Am. Chem. Soc. 2008, 130, 13850.
- 80C. Wang, K. E. deKrafft, W. Lin, J. Am. Chem. Soc. 2012, 134, 7211.
- 81L. Shi, T. Wang, H. Zhang, K. Chang, X. Meng, H. Liu, J. Ye, Adv. Sci. 2015, 2, 1500006.
- 82C. Gomes Silva, I. Luz, F. X. Llabres i Xamena, A. Corma, H. Garcia, Chem. Eur. J. 2010, 16, 11133.
- 83a) Y. Horiuchi, T. Toyao, M. Saito, K. Mochizuki, M. Iwata, H. Higashimura, M. Anpo, M. Matsuoka, J. Phys. Chem. C 2012, 116, 20848; b) T. Toyao, M. Saito, Y. Horiuchi, K. Mochizuki, M. Iwata, H. Higashimura, M. Matsuoka, Catal. Sci. Technol. 2013, 3, 2092.
- 84L. Shen, R. Liang, M. Luo, F. Jing, L. Wu, Phys. Chem. Chem. Phys. 2015, 17, 117.
- 85A. Fateeva, P. A. Chater, C. P. Ireland, A. A. Tahir, Y. Z. Khimyak, P. V. Wiper, J. R. Darwent, M. J. Rosseinsky, Angew. Chem. Int. Ed. 2012, 124, 7558.
10.1002/ange.201202471 Google Scholar
- 86S. Pullen, H. Fei, A. Orthaber, S. M. Cohen, S. Ott, J. Am. Chem. Soc. 2013, 135, 16997.
- 87S. Roy, V. Pascanu, S. Pullen, G. Gonzalez Miera, B. Martin-Matute, S. Ott, Chem. Commun. 2017, 53, 3257.
- 88K. Sasan, Q. Lin, C. Mao, P. Feng, Chem. Commun. 2014, 50, 10390.
- 89W. Wang, X.-W. Song, Z. Hong, B. Li, Y. Si, C. Ji, K. Su, Y. Tan, Z. Ju, Y. Huang, C.-N. Chen, D. Yuan, Appl. Catal. B: Environ. 2019, 258, 117979.
- 90a) I. Tsuji, H. Kato, H. Kobayashi, A. Kudo, J. Am. Chem. Soc. 2004, 126, 13406; b) W. Zhang, Z. Zhong, Y. Wang, R. Xu, J. Phys. Chem. C 2008, 112, 17635.
- 91M. Y. Masoomi, A. Morsali, A. Dhakshinamoorthy, H. Garcia, Angew. Chem. Int. Ed. 2019, 58, 15188.
- 92S. Li, S. Liu, S. Liu, Y. Liu, Q. Tang, Z. Shi, S. Ouyang, J. Ye, J. Am. Chem. Soc. 2012, 134, 19716.
- 93Z. M. Zhang, T. Zhang, C. Wang, Z. Lin, L. S. Long, W. Lin, J. Am. Chem. Soc. 2015, 137, 3197.
- 94H. Lv, W. Guo, K. Wu, Z. Chen, J. Bacsa, D. G. Musaev, Y. V. Geletii, S. M. Lauinger, T. Lian, C. L. Hill, J. Am. Chem. Soc. 2014, 136, 14015.
- 95X. J. Kong, Z. Lin, Z. M. Zhang, T. Zhang, W. Lin, Angew. Chem. Int. Ed. 2016, 55, 6411.
- 96W. Yu, S. Zhang, J. Chen, P. Xia, M. H. Richter, L. Chen, W. Xu, J. Jin, S. Chen, T. Peng, J. Mater. Chem. A 2018, 6, 15668.
- 97J. He, Z. Yan, J. Wang, J. Xie, L. Jiang, Y. Shi, F. Yuan, F. Yu, Y. Sun, Chem. Commun. 2013, 49, 6761.
- 98H.-Q. Xu, S. Yang, X. Ma, J. Huang, H.-L. Jiang, ACS Catal. 2018, 8, 11615.
- 99F. M. Zhang, J. L. Sheng, Z. D. Yang, X. J. Sun, H. L. Tang, M. Lu, H. Dong, F. C. Shen, J. Liu, Y. Q. Lan, Angew. Chem. Int. Ed. 2018, 57, 12106.
- 100a) A. Fihri, V. Artero, M. Razavet, C. Baffert, W. Leibl, M. Fontecave, Angew. Chem. Int. Ed. 2008, 47, 564; b) J. T. Muckerman, E. Fujita, Chem. Commun. 2011, 47, 12456.
- 101Y. Kataoka, K. Sato, Y. Miyazaki, K. Masuda, H. Tanaka, S. Naito, W. Mori, Energy Environ. Sci. 2009, 2, 397.
- 102J. He, J. Wang, Y. Chen, J. Zhang, D. Duan, Y. Wang, Z. Yan, Chem. Commun. 2014, 50, 7063.
- 103Y. Feng, C. Chen, Z. Liu, B. Fei, P. Lin, Q. Li, S. Sun, S. Du, J. Mater. Chem. A 2015, 3, 7163.
- 104a) R. Lalrempuia, N. D. McDaniel, H. Muller-Bunz, S. Bernhard, M. Albrecht, Angew. Chem. Int. Ed. 2010, 49, 9765; b) S. Neudeck, S. Maji, I. Lopez, S. Meyer, F. Meyer, A. Llobet, J. Am. Chem. Soc. 2014, 136, 24.
