Recent Advances of Metal-Oxide Photoanodes: Engineering of Charge Separation and Transportation toward Efficient Solar Water Splitting
Mu Xiao
Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072 Australia
Search for more papers by this authorBin Luo
Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072 Australia
Search for more papers by this authorZhiliang Wang
Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072 Australia
Search for more papers by this authorSongcan Wang
Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072 Australia
Search for more papers by this authorCorresponding Author
Lianzhou Wang
Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072 Australia
Search for more papers by this authorMu Xiao
Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072 Australia
Search for more papers by this authorBin Luo
Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072 Australia
Search for more papers by this authorZhiliang Wang
Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072 Australia
Search for more papers by this authorSongcan Wang
Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072 Australia
Search for more papers by this authorCorresponding Author
Lianzhou Wang
Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072 Australia
Search for more papers by this authorAbstract
Photoelectrochemical (PEC) water splitting has witnessed rapid development because of the potential of converting solar energy into renewable fuels. Photoelectrodes and electrolytes are two basic components for a PEC system. Metal-oxide photoanodes have been the most popular electrode candidates because of their excellent performance, good stability, abundance, and cost-effective features. However, metal-oxide photoanodes suffer from serious charge recombination due to the intrinsically poor electrochemical properties. Therefore, intensive research effort has been devoted to solving these challenges. A variety of effective strategies have been developed, including the construction of nanostructures, introduction of dopants, control of crystal facets, design of junctions, and modification of interfaces. Moreover, it is demonstrated that the combination of multiple strategies is much more efficient than a single one to suppress charge recombination. Herein, the recent advances in metal-oxide photoanodes for PEC water oxidation are summarized, mainly focusing on the engineering of charge separation and transportation process. At the end of this Review, some perspectives and outlooks for the development and design of metal-oxide photoanodes are also proposed, hoping to shed light on the rapid growth of this area in the future.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1a) I. Roger, M. A. Shipman, M. D. Symes, Nat. Rev. Chem. 2017, 1, 0003; b) M. Grätzel, Nature 2001, 414, 338; c) B. Luo, G. Liu, L. Wang, Nanoscale 2016, 8, 6904.
- 2N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. 2006, 103, 15729.
- 3S. Wang, J.-H. Yun, B. Luo, T. Butburee, P. Peerakiatkhajohn, S. Thaweesak, M. Xiao, L. Wang, J. Mater. Sci. Tech. 2017, 33, 1.
- 4a) D. G. Nocera, Acc. Chem. Res. 2012, 45, 767; b) J. Barber, Joule 1, 5.
- 5A. Fujishima, K. Honda, Nature 1972, 238, 37.
- 6a) J. Brillet, J.-H. Yum, M. Cornuz, T. Hisatomi, R. Solarska, J. Augustynski, M. Graetzel, K. Sivula, Nat. Photonics 2012, 6, 824; b) S. Y. Reece, J. A. Hamel, K. Sung, T. D. Jarvi, A. J. Esswein, J. J. H. Pijpers, D. G. Nocera, Science 2011, 334, 645.
- 7M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446.
- 8a) A. Heller, R. G. Vadimsky, Phys. Rev. Lett. 1981, 46, 1153; b) J. R. McKone, A. P. Pieterick, H. B. Gray, N. S. Lewis, J. Am. Chem. Soc. 2013, 135, 223; c) A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, E. Thimsen, Nat. Mater. 2011, 10, 456; d) Y. Hou, B. L. Abrams, P. C. K. Vesborg, M. E. Björketun, K. Herbst, L. Bech, A. M. Setti, C. D. Damsgaard, T. Pedersen, O. Hansen, J. Rossmeisl, S. Dahl, J. K. Nørskov, I. Chorkendorff, Nat. Mater. 2011, 10, 434; e) J. Oh, T. G. Deutsch, H.-C. Yuan, H. M. Branz, Energy Environ. Sci. 2011, 4, 1690.
- 9Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, H. N. Dinh, J. Mater. Res. 2011, 25, 3.
- 10a) S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, N. S. Lewis, Science 2014, 344, 1005; b) Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. D. Chidsey, P. C. McIntyre, Nat. Mater. 2011, 10, 539.
- 11R. Memming, Berlin, Heidelberg 1988.
- 12B. D. Alexander, P. J. Kulesza, I. Rutkowska, R. Solarska, J. Augustynski, J. Mater. Chem. 2008, 18, 2298.
- 13a) X.-L. Zheng, J.-P. Song, T. Ling, Z. P. Hu, P.-F. Yin, K. Davey, X.-W. Du, S.-Z. Qiao, Adv. Mater. 2016, 28, 4935; b) G. Wang, X. Yang, F. Qian, J. Z. Zhang, Y. Li, Nano Lett. 2010, 10, 1088; c) G. Liu, Z. Li, T. Hasan, X. Chen, W. Zheng, W. Feng, D. Jia, Y. Zhou, P. Hu, J. Mater. Chem. A 2017, 5, 1989.
- 14a) C. Zhen, R. Chen, L. Wang, G. Liu, H.-M. Cheng, J. Mater. Chem. A 2016, 4, 2783; b) Z. Wang, J. Han, Z. Li, M. Li, H. Wang, X. Zong, C. Li, Adv. Energy Mater. 2016, 6, 1600864.
- 15a) M. Ge, Q. Li, C. Cao, J. Huang, S. Li, S. Zhang, Z. Chen, K. Zhang, S. S. Al-Deyab, Y. Lai, Adv. Sci. 2017, 4, 1600152; b) H. Chen, S. Yang, Nanoscale Horiz. 2016, 1, 96.
