Sacrificial Agent-Free Photocatalytic Oxygen Evolution from Water Splitting over Ag3PO4/MXene Hybrids
Chengxiao Zhao
College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing, 210037 P. R. China
Search for more papers by this authorCorresponding Author
Xiaofei Yang
College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing, 210037 P. R. China
Search for more papers by this authorChenhui Han
School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, 4001 Australia
Search for more papers by this authorCorresponding Author
Jingsan Xu
School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, 4001 Australia
Search for more papers by this authorChengxiao Zhao
College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing, 210037 P. R. China
Search for more papers by this authorCorresponding Author
Xiaofei Yang
College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing, 210037 P. R. China
Search for more papers by this authorChenhui Han
School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, 4001 Australia
Search for more papers by this authorCorresponding Author
Jingsan Xu
School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, 4001 Australia
Search for more papers by this authorAbstract
To explore an efficient electron extraction cocatalyst remains an ongoing task to address the rapid recombination and low transfer rate of electron–hole pairs in photocatalytic water splitting. Herein, it is demonstrated that 2D MXene (Ti3C2) with high electron conductivity can act as an effective electron transfer and transport medium after being hybridized with Ag3PO4, a well-documented photocatalyst for oxygen evolution. The obtained Ag3PO4/MXene photocatalysts exhibit a significantly high photocatalytic water oxidation activity under visible light illumination. The optimized hybrid shows a remarkable oxygen-evolving concentration (35.8 μmol L−1), which is 2.6 times higher than that of pure Ag3PO4 nanoparticles. Unprecedentedly, the Ag3PO4/MXene hybrid exhibits a further improved oxygen evolution rate without using the electron sacrificial agent, implying that Mxene nanosheets may act as an electron “pool” that in situ consumes the photogenerated electrons. Other characterizations reveal that the hydrophilic functional groups on the surface of MXene favor the interaction of the photocatalyst with water and in the meantime inhibit the self-corrosion of Ag3PO4 under illumination.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
solr201900434-sup-0001-SuppData-S1.doc4.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) D. Kong, Y. Zheng, M. Kobielusz, Y. Wang, Z. M. Bai, W. Macyk, X. C. Wang, J. W. Tang, Mater. Today 2018, 21, 897; b) J. Qi, W. Zhang, R. Cao, Adv. Energy Mater. 2018, 8, 1701620; c) S. W. Cao, H. Li, T. Tong, H. C. Chen, A. C. Yu, J. G. Yu, H. M. Chen, Adv. Funct. Mater. 2018, 28, 1802169.
- 2a) D. L. Jiang, T. Y. Wang, Q. Xu, D. Li, S. C. Meng, M. Chen, Appl. Catal. B Environ. 2017, 201, 617; b) J. R. Ran, W. W. Guo, H. L. Wang, B. C. Zhu, J. G. Yu, S. Z. Qiao, Adv. Mater. 2018, 30, 1800128; c) Y. J. Li, Z. H. Yin, G. R. Ji, Z. Q. Liang, Y. J. Xue, Y. C. Guo, J. Tian, X. Z. Wang, H. Z. Cui, Appl. Catal. B Environ. 2019, 246, 12; d) C. X. Zhao, Z. P. Chen, J. S. Xu, Q. Q. Liu, H. Xu, H. Tang, G. S. Li, Y. Jiang, F. Q. Qu, Z. X. Lin, X. F. Yang, Appl. Catal. B Environ. 2019, 256, 117867; e) J. R. Ran, J. T. Qu, H. P. Zhang, T. Wen, H. L. Wang, S. G. Chen, L. Song, X. L. Zhang, L. Q. Jing, R. K. Zheng, S.-Z. Qiao, Adv. Energy Mater. 2019, 9, 1803402; f) M. Rahman, K. Davey, S.-Z. Qiao, Adv. Funct. Mater. 2017, 10, 1606129; g) J. R. Ran, H. P. Zhang, J. T. Qu, B. Q. Xia, X. L. Zhang, S. M. Chen, L. Song, L. Q. Jing, R. K. Zheng, S.-Z. Qiao, Chem. Eur. J. 2019, 25, 9670.