- 105M. Z. Ertem, L. Gagliardi, C. J. Cramer, Chem. Sci. 2012, 3, 1293.
- 106L.-L. Qu, J. Wang, T.-Y. Xu, Q.-Y. Chen, J.-H. Chen, C.-J. Shi, Sustain. Energy Fuels 2018, 2, 2109.
- 107W. Morris, B. Volosskiy, S. Demir, F. Gandara, P. L. McGrier, H. Furukawa, D. Cascio, J. F. Stoddart, O. M. Yaghi, Inorg. Chem. 2012, 51, 6443.
- 108Y. An, H. Li, Y. Liu, B. Huang, Q. Sun, Y. Dai, X. Qin, X. Zhang, J. Solid State Chem. 2016, 233, 194.
- 109H. Zhang, J. Nai, L. Yu, X. W. Lou, Joule 2017, 1, 77.
- 110L. Sun, M. G. Campbell, M. Dinca, Angew. Chem. Int. Ed. 2016, 55, 3566.
- 111W. Zhu, C. Zhang, Q. Li, L. Xiong, R. Chen, X. Wan, Z. Wang, W. Chen, Z. Deng, Y. Peng, Appl. Catal. B: Environ. 2018, 238, 339.
- 112a) Q. Kang, T. Wang, P. Li, L. Liu, K. Chang, M. Li, J. Ye, Angew. Chem. Int. Ed. 2015, 127, 855;
10.1002/ange.201409183 Google Scholarb) L. Collado, A. Reynal, F. Fresno, M. Barawi, C. Escudero, V. Perez-Dieste, J. M. Coronado, D. P. Serrano, J. R. Durrant, V. A. de la Pena O'Shea, Nat. Commun. 2018, 9, 4986; c) Q. Zhai, S. Xie, W. Fan, Q. Zhang, Y. Wang, W. Deng, Y. Wang, Angew. Chem. Int. Ed. 2013, 52, 5776; d) Y. Han, H. Xu, Y. Su, Z.-l. Xu, K. Wang, W. Wang, J. Catal. 2019, 370, 70.
- 113a) J. Wang, T. Xia, L. Wang, X. Zheng, Z. Qi, C. Gao, J. Zhu, Z. Li, H. Xu, Y. Xiong, Angew. Chem. Int. Ed. 2018, 57, 16447; b) S. Wang, Y. Guan, L. Lu, Z. Shi, S. Yan, Z. Zou, Appl. Catal. B: Environ. 2018, 224, 10.
- 114S. Wang, X. Wang, Appl. Catal. B: Environ. 2015, 162, 494.
- 115D. Ding, Z. Jiang, J. Jin, J. Li, D. Ji, Y. Zhang, L. Zan, J. Catal. 2019, 375, 21.
- 116S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, P. M. Ajayan, Adv. Mater. 2013, 25, 2452.
- 117S. Wang, W. Yao, J. Lin, Z. Ding, X. Wang, Angew. Chem. Int. Ed. 2014, 53, 1034.
- 118C. Wang, H. Luo, D. E. Jiang, H. Li, S. Dai, Angew. Chem. Int. Ed. 2010, 49, 5978.
- 119B. A. Rosen, A. Salehi-Khojin, M. R. Thorson, W. Zhu, D. T. Whipple, P. J. Kenis, R. I. Masel, Science 2011, 334, 643.
- 120M. Wang, J. Liu, C. Guo, X. Gao, C. Gong, Y. Wang, B. Liu, X. Li, G. G. Gurzadyan, L. Sun, J. Mater. Chem. A 2018, 6, 4768.
- 121Y. Wang, N. Y. Huang, J. Q. Shen, P. Q. Liao, X. M. Chen, J. P. Zhang, J. Am. Chem. Soc. 2018, 140, 38.
- 122H. Zhang, Q. L. Hong, J. Li, F. Wang, X. Huang, S. Chen, W. Tu, D. Yu, R. Xu, T. Zhou, J. Zhang, Angew. Chem. Int. Ed. 2019, 58, 11752.
- 123K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber, S. Iwata, Science 2004, 303, 1831.
- 124a) J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S. T. Lee, J. Zhong, Z. Kang, Science 2015, 347, 970; b) Q. Ruan, W. Luo, J. Xie, Y. Wang, X. Liu, Z. Bai, C. J. Carmalt, J. Tang, Angew. Chem. Int. Ed. 2017, 56, 8221; c) Q. Jia, A. Iwase, A. Kudo, Chem. Sci. 2014, 5, 1513.
- 125a) C. C. Le, M. K. Wismer, Z. C. Shi, R. Zhang, D. V. Conway, G. Li, P. Vachal, I. W. Davies, D. W. C. MacMillan, ACS Central Sci. 2017, 3, 647; b) H. Kisch, D. Bahnemann, J. Phys. Chem. Lett. 2015, 6, 1907; c) L. Han, M. Lin, S. Haussener, ChemSusChem 2017, 10, 2158; d) Y. Wang, A. Vogel, M. Sachs, R. S. Sprick, L. Wilbraham, S. J. A. Moniz, R. Godin, M. A. Zwijnenburg, J. R. Durrant, A. I. Cooper, J. Tang, Nat. Energy 2019, 4, 746.