- 16a) J. Zhang, X. Chang, C. Li, A. Li, S. Liu, T. Wang, J. Gong, J. Mater. Chem. A 2018, 6, 3350; b) Y. Ling, G. Wang, D. A. Wheeler, J. Z. Zhang, Y. Li, Nano Lett. 2011, 11, 2119.
- 17X. Wang, G. Liu, L. Wang, J. Pan, G. Q. Lu, H.-M. Cheng, J. Mater. Chem. 2011, 21, 869.
- 18J. Low, J. Yu, M. Jaroniec, S. Wageh, A. A. Al-Ghamdi, Adv. Mater. 2017, 29, 1601694.
- 19a) Y. Xu, A. Li, T. Yao, C. Ma, X. Zhang, J. H. Shah, H. Han, ChemSusChem 2017, 10, 4277; b) Y. Yang, M. Forster, Y. Ling, G. Wang, T. Zhai, Y. Tong, A. J. Cowan, Y. Li, Angew. Chem. Int. Edit. 2016, 55, 3403.
- 20a) G. Liu, S. Ye, P. Yan, F. Xiong, P. Fu, Z. Wang, Z. Chen, J. Shi, C. Li, Energy Environ. Sci. 2016, 9, 1327; b) T. H. Jeon, A. D. Bokare, D. S. Han, A. Abdel-Wahab, H. Park, W. Choi, Appl. Catal. B-Environ. 2017, 201, 591.
- 21P. Wang, S. Wang, H. Wang, Z. Wu, L. Wang, Part. Part. Syst. Char. 2018, 35, 1700371.
- 22a) K. Sivula, F. Le Formal, M. Grätzel, ChemSusChem 2011, 4, 432; b) Y. Park, K. J. McDonald, K.-S. Choi, Chem. Soc. Rev. 2013, 42, 2321; c) H. L. Tan, R. Amal, Y. H. Ng, J. Mater. Chem. A 2017, 5, 16498; d) C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, J. Tang, Chem. Soc. Rev. 2017, 46, 4645.
- 23L. M. Peter, Chem. Rev. 1990, 90, 753.
- 24W. Zhang, D. Yan, K. Appavoo, J. Cen, Q. Wu, A. Orlov, M. Y. Sfeir, M. Liu, Chem. Mater. 2017, 29, 4036.
- 25Z. Zhang, J. T. Yates, Chem. Rev. 2012, 112, 5520.
- 26a) K. Maeda, M. Higashi, B. Siritanaratkul, R. Abe, K. Domen, J. Am. Chem. Soc. 2011, 133, 12334; b) Z. Xing, X. Zong, J. Pan, L. Wang, Chem. Eng. Sci. 2013, 104, 125.
- 27B. Iandolo, A. Hellman, Angew. Chem. Int. Edit. 2014, 53, 13404.
- 28M. Ye, J. Gong, Y. Lai, C. Lin, Z. Lin, J. Am. Chem. Soc. 2012, 134, 15720.
- 29Y. Fu, C.-L. Dong, Z. Zhou, W.-Y. Lee, J. Chen, P. Guo, L. Zhao, S. Shen, Phys. Chem. Chem. Phys. 2016, 18, 3846.
- 30L. Zhou, C. Zhao, B. Giri, P. Allen, X. Xu, H. Joshi, Y. Fan, L. V. Titova, P. M. Rao, Nano Lett. 2016, 16, 3463.
- 31H. Dotan, K. Sivula, M. Gratzel, A. Rothschild, S. C. Warren, Energy Environ. Sci. 2011, 4, 958.
- 32G. Wang, Y. Ling, D. A. Wheeler, K. E. N. George, K. Horsley, C. Heske, J. Z. Zhang, Y. Li, Nano Lett. 2011, 11, 3503.
- 33A. Kudo, Y. Miseki, Chem. Soc. Rev. 2009, 38, 253.
- 34a) M. W. Kanan, D. G. Nocera, Science 2008, 321, 1072; b) J. A. Seabold, K.-S. Choi, J. Am. Chem. Soc. 2012, 134, 2186.
- 35V. Nair, C. L. Perkins, Q. Lin, M. Law, Energy Environ. Sci. 2016, 9, 1412.
- 36a) C. Zhen, L. Wang, L. Liu, G. Liu, G. Q. Lu, H.-M. Cheng, Chem. Commun. 2013, 49, 6191; b) X. Zhao, J. Feng, S. Chen, Y. Huang, T. C. Sum, Z. Chen, Phys. Chem. Chem. Phys. 2017, 19, 1074.
- 37R. Li, F. Zhang, D. Wang, J. Yang, M. Li, J. Zhu, X. Zhou, H. Han, C. Li, Nat. Commun. 2013, 4, 1432.
- 38a) Y. He, P. Ma, S. Zhu, M. Liu, Q. Dong, J. Espano, X. Yao, D. Wang, Joule 1, 831; b) Y. Kuang, T. Yamada, K. Domen, Joule 1, 290.
- 39F. Zhuge, Z. Zheng, P. Luo, L. Lv, Y. Huang, H. Li, T. Zhai, Adv. Mater. Tech. 2017, 2, 1700005.