- 3a) W. L. Yang, L. Zhang, J. F. Xie, X. D. Zhang, Q. H. Liu, T. Yao, S. Q. Wei, Q. Zhang, Y. Xie, Angew Chem. Int. Ed. 2016, 55, 6716; b) B. W. Sun, H. J. Li, H. Y. Yu, D. J. Qian, M. Chen, Carbon 2017, 117, 1; c) Z. P. Chen, S. Pronkin, T. P. Fellinger, K. Kailasam, G. Vile, D. Albani, F. Krumeich, R. Leary, J. Barnard, J. M. Thomas, J. Perez-Ramirez, M. Antonietti, D. Dontsova, ACS Nano 2016, 10, 3166.
- 4a) Z. Lu, L. Zeng, W. L. Song, Z. Y. Qin, D. W. Zeng, C. S. Xie, Appl. Catal. B Environ. 2017, 202, 489; b) B. Lin, H. Li, H. An, W. B. Hao, J. J. Wei, Y. Z. Dai, C. S. Ma, G. D. Yang, Appl. Catal. B Environ. 2018, 220, 542; c) J. X. Low, B. Z. Dai, T. Tong, C. J. Jiang, J. G. Yu, Adv. Mater. 2019, 31, 1802981; d) R. Chen, P. F. Wang, J. Chen, C. Wang, Y. H. Ao, Appl. Surf. Sci. 2019, 473, 11; e) Y. Guo, Y. H. Ao, P. F. Wang, C. Wang, Appl. Catal. B Environ. 2019, 254, 479; f) M. L. Ren, Y. H. Ao, P. F. Wang, C. Wang, Chem. Eng. J. 2019, 378, 122122; g) X. Y. Feng, P. F. Wang, J. Hou, J. Qian, C. Wang, Y. H. Ao, Chem. Eng. J. 2018, 352, 947; h) Y. Guo, P. F. Wang, J. Qian, Y. H. Ao, C. Wang, J. Hou, Appl. Catal. B Environ. 2018, 234, 90.
- 5a) H. W. Tian, M. Liu, W. T. Zheng, Appl. Catal. B Environ. 2018, 225, 468; b) X. F. Yang, J. L. Qin, Y. Jiang, K. M. Chen, X. H. Yan, D. Zhang, R. Li, H. Tang, Appl. Catal. B Environ. 2015, 166, 231; c) X. F. Yang, H. Y. Cui, Y. Li, J. L. P. Qin, R. X. Zhang, H. Tang, ACS Catal. 2013, 3, 363.
- 6a) D. L. Jiang, W. X. Ma, P. Xiao, L. Q. Shao, D. Li, M. Chen, J. Colloid Interf. Sci. 2018, 512, 693; b) Y. Wang, X. Q. Liu, J. Liu, B. Han, X. Q. Hu, F. Yang, Z. W. Xu, Y. C. Li, S. R. Jia, Z. Li, Y. L. Zhao, Angew. Chem. Int. Ed. 2018, 57, 5765.
- 7a) D. A. Reddy, H. Park, R. Ma, D. P. Kumar, M. Lim, T. K. Kim, ChemSusChem 2017, 10, 1563; b) Z. Z. Ai, Y. L. Shao, B. Chang, B. B. Huang, Y. Z. Wu, X. P. Hao, Appl. Catal. B Environ. 2019, 242, 202.
- 8a) F. Ye, H. F. Li, H. T. Yu, S. Chen, X. Quan, Appl. Catal. B Environ. 2018, 227, 258; b) H. F. Li, H. T. Yu, X. Quan, S. Chen, Y. B. Zhang, ACS Appl. Mater. Interfaces 2016, 8, 2111; d) C. Z. Sun, H. Zhang, H. Liu, X. X. Zheng, W. X. Zou, L. Dong, L. Qi, Appl. Catal. B Environ. 2018, 235, 66.
- 9M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum, Adv. Mater. 2011, 23, 4248.