- 40a) C. W. Wang, S. Yang, W. Q. Fang, P. Liu, H. Zhao, H. G. Yang, Nano Lett. 2016, 16, 427; b) J. Jian, Y. Xu, X. Yang, W. Liu, M. Fu, H. Yu, F. Xu, F. Feng, L. Jia, D. Friedrich, R. van de Krol, H. Wang, Nat. Commun. 2019, 10, 2609.
- 41C. Liu, J. Tang, H. M. Chen, B. Liu, P. Yang, Nano Lett. 2013, 13, 2989.
- 42a) P. Peerakiatkhajohn, J.-H. Yun, H. Chen, M. Lyu, T. Butburee, L. Wang, Adv. Mater. 2016, 28, 6405; b) Y. Liu, L. Liang, C. Xiao, X. Hua, Z. Li, B. Pan, Y. Xie, Adv. Energy Mater. 2016, 6, 1600437; c) B. Weng, C. R. Grice, J. Ge, T. Poudel, X. Deng, Y. Yan, Adv. Energy Mater., https://doi.org/10.1002/aenm.2017016551701655; d) M. Zhou, X. W. Lou, Y. Xie, Nano Today 2013, 8, 598.
- 43a) F. E. Osterloh, Chem. Soc. Rev. 2013, 42, 2294; b) Y. Qiu, S.-F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K.-H. Tsui, Y. Zhang, S. Yang, Z. Fan, Nano Lett. 2014, 14, 2123; c) S. Wang, J.-H. Yun, L. Wang, in Semiconductors and Semimetals, Vol. 97 (Eds: Z. Mi, L. Wang, C. Jagadish), Elsevier, New York 2017, p. 315; d) S. Shen, J. Chen, M. Wang, X. Sheng, X. Chen, X. Feng, S. S. Mao, Progr. Mater. Sci. 2018, 98, 299.
- 44a) X. Zong, S. Thaweesak, H. Xu, Z. Xing, J. Zou, G. Lu, L. Wang, Phys. Chem. Chem. Phys. 2013, 15, 12314; b) J. Feng, X. Zhao, S. S. K. Ma, D. Wang, Z. Chen, Y. Huang, Adv. Mater. Tech. 2016, 1, 1600119.
- 45H. Chen, L. Wang, in Nanoscale Sensors (Eds: S. Li, J. Wu, Z. M. Wang, Y. Jiang), Springer International Publishing, Cham, Switzerland 2013, p. 87.
10.1007/978-3-319-02772-2_4 Google Scholar
- 46Y. Kuang, Q. Jia, G. Ma, T. Hisatomi, T. Minegishi, H. Nishiyama, M. Nakabayashi, N. Shibata, T. Yamada, A. Kudo, K. Domen, Nat. Energy 2016, 2, 16191.
- 47M. Higashi, K. Domen, R. Abe, Energy Environ. Sci. 2011, 4, 4138.
- 48K. Ueda, T. Minegishi, J. Clune, M. Nakabayashi, T. Hisatomi, H. Nishiyama, M. Katayama, N. Shibata, J. Kubota, T. Yamada, K. Domen, J. Am. Chem. Soc. 2015, 137, 2227.
- 49M. Balandeh, A. Mezzetti, A. Tacca, S. Leonardi, G. Marra, G. Divitini, C. Ducati, L. Meda, F. Di Fonzo, J. Mater. Chem. A 2015, 3, 6110.
- 50A. Ghicov, J. M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, P. Schmuki, Nano Lett. 2006, 6, 1080.
- 51G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Nano Lett. 2005, 5, 191.
- 52A. M. Mohamed, A. S. Aljaber, S. Y. AlQaradawi, N. K. Allam, Chem. Commun. 2015, 51, 12617.
- 53K. Sivula, R. Zboril, F. Le Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, M. Grätzel, J. Am. Chem. Soc. 2010, 132, 7436.
- 54C. W. Ahn, P. H. Borse, J. H. Kim, J. Y. Kim, J. S. Jang, C.-R. Cho, J.-H. Yoon, B.-s. Lee, J.-S. Bae, H. G. Kim, J. S. Lee, Appl. Catal. B-Environ. 2018, 224, 804.
- 55C. Li, A. Li, Z. Luo, J. Zhang, X. Chang, Z. Huang, T. Wang, J. Gong, Angew. Chem. Int. Edit. 2017, 129, 4214.
10.1002/ange.201611330 Google Scholar
- 56a) Y. Hou, Z. Wen, S. Cui, X. Guo, J. Chen, Adv. Mater. 2013, 25, 6291; b) F.-X. Xiao, J. Miao, B. Liu, J. Am. Chem. Soc. 2014, 136, 1559.
- 57S. Shen, S. A. Lindley, X. Chen, J. Z. Zhang, Energy Environ. Sci. 2016, 9, 2744.
- 58C. Chen, J. Moir, N. Soheilnia, B. Mahler, L. Hoch, K. Liao, V. Hoepfner, P. O'Brien, C. Qian, L. He, G. A. Ozin, Nanoscale 2015, 7, 3683.
- 59X. Feng, Y. Chen, Z. Qin, M. Wang, L. Guo, ACS Appl. Mater. Inter. 2016, 8, 18089.
- 60a) O. Zandi, A. R. Schon, H. Hajibabaei, T. W. Hamann, Chem. Mater. 2016, 28, 765; b) M. Ji, J. Cai, Y. Ma, L. Qi, ACS Appl. Mater. Inter. 2016, 8, 3651.
- 61Y. Kuang, Q. Jia, H. Nishiyama, T. Yamada, A. Kudo, K. Domen, Adv. Energy Mater. 2016, 6, 1501645.
- 62M. Wu, Y. Wang, Y. Xu, J. Ming, M. Zhou, R. Xu, Q. Fu, Y. Lei, ACS Appl. Mater. Inter. 2017, 9, 23647.
- 63A. G. Hufnagel, K. Peters, A. Müller, C. Scheu, D. Fattakhova-Rohlfing, T. Bein, Adv. Funct. Mater. 2016, 26, 4435.
- 64M. Cai, P. Fan, J. Long, J. Han, Y. Lin, H. Zhang, M. Zhong, ACS Appl. Mater. Inter. 2017, 9, 17856.
- 65M. Einert, R. Ostermann, T. Weller, S. Zellmer, G. Garnweitner, B. M. Smarsly, R. Marschall, J. Mater. Chem. A 2016, 4, 18444.
- 66J. Zhao, Y. Guo, L. Cai, H. Li, K. X. Wang, I. S. Cho, C. H. Lee, S. Fan, X. Zheng, ACS Energy Lett. 2016, 1, 68.
- 67C.-Y. Lee, A. C. Taylor, S. Beirne, G. G. Wallace, Adv. Energy Mater. 2017, 7, 1701060.
- 68a) M. Rodríguez-Pérez, I. Rodríguez-Gutiérrez, A. Vega-Poot, R. García-Rodríguez, G. Rodríguez-Gattorno, G. Oskam, Electrochim. Acta 2017, 258, 900; b) S. Hernández, G. Saracco, G. Barbero, A. L. Alexe-Ionescu, J. Electroanal. Chem. 2017, 799, 481.
- 69Y. Mi, L. Wen, R. Xu, Z. Wang, D. Cao, Y. Fang, Y. Lei, Adv. Energy Mater. 2016, 6, 1501496.
- 70a) A. Iwase, S. Ikeda, A. Kudo, Chem. Lett. 2017, 46, 651; b) A. Iwase, S. Nozawa, S.-i. Adachi, A. Kudo, J. Photochem. Photobiol. A-Chem. 2018, 353, 284.
- 71a) N. T. Hahn, C. B. Mullins, Chem. Mater. 2010, 22, 6474; b) Y.-S. Hu, A. Kleiman-Shwarsctein, A. J. Forman, D. Hazen, J.-N. Park, E. W. McFarland, Chem. Mater. 2008, 20, 3803; c) A. Annamalai, R. Sandström, E. Gracia-Espino, N. Boulanger, J.-F. Boily, I. Mühlbacher, A. Shchukarev, T. Wågberg, ACS Appl. Mater. Inter. 2018, 10, 16467.
- 72a) W. B. Ingler, S. U. M. Khan, Int. J. Hydrog. Energy 2005, 30, 821; b) X. Qi, G. She, M. Wang, L. Mu, W. Shi, Chem. Commun. 2013, 49, 5742; c) W. B. Ingler Jr, S. U. M. Khan, Thin Solid Films 2004, 461, 301.
- 73Y. Yang, S. Niu, D. Han, T. Liu, G. Wang, Y. Li, Adv. Energy Mater. 2017, 7, 1700555.
- 74a) K. D. Malviya, D. Klotz, H. Dotan, D. Shlenkevich, A. Tsyganok, H. Mor, A. Rothschild, J. Phys. Chem. C 2017, 121, 4206; b) O. Monfort, S. Sfaelou, L. Satrapinskyy, T. Plecenik, T. Roch, G. Plesch, P. Lianos, Catal. Today 2017, 280, 51.
- 75a) R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 2001, 293, 269; b) X. Chen, S. S. Mao, Chem. Rev. 2007, 107, 2891.
- 76G. Wang, Y. Ling, H. Wang, L. Xihong, Y. Li, J. Photochem. Photobiol C Photochem. Rev. 2014, 19, 35.
- 77X. Zhang, H. Li, S. Wang, F.-R. F. Fan, A. J. Bard, J. Phys. Chem. C 2014, 118, 16842.
- 78X. Guo, L. Wang, Y. Tan, Nano Energy 2015, 16, 320.
- 79X. Guo, X. Wang, B. Chang, Y. Zhang, P. Gao, Appl. Phys. Lett. 2010, 97, 063104.
- 80C. Liu, X. Li, J. Su, L. Guo, Int. J. Hydrog. Energy 2016, 41, 12842.
- 81a) H. Kato, A. Kudo, J. Phys. Chem. B 2002, 106, 5029; b) S. In, A. Orlov, R. Berg, F. García, S. Pedrosa-Jimenez, M. S. Tikhov, D. S. Wright, R. M. Lambert, J. Am. Chem. Soc. 2007, 129, 13790; c) D. Li, H. Haneda, S. Hishita, N. Ohashi, Chem. Mater. 2005, 17, 2596.
- 82a) Y. Matsuo, Y. Sato, T. Niinomi, I. Soga, H. Tanaka, E. Nakamura, J. Am. Chem. Soc. 2009, 131, 16048; b) T. J. Kempa, B. Tian, D. R. Kim, J. Hu, X. Zheng, C. M. Lieber, Nano Lett. 2008, 8, 3456.
- 83A. Kay, D. A. Grave, D. S. Ellis, H. Dotan, A. Rothschild, ACS Energy Lett. 2016, 1, 827.