- 10a) Z. L. Guo, J. Zhou, L. G. Zhu, Z. M. Sun, J. Mater. Chem. A 2016, 4, 11446; b) X. Q. An, W. Wang, J. P. Wang, H. Z. Duan, J. T. Shi, X. L. Yu, Phys. Chem. Chem. Phys. 2018, 20, 11405; c) B. Huang, N. G. Zhou, X. Z. Chen, W. J. Ong, N. Li, Chem.Eur. J. 2018, 24, 18479; d) C. Peng, P. Wei, X. Y. Li, Y. P. Liu, Y. H. Cao, H. J. Wang, H. Yu, F. Peng, L. Y. Zhang, B. S. Zhang, K. L. Lv, Nano Energy 2018, 53, 97; e) A. Shahzad, K. Rasool, M. Nawaz, W. Miran, J. Jang, M. Moztahida, K. A. Mahmoud, D. S. Lee, Chem. Eng. J. 2018, 349, 748.
- 11J. R. Ran, G. P. Gao, F. T. Li, T. Y. Ma, A. J. Du, S. Z. Qiao, Nat. Commun. 2017, 8, 13907.
- 12a) H. Wang, Y. Wu, T. Xiao, X. Z. Yuan, G. M. Zeng, W. G. Tu, S. Y. Wu, H. Y. Lee, Y. Z. Tan, J. W. Chew, Appl. Catal. B Environ. 2018, 233, 213; b) M. H. Ye, X. Wang, E. Z. Liu, J. H. Ye, D. F. Wang, ChemSusChem 2018, 11, 1606.
- 13a) B. Anasori, M. R. Lukatskaya, Y. Gogotsi, Nat. Rev. Mater. 2017, 2, 16098; b) Y. L. Sun, D. Jin, Y. Sun, X. Meng, Y. Gao, Y. Dall'Agnese, G. Chen, X. F. Wang, J. Mater. Chem. A 2018, 6, 9124; c) Z. P. Zeng, Y. B. Yan, J. Chen, P. Zan, Q. H. Tian, P. Chen, Adv. Funct. Mater. 2019, 29, 1806500.
- 14S. W. Cao, B. J. Shen, T. Tong, J. W. Fu, J. G. Yu, Adv. Funct. Mater. 2018, 28, 1800136.
- 15B. Luo, G. Liu, L. Z. Wang, Nanoscale 2016, 8, 6904.
- 16L. Halaoui, J. Phys. Chem. C 2016, 120, 22766.
- 17a) Z. G. Yi, J. H. Ye, N. Kikugawa, T. Kako, S. X. Ouyang, H. Stuart-Williams, H. Yang, J. Y. Cao, W. J. Luo, Z. S. Li, Y. Liu, R. L. Withers, Nat. Mater. 2010, 9, 559; b) T. Cai, Y. T. Liu, L. L. Wang, S. Q. Zhang, Y. X. Zeng, J. L. Yuan, J. H. Ma, W. Y. Dong, C. B. Liu, S. L. Luo, Appl. Catal. B Environ. 2017, 208, 1; c) T. Cai, Y. T. Liu, L. L. Wang, S. Q. Zhang, W. Y. Dong, H. Chen, J. H. Ma, C. B. Liu, S. L. Luo, J. Colloid Interf. Sci. 2019, 533, 95.
- 18X. J. Chen, Y. Z. Dai, X. Y. Wang, J. Alloy. Compd. 2015, 649, 910.
- 19a) X. K. Cui, X. F. Yang, X. Z. Xian, L. Tian, H. Tang, Q. Q. Liu, Front. Chem. 2018, 6, 123; b) X. F. Yang, L. Tian, X. L. Zhao, H. Tang, Q. Q. Liu, G. S. Li, Appl. Catal. B Environ. 2019, 244, 240; c) X. K. Cui, L. Tian, X. Z. Xian, H. Tang, X. F. Yang, Appl. Surf. Sci. 2018, 430, 108; d) L. Tian, X. Z. Xian, X. K. Cui, H. Tang, X. F. Yang, Appl. Surf. Sci. 2018, 430, 301; e) X. F. Yang, H. Tang, J. S. Xu, M. Antonietti, M. Shalom, ChemSusChem 2015, 8, 1350.