- 84a) J. Lee, Z. Li, L. Zhu, S. Xie, X. Cui, Appl. Catal. B-Environ. 2018, 224, 715; b) H. Li, J. Chen, Z. Xia, J. Xing, J. Mater. Chem. A 2015, 3, 699; c) G. Wang, Y. Ling, X. Lu, F. Qian, Y. Tong, J. Z. Zhang, V. Lordi, C. Rocha Leao, Y. Li, J. Phys. Chem. C 2013, 117, 10957; d) W. Wang, Y. Zhang, L. Wang, Y. Bi, J. Mater. Chem. A 2017, 5, 2478.
- 85G. Wang, Y. Ling, Y. Li, Nanoscale 2012, 4, 6682.
- 86a) G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, Y. Li, Nano Lett. 2011, 11, 3026; b) F. M. Pesci, G. Wang, D. R. Klug, Y. Li, A. J. Cowan, J. Phys. Chem. C 2013, 117, 25837; c) J. Hensel, G. Wang, Y. Li, J. Z. Zhang, Nano Lett. 2010, 10, 478.
- 87a) M. Ma, K. Zhang, P. Li, M. S. Jung, M. J. Jeong, J. H. Park, Angew. Chem. Int. Edit. 2016, 128, 11998;
10.1002/ange.201605247 Google Scholarb) W. Li, P. Da, Y. Zhang, Y. Wang, X. Lin, X. Gong, G. Zheng, ACS Nano 2014, 8, 11770.
- 88a) Y. Ling, G. Wang, J. Reddy, C. Wang, Z. Zhang Jin, Y. Li, Angew. Chem. Int. Edit. 2012, 124, 4150;
10.1002/ange.201107467 Google Scholarb) T.-Y. Yang, H.-Y. Kang, U. Sim, Y.-J. Lee, J.-H. Lee, B. Koo, K. T. Nam, Y.-C. Joo, Phys. Chem. Chem. Phys. 2013, 15, 2117; c) C. Zhu, C. Li, M. Zheng, J.-J. Delaunay, ACS Appl. Mater. Inter. 2015, 7, 22355; d) Z. Wang, X. Mao, P. Chen, M. Xiao, S. A. Monny, S. Wang, M. Konarova, A. Du, L. Wang, Angew. Chem. Int. Edit. 2019, 131, 1042.10.1002/ange.201810583 Google Scholar
- 89a) S. Wang, P. Chen, J.-H. Yun, Y. Hu, L. Wang, Angew. Chem. Int. Edit. 2017, 56, 8500; b) S. Wang, P. Chen, Y. Bai, J.-H. Yun, G. Liu, L. Wang, Adv. Mater. 2018, 30, 1800486.
- 90a) H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng, G. Q. Lu, Nature 2008, 453, 638; b) G. Liu, H. G. Yang, J. Pan, Y. Q. Yang, G. Q. Lu, H.-M. Cheng, Chem. Rev. 2014, 114, 9559; c) Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Chem. Rev. 2014, 114, 9987; d) Z. Wang, G. Zou, W. Wang, Z. Tang, Y. Bi, X. Wang, J. Power Sources 2017, 343, 94.
- 91a) C. Li, C. Koenigsmann, W. Ding, B. Rudshteyn, K. R. Yang, K. P. Regan, S. J. Konezny, V. S. Batista, G. W. Brudvig, C. A. Schmuttenmaer, J.-H. Kim, J. Am. Chem. Soc. 2015, 137, 1520; b) K. M. Macounová, M. Klusáčková, R. Nebel, M. Zukalová, M. Klementová, I. E. Castelli, M. D. Spo, J. Rossmeisl, L. Kavan, P. Krtil, J. Phys. Chem. C 2017, 121, 6024; c) S. Wang, G. Liu, L. Wang, Chem. Rev. 2019, 119, 5192.
- 92C. W. Kim, S. J. Yeob, H.-M. Cheng, Y. S. Kang, Energy Environ. Sci. 2015, 8, 3646.
- 93J. Zhang, P. Zhang, T. Wang, J. Gong, Nano Energy 2015, 11, 189.
- 94C. W. Kim, Y. S. Son, M. J. Kang, D. Y. Kim, Y. S. Kang, Adv. Energy Mater. 2016, 6, 1501754.
- 95a) J. Hu, W. Chen, X. Zhao, H. Su, Z. Chen, ACS Appl. Mater. Inter. 2018, DOI: 10.1021/acsami.7b15243; b) A. U. Pawar, C. W. Kim, M. J. Kang, Y. S. Kang, Nano Energy 2016, 20, 156.
- 96a) X. Han, Q. Kuang, M. Jin, Z. Xie, L. Zheng, J. Am. Chem. Soc. 2009, 131, 3152; b) Y. Bi, S. Ouyang, N. Umezawa, J. Cao, J. Ye, J. Am. Chem. Soc. 2011, 133, 6490; c) J. Pan, G. Liu, G. Q. Lu, H.-M. Cheng, Angew. Chem. Int. Edit. 2011, 123, 2181.
- 97B. Zhang, Z. Wang, B. Huang, X. Zhang, X. Qin, H. Li, Y. Dai, Y. Li, Chem. Mater. 2016, 28, 6613.
- 98M. R. Morris, S. R. Pendlebury, J. Hong, S. Dunn, J. R. Durrant, Adv. Mater. 2016, 28, 7123.
- 99J. Tang, J. R. Durrant, D. R. Klug, J. Am. Chem. Soc. 2008, 130, 13885.
- 100H. Gerischer, A. Heller, J. Phys. Chem. 1991, 95, 5261.
- 101H. L. Tan, X. Wen, R. Amal, Y. H. Ng, J. Phys. Chem. Lett. 2016, 7, 1400.
- 102a) B. Ouyang, K. Zhang, Y. Yang, Adv. Mater. Tech. 2017, 2, 1700208; b) G. Yun, M. Balamurugan, H.-S. Kim, K.-S. Ahn, S. H. Kang, J. Phys. Chem. C 2016, 120, 5906.
- 103a) P. Zhang, T. Wang, X. Chang, L. Zhang, J. Gong, Angew. Chem. Int. Edit. 2016, 55, 5851; b) G. Williams, B. Seger, P. V. Kamat, ACS Nano 2008, 2, 1487; c) S. Sakthivel, H. Kisch, Angew. Chem. Int. Edit. 2003, 42, 4908.
- 104a) S. Linic, P. Christopher, D. B. Ingram, Nat. Mater. 2011, 10, 911; b) V. Subramanian, E. E. Wolf, P. V. Kamat, J. Am. Chem. Soc. 2004, 126, 4943; c) T. Hirakawa, P. V. Kamat, J. Am. Chem. Soc. 2005, 127, 3928; d) H. Ren, T. Dittrich, H. Ma, J. N. Hart, S. Fengler, S. Chen, Y. Li, Y. Wang, F. Cao, M. Schieda, Y. H. Ng, Z. Xie, X. Bo, P. Koshy, L. R. Sheppard, C. Zhao, C. C. Sorrell, Adv. Mater. 2019, 31, 1807204.
- 105a) Q. Peng, J. Wang, Z. Feng, C. Du, Y. Wen, B. Shan, R. Chen, J. Phys. Chem. C 2017, 121, 12991; b) H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Chem. Soc. Rev. 2014, 43, 5234; c) Y. Yang, S. Wang, Y. Jiao, Z. Wang, M. Xiao, A. Du, Y. Li, J. Wang, L. Wang, Adv. Funct. Mater. 2018, 28, 1805698.
- 106R. Marschall, Adv. Funct. Mater. 2014, 24, 2421.
- 107Z. Zhao, T. Butburee, P. Peerakiatkhajohn, M. Lyu, S. Wang, L. Wang, H. Zheng, ChemistrySelect 2016, 1, 2772.
- 108R. Zhang, M. Shao, S. Xu, F. Ning, L. Zhou, M. Wei, Nano Energy 2017, 33, 21.
- 109F. Ning, M. Shao, S. Xu, Y. Fu, R. Zhang, M. Wei, D. G. Evans, X. Duan, Energy Environ. Sci. 2016, 9, 2633.
- 110C. Terashima, R. Hishinuma, N. Roy, Y. Sugiyama, S. S. Latthe, K. Nakata, T. Kondo, M. Yuasa, A. Fujishima, ACS Appl. Mater. Inter. 2016, 8, 1583.
- 111A. Naldoni, T. Montini, F. Malara, M. M. Mróz, A. Beltram, T. Virgili, C. L. Boldrini, M. Marelli, I. Romero-Ocaña, J. J. Delgado, V. Dal Santo, P. Fornasiero, ACS Catal. 2017, 7, 1270.
- 112a) L. Wang, Y. Wang, P. Schmuki, S. Kment, R. Zboril, Electrochim. Acta 2018, 260, 212; b) J. K. Kim, X. Shi, M. J. Jeong, J. Park, H. S. Han, S. H. Kim, Y. Guo, T. F. Heinz, S. Fan, C.-L. Lee, J. H. Park, X. Zheng, Adv. Energy Mater., https://doi.org/10.1002/aenm.2017017651701765.
- 113A. Morais, C. Longo, J. R. Araujo, M. Barroso, J. R. Durrant, A. F. Nogueira, Phys. Chem. Chem. Phys. 2016, 18, 2608.
- 114M. Huang, C. Li, L. Zhang, Q. Chen, Z. Zhen, Z. Li, H. Zhu, Adv. Energy Mater. 2018, 8, 1802198.
- 115W. Wang, J. Dong, X. Ye, Y. Li, Y. Ma, L. Qi, Small 2016, 12, 1469.
- 116S. Jin, X. Wang, X. Wang, M. Ju, S. Shen, W. Liang, Y. Zhao, Z. Feng, H. Y. Playford, R. I. Walton, C. Li, J. Phys. Chem. C 2015, 119, 18221.
- 117Y. Li, X. Wei, B. Zhu, H. Wang, Y. Tang, T. C. Sum, X. Chen, Nanoscale 2016, 8, 11284.
- 118C. Li, T. Wang, Z. Luo, S. Liu, J. Gong, Small 2016, 12, 3415.
- 119a) P. M. Rao, L. Cai, C. Liu, I. S. Cho, C. H. Lee, J. M. Weisse, P. Yang, X. Zheng, Nano Lett. 2014, 14, 1099; b) J. H. Seo, G. Park, K. H. Oh, S. H. Kang, H. C. Lee, S. K. Cho, K. M. Nam, J. Electroanal. Chem. 2017, 789, 17; c) S. Y. Chae, C. S. Lee, H. Jung, O.-S. Joo, B. K. Min, J. H. Kim, Y. J. Hwang, ACS Appl. Mater. Inter. 2017, 9, 19780.
- 120J.-S. Yang, J.-J. Wu, Nano Energy 2017, 32, 232.