- 20L. Tian, X. F. Yang, X. K. Cui, Q. Q. Liu, H. Tang, Appl. Surf. Sci. 2019, 463, 9.
- 21X. F. Yang, Z. P. Chen, J. S. Xu, H. Tang, K. M. Chen, Y. Jiang, ACS Appl. Mater. Interfaces. 2015, 7, 15285.
- 22T. Cai, L. L. Wang, Y. T. Liu, S. Q. Zhang, W. Y. Dong, H. Chen, X. Y. Yi, J. L. Yuan, X. N. Xia, C. B. Liu, S. L. Luo, Appl. Catal. B Environ. 2018, 239, 545.
- 23W. Y. Yuan, L. F. Cheng, Y. N. Zhang, H. Wu, S. L. Lv, L. Y. Chai, X. H. Guo, L. X. Zheng, Adv. Mater. Interfaces 2017, 4, 1700577.
- 24X. Q. Xie, N. Zhang, Z. R. Tang, M. Anpo, Y. J. Xu, Appl. Catal. B Environ. 2018, 237, 43.
- 25a) M. Ye, X. Wang, E. Liu, J. Ye, D. Wang, ChemSusChem 2018, 11, 1606; b) P. Gu, S. Zhang, C. Zhang, X. Wang, A. Khan, T. Wen, B. Hu, A. Alsaedi, T. Hayat, X. Wang, Dalton Trans. 2019, 48, 2100.
- 26Y. J. Li, X. T. Deng, J. Tian, Z. Q. Liang, H. Z. Cui, Appl. Mater. Today 2018, 13, 217.
- 27Y. Tang, J. F. Zhu, W. L. Wu, C. H. Yang, W. J. Lv, F. Wang, J. Electrochem. Soc. 2017, 164, A923.
- 28J. F. Zhu, Y. Tang, C. H. Yang, F. Wang, M. J. Cao, J. Electrochem. Soc. 2016, 163, A785.
- 29Z. W. Zhang, H. N. Li, G. D. Zou, C. Fernandez, B. Z. Liu, Q. R. Zhang, J. Hu, Q. M. Peng, ACS Sustain. Chem. Eng. 2016, 4, 6763.
- 30a) L. Liu, Y. H. Qi, J. R. Lu, S. L. Lin, W. J. An, Y. H. Liang, W. Q. Cui, Appl. Catal. B Environ. 2016, 183, 133; b) J. F. Ma, Q. Liu, L. F. Zhu, J. Zou, K. Wang, M. R. Yang, S. Komarneni, Appl. Catal. B Environ. 2016, 182, 26.
- 31a) Q. Xue, Z. X. Pei, Y. Huang, M. S. Zhu, Z. J. Tang, H. F. Li, Y. Huang, N. Li, H. Y. Zhang, C. Y. Zhi, J. Mater. Chem. A 2017, 5, 20818; b) Q. Xue, H. J. Zhang, M. S. Zhu, Z. X. Pei, H. F. Li, Z. F. Wang, Y. Huang, Y. Huang, Q. H. Deng, J. Zhou, S. Y. Du, Q. Huang, C. Y. Zhi, Adv. Mater. 2017, 29, 1604847.
- 32W. S. Wang, H. Du, R. X. Wang, T. Wen, A. W. Xu, Nanoscale 2013, 5, 3315.
- 33J. X. Low, L. Y. Zhang, T. Tong, B. J. Shen, J. G. Yu, J. Catal. 2018, 361, 255.
- 34C. Peng, X. F. Yang, Y. H. Li, H. Yu, H. J. Wang, F. Peng, ACS Appl. Mater. Interfaces 2016, 8, 6051.
- 35W. W. He, H. K. Kim, W. G. Warner, D. Melka, J. H. Callahan, J. J. Yin, J. Am. Chem. Soc. 2014, 136, 750.
- 36K. Maleski, V. N. Mochalin, Y. Gogotsi, Chem. Mater. 2017, 29, 1632.