- 121Y. Li, L. Zhang, R. Liu, Z. Cao, X. Sun, X. Liu, J. Luo, ChemCatChem 2016, 8, 2765.
- 122X.-L. Zheng, C.-T. Dinh, F. P. G. de Arquer, B. Zhang, M. Liu, O. Voznyy, Y.-Y. Li, G. Knight, S. Hoogland, Z.-H. Lu, X.-W. Du, E. H. Sargent, Small 2016, 12, 3181.
- 123Y. Fu, C.-L. Dong, W. Zhou, Y.-R. Lu, Y.-C. Huang, Y. Liu, P. Guo, L. Zhao, W.-C. Chou, S. Shen, Appl. Catal. B-Environ. 2020, 260, 118206.
- 124K. Yuan, Q. Cao, X. Li, H.-Y. Chen, Y. Deng, Y.-Y. Wang, W. Luo, H.-L. Lu, D. W. Zhang, Nano Energy 2017, 41, 543.
- 125P. Chakthranont, T. R. Hellstern, J. M. McEnaney, T. F. Jaramillo, Adv. Energy Mater. 2017, 7, 1701515.
- 126N. Wang, M. Liu, H. Tan, J. Liang, Q. Zhang, C. Wei, Y. Zhao, E. H. Sargent, X. Zhang, Small 2017, 13, 1603527.
- 127a) F. Zhan, Y. Liu, K. Wang, X. Yang, M. Liu, X. Qiu, J. Li, W. Li, ACS Appl. Mater. Inter. 2019, 11, 39951; b) J. M. Lee, J. H. Baek, T. M. Gill, X. Shi, S. Lee, I. S. Cho, H. S. Jung, X. Zheng, J. Mater. Chem. A 2019, 7, 9019; c) F. Li, J. Li, F. Li, L. Gao, X. Long, Y. Hu, C. Wang, S. Wei, J. Jin, J. Ma, J. Mater. Chem. A 2018, 6, 13412.
- 128a) X. An, T. Li, B. Wen, J. Tang, Z. Hu, L.-M. Liu, J. Qu, C. P. Huang, H. Liu, Adv. Energy Mater. 2016, 6, 1502268; b) X. Wan, L. Wang, C.-L. Dong, G. Menendez Rodriguez, Y.-C. Huang, A. Macchioni, S. Shen, ACS Energy Lett. 2018, 3, 1613.
- 129M. J. Kenney, M. Gong, Y. Li, J. Z. Wu, J. Feng, M. Lanza, H. Dai, Science 2013, 342, 836.
- 130a) Y. Hou, F. Zuo, A. Dagg, P. Feng, Nano Lett. 2012, 12, 6464; b) H.-J. Ahn, K.-Y. Yoon, M.-J. Kwak, J.-S. Lee, P. Thiyagarajan, J.-H. Jang, J. Mater. Chem. A 2015, 3, 21444; c) Y.-C. Wang, C.-Y. Chang, T.-F. Yeh, Y.-L. Lee, H. Teng, J. Mater. Chem. A 2014, 2, 20570; d) S. Wang, T. He, J.-H. Yun, Y. Hu, M. Xiao, A. Du, L. Wang, Adv. Funct. Mater. 2018, 28, 1802685; e) L. Mao, Y.-C. Huang, Y. Fu, C.-L. Dong, S. Shen, Sci. Bull. 2019, 64, 1262.
- 131Y. Fu, Y.-R. Lu, F. Ren, Z. Xing, J. Chen, P. Guo, W.-F. Pong, C.-L. Dong, L. Zhao, S. Shen, Solar RRL 2019, 1900349.
- 132H.-J. Ahn, K.-Y. Yoon, M.-J. Kwak, J.-H. Jang, Angew. Chem. Int. Edit. 2016, 55, 9922.
- 133S. Shen, S. A. Lindley, C.-L. Dong, E. Chen, Y.-R. Lu, J. Zhou, Y. Hu, D. A. Wheeler, P. Guo, J. Z. Zhang, D. S. Kliger, S. S. Mao, Solar RRL 2019, 3, 1800285.
- 134a) M. B. Johansson, A. Mattsson, S.-E. Lindquist, G. A. Niklasson, L. Österlund, J. Phys. Chem. C 2017, 121, 7412; b) Z. Zhou, J. Liu, R. Long, L. Li, L. Guo, O. V. Prezhdo, J. Am. Chem. Soc. 2017, 139, 6707; c) M. Rioult, D. Stanescu, E. Fonda, A. Barbier, H. Magnan, J. Phys. Chem. C 2016, 120, 7482.
- 135Z. Hu, Z. Shen, J. C. Yu, Chem. Mater. 2016, 28, 564.
- 136a) T.-Y. Yang, H.-Y. Kang, K. Jin, S. Park, J.-H. Lee, U. Sim, H.-Y. Jeong, Y.-C. Joo, K. T. Nam, J. Mater. Chem. A 2014, 2, 2297; b) R. Milan, S. Cattarin, N. Comisso, C. Baratto, K. Kaunisto, N. V. Tkachenko, I. Concina, Sci. Rep. 2016, 6, 35049.
- 137D. Wang, G. Chang, Y. Zhang, J. Chao, J. Yang, S. Su, L. Wang, C. Fan, L. Wang, Nanoscale 2016, 8, 12697.
- 138T. Hisatomi, H. Dotan, M. Stefik, K. Sivula, A. Rothschild, M. Grätzel, N. Mathews, Adv. Mater. 2012, 24, 2699.
- 139C. Ding, J. Shi, Z. Wang, C. Li, ACS Catal. 2017, 7, 675.
- 140Z. Luo, T. Wang, J. Zhang, C. Li, H. Li, J. Gong, Angew. Chem. Int. Edit. 2017, 56, 12878.
- 141I. S. Cho, H. S. Han, M. Logar, J. Park, X. Zheng, Adv. Energy Mater. 2016, 6, 1501840.
- 142M. Li, Y. Yang, Y. Ling, W. Qiu, F. Wang, T. Liu, Y. Song, X. Liu, P. Fang, Y. Tong, Y. Li, Nano Lett. 2017, 17, 2490.
- 143H. Zhang, W. Zhou, Y. Yang, C. Cheng, Small 2017, 13, 1603840.
- 144H. Sutiono, A. M. Tripathi, H.-M. Chen, C.-H. Chen, W.-N. Su, L.-Y. Chen, H. Dai, B.-J. Hwang, ACS Sustain. Chem. Eng. 2016, 4, 5963.
- 145a) D. K. Lee, K.-S. Choi, Nat. Energy 2018, 3, 53; b) M. Sarnowska, K. Bienkowski, J. Barczuk Piotr, R. Solarska, J. Augustynski, Adv. Energy Mater. 2016, 6, 1600526.
- 146a) C. Ding, X. Zhou, J. Shi, P. Yan, Z. Wang, G. Liu, C. Li, J. Phys. Chem. B 2015, 119, 3560; b) Q. Mi, R. H. Coridan, B. S. Brunschwig, H. B. Gray, N. S. Lewis, Energy Environ. Sci. 2013, 6, 2646; c) Y. Zhang, H. Zhang, H. Ji, W. Ma, C. Chen, J. Zhao, J. Am. Chem. Soc. 2016, 138, 2705.
- 147Z. Tian, H. Cui, J. Xu, G. Zhu, F. Shao, J. He, F. Huang, ChemistrySelect 2017, 2, 2822.
- 148Z. Luo, C. Li, S. Liu, T. Wang, J. Gong, Chem. Sci. 2017, 8, 91.
- 149M. Ma, X. Shi, K. Zhang, S. Kwon, P. Li, J. K. Kim, T. T. Phu, G.-R. Yi, J. H. Park, Nanoscale 2016, 8, 3474.
- 150J.-J. Wang, Y. Hu, R. Toth, G. Fortunato, A. Braun, J. Mater. Chem. A 2016, 4, 2821.
- 151A. Annamalai, H. H. Lee, S. H. Choi, S. Y. Lee, E. Gracia-Espino, A. Subramanian, J. Park, K.-j. Kong,J. S. Jang, Sci. Rep. 2016, 6, 23183.
- 152Y. Zhang, S. Jiang, W. Song, P. Zhou, H. Ji, W. Ma, W. Hao, C. Chen, J. Zhao, Energy Environ. Sci. 2015, 8, 1231.
- 153S. Byun, G. Jung, S.-Y. Moon, B. Kim, J. Y. Park, S. Jeon, S.-W. Nam, B. Shin, Nano Energy 2018, 43, 244.
- 154J. Liang, N. Wang, Q. Zhang, B. Liu, X. Kong, C. Wei, D. Zhang, B. Yan, Y. Zhao, X. Zhang, Nano Energy 2017, 42, 151.
- 155M. Baek, D. Kim, K. Yong, ACS Appl. Mater. Inter. 2017, 9, 2317.
- 156P. S. Bassi, R. P. Antony, P. P. Boix, Y. Fang, J. Barber, L. H. Wong, Nano Energy 2016, 22, 310.
- 157Z. Zhao, T. Butburee, M. Lyv, P. Peerakiatkhajohn, S. Wang, L. Wang, H. Zheng, RSC Adv. 2016, 6, 68204.
- 158Y. Yang, R. Xie, Y. Liu, J. Li, W. Li, Catalysts 2015, 5, 2024.
- 159K. Kim Jung, Y. Cho, J. Jeong Myung, B. Levy-Wendt, D. Shin, Y. Yi, H. Wang Dong, X. Zheng, H. Park Jong, ChemSusChem 2017, 11, 933.
- 160J. Xie, C. Guo, P. Yang, X. Wang, D. Liu, C. M. Li, Nano Energy 2017, 31, 28.
- 161S. Wang, H. Chen, G. Gao, T. Butburee, M. Lyu, S. Thaweesak, J.-H. Yun, A. Du, G. Liu, L. Wang, Nano Energy 2016, 24, 94.
- 162C. Chen, Y. Wei, G. Yuan, Q. Liu, R. Lu, X. Huang, Y. Cao, P. Zhu, Adv. Funct. Mater. 2017, 27, 1701575.
- 163Y. Zhou, L. Zhang, L. Lin, B. R. Wygant, Y. Liu, Y. Zhu, Y. Zheng, C. B. Mullins, Y. Zhao, X. Zhang, G. Yu, Nano Lett. 2017, 17, 8012.
- 164H. S. Han, S. Shin, D. H. Kim, I. J. Park, J. S. Kim, P.-S. Huang, J.-K. Lee, I. S. Cho, X. Zheng, Energy Environ. Sci. 2018, 11, 1299.
- 165Y. Bu, J. Tian, Z. Chen, Q. Zhang, W. Li, F. Tian, J. P. Ao, Adv. Mater. Inter. 2017, 4, 1601235.